
Research Article
On a System of Two High-Order Nonlinear Difference Equations

Qianhong Zhang and Wenzhuan Zhang

Guizhou Key Laboratory of Economics System Simulation, Guizhou University of Finance and Economics, Guiyang,
Guizhou 550004, China

Correspondence should be addressed to Qianhong Zhang; zqianhong68@163.com

Received 7 December 2013; Accepted 13 April 2014; Published 5 May 2014

Academic Editor: Pavel Kurasov

Copyright © 2014 Q. Zhang and W. Zhang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper is concerned with dynamics of the solution to the system of two high-order nonlinear difference equations 𝑥
𝑛+1

=

𝑥
𝑛−𝑘
/(𝑞 + ∏

𝑘

𝑖=0
𝑦
𝑛−𝑖
), 𝑦
𝑛+1

= 𝑦
𝑛−𝑘
/(𝑝 + ∏

𝑘

𝑖=0
𝑥
𝑛−𝑖
), 𝑘 ∈ 𝑁

+, 𝑛 = 0, 1, . . ., where 𝑝, 𝑞 ∈ (0,∞), 𝑥
−𝑖
∈ (0,∞), 𝑦

−𝑖
∈ (0,∞) and

𝑖 = 0, 1, . . . , 𝑘. Moreover the rate of convergence of a solution that converges to the equilibrium (0, 0) of the system is discussed.
Finally, some numerical examples are considered to show the results obtained.

1. Introduction

Difference equations or discrete dynamical systems are
diverse fields which impact almost every branch of pure
and applied mathematics. Every dynamical system 𝑥

𝑛+1
=

𝑓(𝑥
𝑛
, 𝑥
𝑛−1

, . . . , 𝑥
𝑛−𝑘

) determines a difference equation and
vice versa. Recently, there has been great interest in studying
the system of difference equations. One of the reasons for
this is a necessity for some techniques which can be used
in investigating equations arising in mathematical models
describing real life situations in population biology, eco-
nomic, probability theory, genetics psychology, and so forth.
The theory of difference equations occupies a central position
in applicable analysis. There is no doubt that the theory of
difference equations will continue to play an important role
in mathematics as a whole. Nonlinear difference equations
of order greater than one are of paramount importance in
applications. Such equations also appear naturally as discrete
analogues and as numerical solutions of differential and delay
differential equations which model various diverse phenom-
ena in biology, ecology, physiology, physics, engineering, and
economics. It is very interesting to investigate the behavior of
solutions of a system of nonlinear difference equations and
to discuss the local asymptotic stability of their equilibrium
points.

The study of properties of rational difference equations
and systems of rational difference equations has been an area

of interest in recent years. There are many papers in which
systems of difference equations have been studied.

Çinar et al. [1] have obtained the positive solution of the
difference equation system:

𝑥
𝑛+1

=

𝑚

𝑦
𝑛

, 𝑦
𝑛+1

=

𝑝𝑦
𝑛

𝑥
𝑛−1

𝑦
𝑛−1

. (1)

Çinar [2] has obtained the positive solution of the
difference equation system:

𝑥
𝑛+1

=

1

𝑦
𝑛

, 𝑦
𝑛+1

=

𝑦
𝑛

𝑥
𝑛−1

𝑦
𝑛−1

. (2)

Also, Çinar and Yalçinkaya [3] have obtained the positive
solution of the difference equation system:

𝑥
𝑛+1

=

1

𝑧
𝑛

, 𝑦
𝑛+1

=

𝑥
𝑛

𝑥
𝑛−1

, 𝑧
𝑛+1

=

1

𝑥
𝑛−1

. (3)

Özban [4] has investigated the positive solutions of the
system of rational difference equations:

𝑥
𝑛+1

=

1

𝑦
𝑛−𝑘

, 𝑦
𝑛+1

=

𝑦
𝑛

𝑥
𝑛−𝑚

𝑦
𝑛−𝑚+𝑘

. (4)
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Papaschinopoulos and Schinas [5] investigated the global
behavior for a system of the following two nonlinear differ-
ence equations:

𝑥
𝑛+1

= 𝐴 +

𝑦
𝑛

𝑥
𝑛−𝑝

, 𝑦
𝑛+1

= 𝐴 +

𝑥
𝑛

𝑦
𝑛−𝑞

, 𝑛 = 0, 1, . . . , (5)

where 𝐴 is a positive real number, 𝑝, 𝑞 are positive integers,
and 𝑥

−𝑝
, . . . , 𝑥

0
, 𝑦
−𝑞
, . . . , 𝑦

0
are positive real numbers.

Clark et al. [6, 7] investigated the system of rational
difference equations:

𝑥
𝑛+1

=

𝑥
𝑛

𝑎 + 𝑐𝑦
𝑛

, 𝑦
𝑛+1

=

𝑦
𝑛

𝑏 + 𝑑𝑥
𝑛

, 𝑛 = 0, 1, . . . , (6)

where 𝑎, 𝑏, 𝑐, 𝑑 ∈ (0,∞) and the initial conditions 𝑥
0
and 𝑦

0

are arbitrary nonnegative numbers.
In 2012, Zhang et al. [8] investigated the global behavior

for a system of the following third order nonlinear difference
equations:

𝑥
𝑛+1

=

𝑥
𝑛−2

𝐵 + 𝑦
𝑛−2

𝑦
𝑛−1

𝑦
𝑛

, 𝑦
𝑛+1

=

𝑦
𝑛−2

𝐴 + 𝑥
𝑛−2

𝑥
𝑛−1

𝑥
𝑛

, (7)

where 𝐴, 𝐵 ∈ (0,∞), and the initial values 𝑥
−𝑖
, 𝑦
−𝑖
∈ (0,∞),

𝑖 = 0, 1, 2.
Ibrahim [9] has obtained the positive solution of the

difference equation system in the modeling competitive
populations:

𝑥
𝑛+1

=

𝑥
𝑛−1

𝑥
𝑛−1

𝑦
𝑛
+ 𝛼

, 𝑦
𝑛+1

=

𝑦
𝑛−1

𝑦
𝑛−1

𝑥
𝑛
+ 𝛽

. (8)

Din et al. [10] studied the global behavior of positive
solution to the fourth-order rational difference equations:

𝑥
𝑛+1

=

𝛼𝑥
𝑛−3

𝛽 + 𝛾𝑦
𝑛
𝑦
𝑛−1

𝑦
𝑛−2

𝑦
𝑛−3

,

𝑦
𝑛+1

=

𝛼
1
𝑦
𝑛−3

𝛽
1
+ 𝛾
1
𝑥
𝑛
𝑥
𝑛−1

𝑥
𝑛−2

𝑥
𝑛−3

,

(9)

where the parameters 𝛼, 𝛽, 𝛾, 𝛼
1
, 𝛽
1
, 𝛾
1
and the initial condi-

tions 𝑥
−𝑖
, 𝑦
−𝑖
, 𝑖 = 0, 1, 2, 3 are positive real numbers.

Although difference equations are sometimes very simple
in their forms, they are extremely difficult to understand
thoroughly the behavior of their solutions. In [11], Kocić and
Ladas have studied global behavior of nonlinear difference
equations of higher order. Similar nonlinear systems of
rational difference equations were investigated (see [12, 13]).
Other related results reader can refer to [14–22].

Our aim in this paper is to investigate the solutions,
stability character, and asymptotic behavior of the system of
difference equations:

𝑥
𝑛+1

=

𝑥
𝑛−𝑘

𝑞 + ∏
𝑘

𝑖=0
𝑦
𝑛−𝑖

, 𝑦
𝑛+1

=

𝑦
𝑛−𝑘

𝑝 +∏
𝑘

𝑖=0
𝑥
𝑛−𝑖

,

𝑛 = 0, 1, . . . , 𝑘 ∈ 𝑁
+

.

(10)

where 𝑝, 𝑞 ∈ (0,∞) and initial conditions 𝑥
𝑖
, 𝑦
𝑖
∈ (0,∞), 𝑖 =

−𝑘, −𝑘+1, . . . , 0. This paper is natural extension of [8–10, 14].

2. Preliminaries

Let 𝐼, 𝐽 be some intervals of real number and let 𝑓 : 𝐼
𝑘+1

×

𝐽
𝑘+1

→ 𝐼, 𝑔 : 𝐼
𝑘+1

×𝐽
𝑘+1

→ 𝐽 be continuously differentiable
functions.Then for every initial conditions (𝑥

𝑖
, 𝑦
𝑗
) ∈ 𝐼×𝐽 (𝑖 =

−𝑘, −𝑘 + 1, . . . , 0; 𝑗 = −𝑘, −𝑘 + 1, . . . , 0), the system of
difference equations

𝑥
𝑛+1

= 𝑓 (𝑥
𝑛
, 𝑥
𝑛−1

, . . . , 𝑥
𝑛−𝑘

, 𝑦
𝑛
, 𝑦
𝑛−1

, . . . , 𝑦
𝑛−𝑘

) ,

𝑦
𝑛+1

= 𝑔 (𝑥
𝑛
, 𝑥
𝑛−1

, . . . , 𝑥
𝑛−𝑘

, 𝑦
𝑛
, 𝑦
𝑛−1

, . . . , 𝑦
𝑛−𝑘

) ,

𝑛 = 0, 1, 2, . . .

(11)

has a unique solution {(𝑥
𝑛
, 𝑦
𝑛
)}
∞

𝑛=−𝑘
. A point (𝑥, 𝑦) ∈

𝐼 × 𝐽 is called an equilibrium point of (11) if 𝑥 =

𝑓(𝑥, 𝑥, . . . , 𝑥, 𝑦, 𝑦, . . . , 𝑦), 𝑦 = 𝑔(𝑥, 𝑥, . . . , 𝑥, 𝑦, 𝑦, . . . , 𝑦); that
is, (𝑥
𝑛
, 𝑦
𝑛
) = (𝑥, 𝑦) for all 𝑛 ≥ 0.

Definition 1. Assume that (𝑥, 𝑦) is an equilibrium point of
(11). Then one has the following

(i) (𝑥, 𝑦) is said to be stable relative to 𝐼 × 𝐽, if, for every
𝜀 > 0, and any initial conditions (𝑥

𝑖
, 𝑦
𝑖
) ∈ 𝐼 × 𝐽, 𝑖 ∈

{−𝑘, −𝑘 + 1, . . . , −1, 0}, there exists 𝛿 > 0 such that
∑
0

𝑖=−𝑘
|𝑥
𝑖
−𝑥| < 𝛿,∑

0

𝑖=−𝑘
|𝑦
𝑖
−𝑦| < 𝛿, implies |𝑥

𝑛
−𝑥| <

𝜀, |𝑦
𝑛
− 𝑦| < 𝜀.

(ii) (𝑥, 𝑦) is called an attractor relative to 𝐼 × 𝐽 if for
all (𝑥

𝑖
, 𝑦
𝑖
) ∈ 𝐼 × 𝐽, 𝑖 ∈ {−𝑘, −𝑘 + 1, . . . , −1, 0},

lim
𝑛→∞

𝑥
𝑛
= 𝑥, lim

𝑛→∞
𝑦
𝑛
= 𝑦.

(iii) (𝑥, 𝑦) is called asymptotically stable relative to 𝐼 × 𝐽 if
it is stable and an attractor.

(iv) (𝑥, 𝑦) is unstable if it is not stable.

Definition 2. Let (𝑥, 𝑦) be an equilibrium point of a map 𝐹 =

(𝑓, 𝑥
𝑛
, 𝑥
𝑛−1

, . . . , 𝑥
𝑛−𝑘

, 𝑔, 𝑦
𝑛
, 𝑦
𝑛−1

, . . . , 𝑦
𝑛−𝑘

), where 𝑓 and 𝑔 are
continuously differentiable functions at (𝑥, 𝑦). The linearized
system of (11) about the equilibrium point (𝑥, 𝑦) is

𝑋
𝑛+1

= 𝐹 (𝑋
𝑛
) = 𝐽
𝐹
𝑋
𝑛
, (12)

where 𝑋
𝑛
= (𝑥
𝑛
, . . . , 𝑥

𝑛−𝑘
, 𝑦
𝑛
, . . . , 𝑦

𝑛−𝑘
)
𝑇, and 𝐽

𝐹
is Jacobian

matrix of system (11) about the equilibrium point (𝑥, 𝑦).

Theorem 3 (see [11]). Assume that 𝑋
𝑛+1

= 𝐹(𝑋
𝑛
), 𝑛 =

0, 1, . . ., is a system of difference equations and 𝑋 is the
equilibrium point of this system; that is, 𝐹(𝑋) = 𝑋. If all
eigenvalues of the Jacobian matrix 𝐽

𝐹
, evaluated at𝑋, lie inside

the open unit disk |𝜆| < 1, then 𝑋 is locally asymptotically
stable. If one of them has modulus greater than one, then 𝑋

is unstable.

Theorem 4 (see [12]). Assume that 𝑋
𝑛+1

= 𝐹(𝑋
𝑛
), 𝑛 =

0, 1, . . ., is a system of difference equations and 𝑋 is the equi-
librium point of this system, and the characteristic polynomial
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of this system about the equilibrium point 𝑋 is 𝑃(𝜆) = 𝑎
0
𝜆
𝑛

+

𝑎
1
𝜆
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑎
𝑛−1

𝜆 + 𝑎
𝑛
= 0, with real coefficients and 𝑎

0
> 0.

Then all roots of the polynomial 𝑝(𝜆) lie inside the open unit
disk |𝜆| < 1 if and only if

Δ
𝑘
> 0 𝑓𝑜𝑟 𝑘 = 1, 2, . . . , 𝑛, (13)

where Δ
𝑘
is the principal minor of order 𝑘 of the 𝑛 × 𝑛matrix:

Δ
𝑛
=

[

[

[

[

[

[

[

𝑎
1
𝑎
3
𝑎
5
⋅ ⋅ ⋅ 0

𝑎
0
𝑎
2
𝑎
4
⋅ ⋅ ⋅ 0

0 𝑎
1
𝑎
3
⋅ ⋅ ⋅ 0

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 𝑎
𝑛

]

]

]

]

]

]

]

. (14)

3. Main Results

The equilibrium points of system (10) are (0, 0) and
(
𝑘+1
√1 − 𝑝,

𝑘+1
√1 − 𝑞), for 𝑝 < 1 and 𝑞 < 1. In addition, if 𝑞 = 1,

then every point on the 𝑥-axis is an equilibrium point, and if
𝑝 = 1, then every point on the 𝑦-axis is an equilibrium point.
Finally, if 𝑝 > 1 and 𝑞 > 1, (0, 0) is the unique equilibrium
point.

We summarize the local stability of the equilibria of (10)
as follows.

Theorem 5. For the equilibrium point (0, 0) of system (10), the
following results hold.

(i) If 𝑝 > 1 and 𝑞 > 1, then the unique equilibrium point
(0, 0) of system (10) is locally asymptotically stable.

(ii) If 𝑝 < 1 or 𝑞 < 1, then the equilibrium point (0, 0) of
system (10) is unstable.

Proof. (i) The linearized equation of system (10) about (0, 0)
is

𝑋
𝑛+1

= 𝐽
𝐹
(0, 0)𝑋

𝑛
, (15)

where𝑋
𝑛
= (𝑥
𝑛
, 𝑥
𝑛−1

, . . . , 𝑥
𝑛−𝑘

, 𝑦
𝑛
, 𝑦
𝑛−1

, . . . 𝑦
𝑛−𝑘

)
𝑇, and

𝐽
𝐹
(0, 0) = (𝑑

𝑖𝑗
)
(2𝑘+2)×(2𝑘+2)

=

(

(

(

(

(

(

(

(

(

(

(

(

0 ⋅ ⋅ ⋅ 0

1

𝑞

0 ⋅ ⋅ ⋅ 0 0

1 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0

... d
...

...
... ⋅ ⋅ ⋅

...
...

0 ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ 0 0

0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0

1

𝑝

0 ⋅ ⋅ ⋅ 0 0 1 ⋅ ⋅ ⋅ 0 0

... ⋅ ⋅ ⋅

...
...

... d
...

...
0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 1 0

)

)

)

)

)

)

)

)

)

)

)

)

.

(16)

The characteristic equation of (15) is

𝜆
2𝑘

(𝜆 − (−1)
𝑘+2

1

𝑞

)(𝜆 − (−1)
𝑘+2

1

𝑝

) = 0. (17)

This shows that all the roots of characteristic equation lie
inside unit disk. So the unique equilibrium (0, 0) is locally
asymptotically stable.

(ii) It is easy to see that if 𝑝 < 1 or 𝑞 < 1, then there
exists at least one root 𝜆 of (17) such that |𝜆| > 1. Hence by
Theorem 3 if 𝑝 < 1 or 𝑞 < 1, then (0, 0) is unstable. The proof
is complete.

Theorem 6. If 𝑝 < 1 and 𝑞 < 1, then the positive equilibrium
point 𝑃

1
(𝑥, 𝑦) = (

𝑘+1
√1 − 𝑝,

𝑘+1
√1 − 𝑞) of (10) is unstable.

Proof. The linearized system of (10) about the equilibrium
point 𝑃

1
is given by

𝑋
𝑛+1

= 𝐽
𝐹
(𝑃
1
)𝑋
𝑛
, (18)

where𝑋
𝑛
= (𝑥
𝑛
, 𝑥
𝑛−1

, . . . , 𝑥
𝑛−𝑘

, 𝑦
𝑛
, 𝑦
𝑛−1

, . . . , 𝑦
𝑛−𝑘

)
𝑇, and

𝐽
𝐹
(𝑃
1
) = 𝐵
(2𝑘+2)×(2𝑘+2)

=

(

(

(

(

(

(

(

(

0 ⋅ ⋅ ⋅ 0 1 −𝑦
𝑘

𝑥 ⋅ ⋅ ⋅ −𝑦
𝑘

𝑥 −𝑦
𝑘

𝑥

1 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0

... d
...

...
... ⋅ ⋅ ⋅

...
...

0 ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ 0 0

−𝑥
𝑘

𝑦 ⋅ ⋅ ⋅ −𝑥
𝑘

𝑦 −𝑥
𝑘

𝑦 0 ⋅ ⋅ ⋅ 0 1

0 ⋅ ⋅ ⋅ 0 0 1 ⋅ ⋅ ⋅ 0 0

... ⋅ ⋅ ⋅

...
...

... d
...

...
0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 1 0

)

)

)

)

)

)

)

)

.

(19)

Let 𝜆
1
, 𝜆
2
, . . . , 𝜆

2𝑘+2
denote the eigenvalues of matrix 𝐵, and

let 𝐷 = diag(𝑑
1
, 𝑑
2
, . . . , 𝑑

2𝑘+2
) be a diagonal matrix, where

𝑑
1
= 𝑑
𝑘+2

= 1, 𝑑
𝑖
= 𝑑
𝑘+1+𝑖

= 1 − 𝑖𝜀 (𝑖 = 2, 3, . . . , 𝑘 + 1), for
0 < 𝜀 < 1.
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Clearly, 𝐷 is invertible. In computing matrix 𝐷𝐵𝐷−1, we
obtain that

𝐷𝐵𝐷
−1

=

(

(

(

(

(

(

(

(

(

0 ⋅ ⋅ ⋅ 0 𝑑
1
𝑑
−1

𝑘+1
−𝑦
𝑘

𝑥𝑑
1
𝑑
−1

𝑘+2
⋅ ⋅ ⋅ −𝑦

𝑘

𝑥𝑑
1
𝑑
−1

2𝑘+1
−𝑦
𝑘

𝑥𝑑
1
𝑑
−1

2𝑘+2

𝑑
2
𝑑
−1

1
⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0

... d
...

...
... ⋅ ⋅ ⋅

...
...

0 ⋅ ⋅ ⋅ 𝑑
𝑘+1

𝑑
−1

𝑘
0 0 ⋅ ⋅ ⋅ 0 0

−𝑥
𝑘

𝑦𝑑
𝑘+2

𝑑
−1

1
⋅ ⋅ ⋅ −𝑥

𝑘

𝑦𝑑
𝑘+2

𝑑
−1

𝑘
−𝑥
𝑘

𝑦𝑑
𝑘+2

𝑑
−1

𝑘+1
0 ⋅ ⋅ ⋅ 0 𝑑

𝑘+2
𝑑
−1

2𝑘+2

0 ⋅ ⋅ ⋅ 0 0 𝑑
𝑘+3

𝑑
−1

𝑘+2
⋅ ⋅ ⋅ 0 0

... ⋅ ⋅ ⋅

...
...

... d
...

...
0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 𝑑

2𝑘+2
𝑑
−1

2𝑘+1
0

)

)

)

)

)

)

)

)

)

. (20)

From 𝑑
1
> 𝑑
2
> ⋅ ⋅ ⋅ > 𝑑

𝑘+1
> 0 and 𝑑

𝑘+2
> 𝑑
𝑘+3

> ⋅ ⋅ ⋅ >

𝑑
2𝑘+2

> 0 it implies that

𝑑
2
𝑑
−1

1
< 1, 𝑑

3
𝑑
−1

2
< 1, . . . , 𝑑

𝑘+1
𝑑
−1

𝑘
< 1,

𝑑
𝑘+3

𝑑
−1

𝑘+2
< 1, . . . , 𝑑

2𝑘+2
𝑑
−1

2𝑘+1
< 1.

(21)

On the other hand
1

1 − (𝑘 + 1) 𝜀

+ 𝑦
𝑘

𝑥 + 𝑦
𝑘

𝑥

1

1 − 2𝜀

+ ⋅ ⋅ ⋅ + 𝑦
𝑘

𝑥

1

1 − (𝑘 + 1) 𝜀

> 1

𝑥
𝑘

𝑦 + 𝑥
𝑘

𝑦

1

1 − 2𝜀

+ ⋅ ⋅ ⋅ + 𝑥
𝑘

𝑦

1

1 − (𝑘 + 1) 𝜀

+

1

1 − (𝑘 + 1) 𝜀

> 1.

(22)

It is well known that 𝐵 has the same eigenvalues as 𝐷𝐵𝐷−1,
and we have that

max
1≤𝑖≤2𝑘+2

󵄨
󵄨
󵄨
󵄨
𝜆
𝑖

󵄨
󵄨
󵄨
󵄨

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷𝐵𝐷
−1
󵄩
󵄩
󵄩
󵄩
󵄩∞

= max{𝑑
2
𝑑
−1

1
, . . . , 𝑑

𝑘+1
𝑑
−1

𝑘
, 𝑑
𝑘+3

𝑑
−1

𝑘+2
, . . . , 𝑑

2𝑘+2
𝑑
−1

2𝑘+1
,

1

1 − (𝑘 + 1) 𝜀

+ 𝑦
𝑘

𝑥 + 𝑦
𝑘

𝑥

1

1 − 2𝜀

+ ⋅ ⋅ ⋅ + 𝑦
𝑘

𝑥

1

1 − (𝑘 + 1) 𝜀

, 𝑥
𝑘

𝑦 + 𝑥
𝑘

𝑦

1

1 − 2𝜀

+ ⋅ ⋅ ⋅ + 𝑥
𝑘

𝑦

1

1 − (𝑘 + 1) 𝜀

+

1

1 − (𝑘 + 1) 𝜀

}

> 1.

(23)

This implies that the equilibrium (𝑥, 𝑦) of (10) is unsta-
ble.

The following theorem is similar to Theorem 3.4 of [8].

Theorem 7. Let 𝑝 < 1 and 𝑞 < 1, (𝑥
𝑛
, 𝑦
𝑛
) is a solution of

system (10), and then, for 𝑚 = −𝑘, −𝑘 + 1, . . . , 0, the following
statements are true.

(i) If (𝑥
𝑚
, 𝑦
𝑚
) ∈ (0,

𝑘+1
√1 − 𝑝) × (

𝑘+1
√1 − 𝑞, +∞), then

(𝑥
𝑛
, 𝑦
𝑛
) ∈ (0,

𝑘+1
√1 − 𝑝) × (

𝑘+1
√1 − 𝑞, +∞).

(ii) If (𝑥
𝑚
, 𝑦
𝑚
) ∈ (

𝑘+1
√1 − 𝑝, +∞) × (0,

𝑘+1
√1 − 𝑞), then

(𝑥
𝑛
, 𝑦
𝑛
) ∈ (

𝑘+1
√1 − 𝑝, +∞) × (0,

𝑘+1
√1 − 𝑞).

Theorem 8. Let (𝑥
𝑛
, 𝑦
𝑛
) be positive solution of system (10),

then for𝑚 ≥ 0 the following results hold:

0 ≤ 𝑥
𝑛
≤

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

(

1

𝑞

)

𝑚+1

𝑥
−𝑘
, 𝑖𝑓 𝑛 = (𝑘 + 1)𝑚 + 1,

(

1

𝑞

)

𝑚+1

𝑥
−𝑘+1

, 𝑖𝑓 𝑛 = (𝑘 + 1)𝑚 + 2,

...

(

1

𝑞

)

𝑚+1

𝑥
0
, 𝑖𝑓 𝑛 = (𝑘 + 1)𝑚 + 𝑘 + 1,

.

0 ≤ 𝑦
𝑛
≤

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

(

1

𝑝

)

𝑚+1

𝑦
−𝑘
, 𝑖𝑓 𝑛 = (𝑘 + 1)𝑚 + 1,

(

1

𝑝

)

𝑚+1

𝑦
−𝑘+1

, 𝑖𝑓 𝑛 = (𝑘 + 1)𝑚 + 2,

...

(

1

𝑝

)

𝑚+1

𝑦
0
, 𝑖𝑓 𝑛 = (𝑘 + 1)𝑚 + 𝑘 + 1.

(24)

Proof. It is true for 𝑚 = 0. Suppose that results are true for
𝑚 = ℎ ≥ 1, namely,

0 ≤ 𝑥
𝑛
≤

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

(

1

𝑞

)

ℎ+1

𝑥
−𝑘
, if 𝑛 = (𝑘 + 1) ℎ + 1,

(

1

𝑞

)

ℎ+1

𝑥
−𝑘+1

, if 𝑛 = (𝑘 + 1) ℎ + 2,
...

(

1

𝑞

)

ℎ+1

𝑥
0
, if 𝑛 = (𝑘 + 1) ℎ + 𝑘 + 1,
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0 ≤ 𝑦
𝑛
≤

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

(

1

𝑝

)

ℎ+1

𝑦
−𝑘
, if 𝑛 = (𝑘 + 1) ℎ + 1,

(

1

𝑝

)

ℎ+1

𝑦
−𝑘+1

, if 𝑛 = (𝑘 + 1) ℎ + 2,
...

(

1

𝑝

)

ℎ+1

𝑦
0
, if 𝑛 = (𝑘 + 1) ℎ + 𝑘 + 1.

.

(25)

Now, for𝑚 = ℎ + 1, by virtue of system (10), we have

0 ≤ 𝑥
(𝑘+1)ℎ+𝑘+2

=

𝑥
(𝑘+1)ℎ+1

𝑞 + ∏
𝑘−1

𝑖=0
𝑦
(𝑘+1)ℎ+𝑘+2−𝑖

≤

𝑥
(𝑘+1)ℎ+1

𝑞

≤ (

1

𝑞

)

ℎ+2

𝑥
−𝑘
,

0 ≤ 𝑥
(𝑘+1)ℎ+𝑘+3

=

𝑥
(𝑘+1)ℎ+2

𝑞 + ∏
𝑘−1

𝑖=0
𝑦
(𝑘+1)ℎ+𝑘+3−𝑖

≤

𝑥
(𝑘+1)ℎ+2

𝑞

≤ (

1

𝑞

)

ℎ+2

𝑥
−𝑘+1

,

(26)

and similarly,

0 ≤ 𝑥
(𝑘+1)ℎ+2𝑘+2

=

𝑥
(𝑘+1)ℎ+𝑘+1

𝑞 + ∏
𝑘−1

𝑖=0
𝑦
(𝑘+1)ℎ+2𝑘+2−𝑖

≤

𝑥
(𝑘+1)ℎ+𝑘+1

𝑞

≤ (

1

𝑞

)

ℎ+2

𝑥
0
,

0 ≤ 𝑦
(𝑘+1)ℎ+𝑘+2

=

𝑦
(𝑘+1)ℎ+1

𝑝 +∏
𝑘−1

𝑖=0
𝑥
(𝑘+1)ℎ+𝑘+2−𝑖

≤

𝑦
(𝑘+1)ℎ+1

𝑝

≤ (

1

𝑝

)

ℎ+2

𝑦
−𝑘
,

0 ≤ 𝑦
(𝑘+1)ℎ+𝑘+3

=

𝑦
(𝑘+1)ℎ+2

𝑝 +∏
𝑘−1

𝑖=0
𝑥
(𝑘+1)ℎ+𝑘+3−𝑖

≤

𝑦
(𝑘+1)ℎ+2

𝑝

≤ (

1

𝑝

)

ℎ+2

𝑦
−𝑘+1

,

(27)

and similarly,

0 ≤ 𝑦
(𝑘+1)ℎ+2𝑘+2

=

𝑦
(𝑘+1)ℎ+𝑘+1

𝑝 +∏
𝑘−1

𝑖=0
𝑥
(𝑘+1)ℎ+2𝑘+2−𝑖

≤

𝑦
(𝑘+1)ℎ+𝑘+1

𝑝

≤ (

1

𝑝

)

ℎ+2

𝑦
0
.

(28)

Hence, for ∀𝑚 ≥ 0, the results are true.

Theorem 9. If 𝑝 > 1 and 𝑞 > 1, then the unique equilibrium
point (0, 0) of system (10) is globally asymptotically stable.

Proof. From (i) of Theorem 5, we obtain that the unique
equilibrium point (0, 0) of system (10) is locally asymptot-
ically stable. By virtue of Theorem 7, it is clear that every

positive solution (𝑥
𝑛
, 𝑦
𝑛
) is bounded. That is, 0 ≤ 𝑥

𝑛
≤ 𝛼

and 0 ≤ 𝑦
𝑛
≤ 𝛽, where 𝛼 = max{𝑥

−𝑘
, 𝑥
−𝑘+1

, . . . , 𝑥
0
}, 𝛽 =

max{𝑦
−𝑘
, 𝑦
−𝑘+1

, . . . , 𝑦
0
}.

Now, it is sufficient to prove that (𝑥
𝑛
, 𝑦
𝑛
) is decreasing.

From system (10) one has

𝑥
𝑛+1

=

𝑥
𝑛−𝑘

𝑞 + ∏
𝑘

𝑖=0
𝑦
𝑛−𝑖

≤

𝑥
𝑛−𝑘

𝑞

≤ 𝑥
𝑛−𝑘 (29)

This implies that 𝑥
(𝑘+1)𝑛+1

≤ 𝑥
(𝑘+1)𝑛−𝑘

and 𝑥
(𝑘+1)𝑛+𝑘+2

≤

𝑥
(𝑘+1)𝑛+1

; hence, the subsequences {𝑥
(𝑘+1)𝑛+1

}, {𝑥
(𝑘+1)𝑛+2

},
. . . , {𝑥

(𝑘+1)𝑛+𝑘+1
} are decreasing. So sequence {𝑥

𝑛
} is decreas-

ing. Similarly, it is easy to prove that sequence {𝑦
𝑛
} is also

decreasing. Hence lim
𝑛→∞

𝑥
𝑛
= lim

𝑛→∞
𝑦
𝑛
= 0. Therefore

the equilibrium point (0, 0) is globally asymptotically sta-
ble.

4. Rate of Convergence

In this section we will determine the rate of convergence of a
solution that converges to the equilibrium point (0, 0) of the
system (10).The following result gives the rate of convergence
of solution of a system of difference equations:

𝑋
𝑛+1

= [𝐴 + 𝐵 (𝑛)]𝑋
𝑛
, (30)

where𝑋
𝑛
is an𝑚-dimensional vector,𝐴 ∈ 𝐶

𝑚×𝑚 is a constant
matrix, and 𝐵 : 𝑍+ → 𝐶

𝑚×𝑚 is a matrix function satisfying

‖𝐵 (𝑛)‖ 󳨀→ 0, when 𝑛 󳨀→ ∞, (31)

where ‖ ⋅ ‖ denotes any matrix norm which is associated with
the vector norm.

Theorem 10 (see [23]). Assume that condition (31) holds, if𝑋
𝑛

is a solution of (30), then either𝑋
𝑛
= 0 for all large 𝑛 or

𝜌 = lim
𝑛→∞

𝑛
√
󵄩
󵄩
󵄩
󵄩
𝑋
𝑛

󵄩
󵄩
󵄩
󵄩

(32)

or

𝜌 = lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑋
𝑛+1

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑋
𝑛

󵄩
󵄩
󵄩
󵄩

(33)

exists and is equal to the modulus of one the eigenvalues of the
matrix 𝐴.

Assume that lim
𝑛→∞

𝑥
𝑛
= 𝑥, lim

𝑛→∞
𝑦
𝑛
= 𝑦, we will

find a system of limiting equations for the system (10). The
error terms are given as

𝑥
𝑛+1

− 𝑥 =

𝑘

∑

𝑖=0

𝐴
𝑖
(𝑥
𝑛−𝑖

− 𝑥) +

𝑘

∑

𝑖=0

𝐵
𝑖
(𝑦
𝑛−𝑖

− 𝑦) ,

𝑦
𝑛+1

− 𝑦 =

𝑘

∑

𝑖=0

𝐶
𝑖
(𝑥
𝑛−𝑖

− 𝑥) +

𝑘

∑

𝑖=0

𝐷
𝑖
(𝑦
𝑛−𝑖

− 𝑦) .

(34)
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Set 𝑒1
𝑛
= 𝑥
𝑛
− 𝑥, 𝑒

2

𝑛
= 𝑦
𝑛
− 𝑦; therefore, it follows that

𝑒
1

𝑛+1
=

𝑘

∑

𝑖=0

𝐴
𝑖
𝑒
1

𝑛−𝑖
+

𝑘

∑

𝑖=0

𝐵
𝑖
𝑒
2

𝑛−𝑖

𝑒
2

𝑛+1
=

𝑘

∑

𝑖=0

𝐶
𝑖
𝑒
1

𝑛−𝑖
+

𝑘

∑

𝑖=0

𝐷
𝑖
𝑒
2

𝑛−𝑖
,

(35)

where

𝐴
𝑖
= 0, 𝑖 = 0, 1, . . . , 𝑘 − 1, 𝐴

𝑘
=

1

𝑞 + ∏
𝑘

𝑖=0
𝑦
𝑛−𝑖

,

𝐵
0
= −

𝑥
𝑛−𝑘

∏
𝑘

𝑖=1
𝑦
𝑛−𝑖

(𝑞 + ∏
𝑘

𝑖=0
𝑦
𝑛−𝑖
)

2
, . . . , 𝐵

𝑘
= −

𝑥
𝑛−𝑘

∏
𝑘−1

𝑖=0
𝑦
𝑛−𝑖

(𝑞 + ∏
𝑘

𝑖=0
𝑦
𝑛−𝑖
)

2
,

𝐶
0
= −

𝑦
𝑛−𝑘

∏
𝑘

𝑖=1
𝑥
𝑛−𝑖

(𝑝 + ∏
𝑘

𝑖=0
𝑥
𝑛−𝑖
)

2
, . . . , 𝐶

𝑘
= −

𝑦
𝑛−𝑘

∏
𝑘−1

𝑖=0
𝑥
𝑛−𝑖

(𝑝 + ∏
𝑘

𝑖=0
𝑥
𝑛−𝑖
)

2
,

𝐷
𝑖
= 0, 𝑖 = 0, 1, . . . , 𝑘 − 1, 𝐷

𝑘
=

1

𝑝 + ∏
𝑘

𝑖=0
𝑥
𝑛−𝑖

.

(36)

Now it is clear that
lim
𝑛→∞

𝐴
𝑖
= 0, for 𝑖 ∈ {0, 1, . . . , 𝑘 − 1} ,

lim
𝑛→∞

𝐴
𝑘
=

1

𝑞 + 𝑦
𝑘+1

,

lim
𝑛→∞

𝐵
𝑖
= −

𝑥𝑦
𝑘

(𝑞 + 𝑦
𝑘+1

)

2
, 𝑖 ∈ {0, 1, . . . , 𝑘} .

(37)

lim
𝑛→∞

𝐶
𝑖
= −

𝑦𝑥
𝑘

(𝑝 + 𝑥
𝑘+1

)

2
, 𝑖 ∈ {0, 1, . . . , 𝑘} ,

lim
𝑛→∞

𝐷
𝑖
= 0, for 𝑖 ∈ {0, 1, . . . , 𝑘 − 1} ,

lim
𝑛→∞

𝐷
𝑘
=

1

𝑝 + 𝑥
𝑘+1

.

(38)

Hence, the limiting system of error terms at (0, 0) can be
written as

𝐸
𝑛+1

= 𝐺𝐸
𝑛
, (39)

where 𝐸
𝑛
= (𝑒
1

𝑛
, 𝑒
1

𝑛−1
, . . . , 𝑒

1

𝑛−𝑘
, 𝑒
2

𝑛
, 𝑒
2

𝑛−1
, . . . , 𝑒

2

𝑛−𝑘
)

𝑇, and

𝐺 = 𝐽
𝐹
(0, 0) = (𝑑

𝑖𝑗
)
(2𝑘+2)×(2𝑘+2)

=

(

(

(

(

(

(

(

(

(

(

(

(

0 ⋅ ⋅ ⋅ 0

1

𝑞

0 ⋅ ⋅ ⋅ 0 0

1 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0

... d
...

...
... ⋅ ⋅ ⋅

...
...

0 ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ 0 0

0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0

1

𝑝

0 ⋅ ⋅ ⋅ 0 0 1 ⋅ ⋅ ⋅ 0 0

... ⋅ ⋅ ⋅

...
...

... d
...

...
0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 1 0

)

)

)

)

)

)

)

)

)

)

)

)

(40)

UsingTheorem 10, we have the following result.
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Figure 1: The plot of system (42).

Theorem 11. Assume that 𝑝 > 1, 𝑞 > 1, and {(𝑥
𝑛
, 𝑦
𝑛
} are a

positive solution of the system (10). Then, the error vector 𝐸
𝑛
of

every solution of (10) satisfies both of the following asymptotic
relations:

lim
𝑛→∞

𝑛
√
󵄩
󵄩
󵄩
󵄩
𝐸
𝑛

󵄩
󵄩
󵄩
󵄩
=
󵄨
󵄨
󵄨
󵄨
𝜆𝐽
𝐹
(0, 0)

󵄨
󵄨
󵄨
󵄨
, lim

𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝐸
𝑛+1

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝐸
𝑛

󵄩
󵄩
󵄩
󵄩

=
󵄨
󵄨
󵄨
󵄨
𝜆𝐽
𝐹
(0, 0)

󵄨
󵄨
󵄨
󵄨
,

(41)

where 𝜆𝐽
𝐹
(0, 0) is equal to the modulus of one the eigenvalues

of the Jacobian matrix evaluated at the equilibrium (0, 0).

5. Numerical Examples

In order to illustrate the results of the previous sections
and to support our theoretical discussions, we consider
several interesting numerical examples in this section. These
examples represent different types of qualitative behavior of
solutions to system of nonlinear difference equations.

Example 1. Consider the system (10) with initial conditions
𝑥
−4
= 0.8, 𝑥

−3
= 1.2, 𝑥

−2
= 2.3, 𝑥

−1
= 2.1, 𝑥

0
= 3.0, 𝑦

−4
=

1.8, 𝑦
−3

= 2.2, 𝑦
−2

= 1.3, 𝑦
−1

= 2.0 and 𝑦
0
= 4.0,

moreover, choosing the parameters 𝑝 = 2.1, 𝑞 = 1.2 and
𝑘 = 4. Then system (10) can be written as

𝑥
𝑛+1

=

𝑥
𝑛−4

1.2 + ∏
4

𝑖=0
𝑦
𝑛−𝑖

, 𝑦
𝑛+1

=

𝑦
𝑛−4

2.1 + ∏
4

𝑖=0
𝑥
𝑛−𝑖

. (42)

The plot of system (42) is shown in Figure 1.

Example 2. Consider the system (10) with initial conditions
𝑥
−5
= 1.3, 𝑥

−4
= 0.8, 𝑥

−3
= 0.2, 𝑥

−2
= 1.3, 𝑥

−1
= 2.1, 𝑥

0
= 2.6,

𝑦
−5

= 0.3, 𝑦
−4

= 1.8, 𝑦
−3

= 2.2, 𝑦
−2

= 0.3, 𝑦
−1

= 3.0 and
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Figure 2: The plot of system (43).

𝑦
0
= 1.6, moreover, choosing the parameters𝑝 = 0.8, 𝑞 = 0.9

and 𝑘 = 5. Then system (10) can be written as

𝑥
𝑛+1

=

𝑥
𝑛−5

0.9 + ∏
5

𝑖=0
𝑦
𝑛−𝑖

, 𝑦
𝑛+1

=

𝑦
𝑛−5

0.8 + ∏
5

𝑖=0
𝑥
𝑛−𝑖

. (43)

The plot of system (43) is shown in Figure 2.

6. Conclusions and Future Work

In this paper, we discussed the dynamics of high-order
discrete system which is extension of [8, 10, 14]. We conclude
that (i) the equilibrium point (0, 0) is globally asymptotically
stable if 𝑝 > 1, 𝑞 > 1, (ii) the equilibrium (0, 0) and
(
1+𝑘
√1 − 𝑝,

1+𝑘
√1 − 𝑞) if 𝑝 < 1 or 𝑞 < 1 is unstable. Some

numerical examples are provided to support our theoretical
results. It is our future work to study the dynamical behavior
of system (10) when 𝑝 = 1 or 𝑞 = 1.
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