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A new algorithm calledmultistep reproducing kernelHilbert spacemethod is represented to solve nonlinear oscillator’smodels.The
proposed scheme is amodification of the reproducing kernel Hilbert spacemethod, whichwill increase the intervals of convergence
for the series solution. The numerical results demonstrate the validity and the applicability of the new technique. A very good
agreement was found between the results obtained using the presented algorithm and the Runge-Kutta method, which shows that
the multistep reproducing kernel Hilbert space method is very efficient and convenient for solving nonlinear oscillator’s models.

1. Introduction

Nonlinear oscillators have several applications in many fields
of physics, engineering, and biology [1–4]. In general, non-
linear oscillator’s problems are sometimes too complicated to
be solved exactly, so several numerical methods are proposed
by many authors such as harmonic balance method, multiple
scale method, Adomian decomposition method, homotopy
perturbationmethod, homotopy analysis method, and differ-
ential transform method. The reader is kindly requested to
go through [5–17] in order to know more details about these
methods, including their history, their kinds and types, their
modification for use, their scientific applications, and their
characteristics.

Reproducing kernel theory has important applications in
numerical analysis, differential equations, integral equations,
integrodifferential equations, and probability and statistics
[18–20]. Recently, a lot of research work has been devoted to
the applications of RKHSmethod for wide classes of stochas-
tic and deterministic problems involving operator equations,
differential equations, integral equations, and integrodiffer-
ential equations.The RKHSmethod was successfully used by

many authors to investigate several scientific applications side
by side with their theories. The reader is kindly requested
to go through [21–32] in order to know more details about
RKHS method, including its history, its modification for
use, its scientific applications, its kernel functions, and its
characteristics.

The new algorithm is a simple modification of the RKHS
method, for finding approximate solutions to the linear and
nonlinear oscillator’s equations in large intervals. It is found
that the corresponding RKHS method is valid only for short
intervals, but, by using multistep RKHS method, more valid
and accurate solutions over large intervals can be obtained.
The new method has the following characteristics; first, it
is of global nature in terms of the solutions obtained as
well as its ability to solve other mathematical, physical, and
engineering problems; second, it is accurate, needs less effort
to achieve the results, and is developed especially for the
nonlinear case; third, in the proposed method, it is possible
to pick any point in the interval of integration and as well
the approximate solutions will be applicable; fourth, the
method does not require discretization of the variables, and
it is not affected by computation round-off errors and one
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is not faced with necessity of large computer memory and
time; fifth, the proposed approach does not resort to more
advanced mathematical tools; that is, the algorithm is simple
to understand and implement and should be thus easily
accepted in the mathematical and engineering application’s
fields.

This paper is comprised of four sections including the
Introduction. In Section 2 we describe the multistep RKHS
method. In Section 3 we present four examples to show the
efficiency and simplicity of the method. The conclusions are
given in Section 4.

2. Multistep Reproducing Kernel Hilbert
Space Method

In functional analysis, the RKHS is a Hilbert space of
functions in which pointwise evaluation is a continuous
linear functional. Equivalently, they are spaces that can be
defined by reproducing kernels. In this section, we utilize
the reproducing kernel concept to construct two reproducing
kernel Hilbert spaces and to find out their representation
of reproducing functions for solving second-order oscillator
equation via RKHS technique.

Let us consider the following second-order nonlinear
oscillator equation:

𝑢
󸀠󸀠

(𝑥) = 𝑓 (𝑥, 𝑢 (𝑥) , 𝑢
󸀠

(𝑥)) , 𝑎 ≤ 𝑥 ≤ 𝑏, (1)

subject to the initial conditions 𝑢(𝑎) = 𝛼, 𝑢󸀠(𝑎) = 𝛽.

Definition 1. LetH be aHilbert space of function𝑓 : 𝜒 → F
on a set 𝜒. A function𝐾 : 𝜒×𝜒 → C is a reproducing kernel
ofH if the following are satisfied. Firstly, 𝐾(⋅, 𝑥) ∈ H for all
𝑥 ∈ 𝜒. Secondly, ⟨𝑓,𝐾(⋅, 𝑥)⟩ = 𝑓(𝑥) for all 𝑓 ∈ H for all
𝑥 ∈ 𝜒.

Remark 2. The last condition in Definition 1, called “the
reproducing property,” means that the value of the function
𝑓 at the point 𝑥 is reproduced by the inner product of 𝑓 with
𝐾(⋅, 𝑥).

It is worth mentioning that the reproducing kernel 𝐾
of a Hilbert space H is unique, and the existence of 𝐾

is due to the Riesz representation theorem, where 𝐾 com-
pletely determines the space H. Moreover, every sequence
of functions 𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑛
, . . . which converges strongly to a

function 𝑓 in H converges also in the pointwise sense. This
convergence is uniform on every subset on 𝐸 on which 𝑥 →

𝐾(𝑥, 𝑥) is bounded. In this occasion, these spaces have wide
applications including complex analysis, harmonic analysis,
quantum mechanics, statistics, and machine learning. Sub-
sequently, the space 𝑊3

2
[𝑎, 𝑏] is constructed in which every

function satisfies the initial conditions 𝑢(𝑎) = 𝛼, 𝑢󸀠(𝑏) =

𝛽 and then utilized the space 𝑊
1

2
[𝑎, 𝑏]. For the theoretical

background of reproducing kernel Hilbert space theory and
its applications, we refer the reader to [18–20].

Definition 3 (see [21]). A Hilbert space H of functions on a
nonempty abstract set𝐸 is called a reproducing kernelHilbert
space if there exists a reproducing kernel𝐾 ofH.

Definition 4 (see [24]). The inner space 𝑊
3

2
[𝑎, 𝑏] = {𝑢 :

𝑢
(𝑗)
(𝑥) are absolutely continuous real-valued functions on

[𝑎, 𝑏], 𝑢(𝑗)(𝑥) ∈ 𝐿
3
, 𝑗 = 0, 1, 2, and 𝑢(𝑎) = 0, 𝑢󸀠(𝑏) =

0}, where the inner product and the norm in 𝑊
3

2
[𝑎, 𝑏] are

defined, respectively, by ⟨𝑢(𝑥), V(𝑥)⟩
𝑊
3

2

= ∑
2

𝑖=0
𝑢
(𝑖)
(𝑎)V(𝑖)(𝑎) +

∫

𝑏

𝑎
𝑢
(3)
(𝑥)V(3)(𝑥)𝑑𝑥 and ‖𝑢‖

𝑊
3

2

= √⟨𝑢(𝑥), 𝑢(𝑥)⟩
𝑊
3

2

in which
𝑢, V ∈ 𝑊

3

2
[𝑎, 𝑏].

The space 𝑊
3

2
[𝑎, 𝑏] is a reproducing kernel if, for each

fixed 𝑥 ∈ [𝑎, 𝑏] and any 𝑢(𝑥) ∈ 𝑊
3

2
[𝑎, 𝑏], there exist 𝐾

𝑥
(𝑦) ∈

𝑊
3

2
[𝑎, 𝑏], 𝑦 ∈ [𝑎, 𝑏] such that ⟨𝑢(𝑦), 𝐾

𝑥
(𝑦)⟩
𝑊
3

2

= 𝑢(𝑥).

Theorem 5 (see [23]). The space 𝑊
3

2
[𝑎, 𝑏] is a reproducing

kernel and its reproducing kernel function𝐾
𝑥
(𝑦) can bewritten

as

𝐾
𝑥
(𝑦) = {

𝑘 (𝑥, 𝑦) , 𝑦 ≤ 𝑥,

𝑘 (𝑦, 𝑥) , 𝑦 > 𝑥,

(2)

where 𝑘(𝑥, 𝑦) = (1/120)(𝑎 − 𝑦)
2
(−6𝑎
3
− 5𝑥𝑦

2
+𝑦
3
+ 10𝑥

2
(3 +

𝑦) + 3𝑎
2
(10 + 5𝑥 + 𝑦) − 2𝑎(5𝑥

2
− 𝑦
2
+ 5𝑥(6 + 𝑦))).

Definition 6 (see [21]). The inner product space 𝑊1
2
[𝑎, 𝑏] is

defined as 𝑊1
2
[𝑎, 𝑏] = {𝑢 : 𝑢(𝑥) is absolutely continuous

real-valued function on [𝑎, 𝑏], 𝑢(𝑥), 𝑢
󸀠
(𝑥) ∈ 𝐿

2
[𝑎, 𝑏]}, where

the inner product and the norm in 𝑊
1

2
[𝑎, 𝑏] are defined,

respectively, by ⟨𝑢(𝑥), V(𝑥)⟩ = ∫

𝑏

𝑎
𝑢(𝑥)V(𝑥)+𝑢󸀠(𝑥)V󸀠(𝑥)𝑑𝑥 and

‖𝑢‖
𝑊
1

2

= √⟨𝑢(𝑥), 𝑢(𝑥)⟩
𝑊
1

2

in which 𝑢, V ∈ 𝑊
1

2
[𝑎, 𝑏].

Theorem7 (see [21]). TheHilbert space𝑊1
2
[𝑎, 𝑏] is a complete

reproducing kernel and its reproducing kernel function 𝑅
𝑥
(𝑦)

can be written as

𝑅
𝑥
(𝑦) =

1

2 sinh (𝑏 − 𝑎)

× [cosh (𝑥 + 𝑦 − 𝑏 − 𝑎) + cosh (󵄨󵄨󵄨
󵄨
𝑥 + 𝑦

󵄨
󵄨
󵄨
󵄨
− 𝑏 − 𝑎)] .

(3)

Reproducing kernel functions possess some important
properties such as being symmetric, unique, and nonnega-
tive. The reader is asked to refer to [18–32] in order to know
more details about reproducing kernel functions, including
their mathematical and geometric properties, their types and
kinds, and their applications and method of calculations.

In order to apply the proposed algorithm of multistep
RKHS easily, we need to homogenize the initial conditions
𝑢(𝑎) = 𝛼 and 𝑢󸀠(𝑎) = 𝛽. To do so, let V(𝑥) = 𝑢(𝑥) − (𝛽𝑥+ (𝛼−

𝑎𝛽)); then, (1) can be formulated in new form as follows:

V󸀠󸀠 (𝑥) = 𝐹 (𝑥, V (𝑥) , V󸀠 (𝑥)) , (4)

subject to the initial conditions V(𝑎) = 0, V󸀠(𝑎) = 0, where
𝐹(𝑥, V(𝑥), V󸀠(𝑥)) = 𝑓(𝑥, V(𝑥) + (𝛽𝑥 + (𝛼 − 𝑎𝛽)), V󸀠(𝑥) + 𝛽).
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Anyhow, define the operator 𝐿 : 𝑊
3

2
[𝑎, 𝑏] → 𝑊

1

2
[𝑎, 𝑏] such

that 𝐿V(𝑥) = V󸀠󸀠(𝑥). Hence, (4) can be converted into the
equivalent form depending on (4) as

𝐿V (𝑥) = 𝐹 (𝑥, V (𝑥) , V󸀠 (𝑥)) , 𝑎 ≤ 𝑥 ≤ 𝑏, (5)

where 𝑥 ∈ [𝑎, 𝑏], V(𝑥) ∈ 𝑊
3

2
[𝑎, 𝑏], and 𝐹(𝑥, V(𝑥), V󸀠(𝑥)) ∈

𝑊
1

2
[𝑎, 𝑏].
Now, we construct an orthogonal function system of the

space 𝑊3
2
[𝑎, 𝑏]. For a countable dense set {𝑥

𝑖
}
∞

𝑖=1
of [𝑎, 𝑏], let

𝜑
𝑖
(𝑥) = 𝑅

𝑥𝑖
(𝑥) and 𝜓

𝑖
(𝑥) = 𝐿

∗
𝜑
𝑖
(𝑥) where 𝑅

𝑥𝑖
(𝑥) is the

reproducing kernel space of 𝑊1
2
[𝑎, 𝑏] and 𝐿

∗ is the adjoint
operator of 𝐿. The orthonormal system {𝜓

𝑖
(𝑥)}
∞

𝑖=1
of𝑊3
2
[𝑎, 𝑏]

can be derived from the Gram-Schmidt orthogonalization
process of {𝜓

𝑖
(𝑥)}
∞

𝑖=1
:

𝜓
𝑖
(𝑥) =

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝜓
𝑘
(𝑥) , 𝑖 = 1, 2, . . . , (6)

where 𝛽
𝑖𝑘
are orthogonalization coefficients given as 𝛽

11
=

1/‖𝜓
1
‖, 𝛽
𝑖𝑖
= 1/𝑑

𝑖
, and 𝛽

𝑖𝑗
= −(1/𝑑

𝑖
) ∑
𝑖−1

𝑘=𝑗
𝑐
𝑖𝑘
𝛽
𝑘𝑗
for 𝑗 < 𝑖 in

which 𝑑
𝑖
= √‖𝜓

1
‖
2
− ∑
𝑖−1

𝑘=1
𝑐
2

𝑖𝑘
, 𝑐
𝑖𝑘
= ⟨𝜓
𝑖
, 𝜓
𝑖
⟩
𝑊
2

2

, and {𝜓
𝑖
(𝑥)}
∞

𝑖=1

are the orthonormal system in𝑊
3

2
[𝑎, 𝑏].

Theorem 8. If {𝑥
𝑖
}
∞

𝑖=1
is dense on [𝑎, 𝑏], then {𝜓

𝑖
(𝑥)}
∞

𝑖=1
is the

complete system of 𝑊3
2
[𝑎, 𝑏] and 𝜓

𝑖
(𝑥) = 𝐿

𝑦
𝐾
𝑥
(𝑦)|
𝑦=𝑥𝑖

. The
subscript 𝑦 by the operator 𝐿 indicates that the operator 𝐿

applies to the function of 𝑦.

Theorem 9. If {𝑥
𝑖
}
∞

𝑖=1
is dense on [𝑎, 𝑏] and the solution is

unique on𝑊
3

2
[𝑎, 𝑏], then the solution of (5) is given by

V (𝑥) =
∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐹 (𝑥
𝑘
, V (𝑥
𝑘
) , V󸀠 (𝑥

𝑘
)) 𝜓
𝑖
(𝑥) , (7)

and the solution of (1) satisfies the form

𝑢 (𝑥) = (

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐹 (𝑥
𝑘
, V (𝑥
𝑘
) , V󸀠 (𝑥

𝑘
)) 𝜓
𝑖
(𝑥))

+ 𝛽𝑥 + (𝛼 − 𝑎𝛽) .

(8)

Here, the approximate solution 𝑢
𝑛
(𝑥) can be obtained by

taking finitely many terms in the series representation of 𝑢(𝑥)
and 𝑢

𝑛
(𝑥) = ∑

𝑛

𝑖=1
∑
𝑖

𝑘=1
𝛽
𝑖𝑘
𝐹(𝑥
𝑘
, V(𝑥
𝑘
), V󸀠(𝑥

𝑘
))𝜓
𝑖
(𝑥) + 𝛽𝑥 +

(𝛼 − 𝑎𝛽). Also, since 𝑊
3

2
[𝑎, 𝑏] is a Hilbert space, it is clear

that∑∞
𝑖=1

∑
∞

𝑘=1
(𝛽
𝑖𝑘
𝐹(𝑥
𝑘
, V(𝑥
𝑘
), V󸀠(𝑥

𝑘
))) + 𝛽𝑥 + (𝛼 − 𝑎𝛽) < ∞.

Therefore, the sequence 𝑢
𝑛
is convergent in the norm.

The major aim of this work is to find the approximate
solution to (1). Next, we utilize the multistep RKHS proce-
dure; to do so, we consider the nonlinear initial value problem
(IVP) of (1). Indeed, let [0, 𝑇] be the interval over which we
want to find the solution of the IVP (1). Assume that the
interval [0, 𝑇] is divided into𝑀 subintervals [𝑥𝑚−1, 𝑥𝑚],𝑚 =

1, 2, . . . ,𝑀, of equal step size ℎ = 𝑇/𝑀, by using the nodes
𝑥
𝑚
= 𝑚ℎ. Firstly, we apply the RKHS method to the follow-

ing IVP: 𝑢
󸀠󸀠

1
(𝑥) = 𝑓(𝑥, 𝑢

1
(𝑥), 𝑢
󸀠

1
(𝑥)), 𝑢

1
(𝑎) = 𝛼, 𝑢

󸀠

1
(𝑎) = 𝛽 ,

𝑥 ∈ [0, 𝑥
1
], to obtain the approximate solution 𝑢

1𝑛
(𝑥) =

∑
𝑛

𝑖=1
𝐴
1𝑖
𝜓
𝑖
(𝑥), 𝑥 ∈ [0, 𝑥

1
]. For𝑚 ≥ 2 and at each subinterval

[𝑥
𝑚−1

, 𝑥
𝑚
], we will use the initial conditions 𝑢

𝑚
(𝑥
𝑚−1

) =

𝑢
(𝑚−1)𝑛

(𝑥
𝑚−1

) = 𝛼
𝑚
and 𝑢

󸀠

𝑚
(𝑥
𝑚−1

) = 𝑢
󸀠

(𝑚−1)𝑛
(𝑥
𝑚−1

)= 𝛽
𝑚
and

then apply the RKHS method over the interval [𝑥𝑚−1, 𝑥𝑚].
The process is repeated and generates a sequence of approxi-
mate solutions 𝑢

𝑚𝑛
(𝑥), 𝑚 = 0, 1, . . . ,𝑀 as follows:

𝑢
𝑛
(𝑥) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑢
1𝑛
(𝑥) =

𝑛

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐹 (𝑥
𝑘
, V (𝑥
𝑘
) , V󸀠 (𝑥

𝑘
)) 𝜓
𝑖
(𝑥) + 𝛽𝑥 + (𝛼 − 𝑎𝛽) , 𝑥 ∈ [0, 𝑥

1
] ,

𝑢
2𝑛
(𝑥) =

𝑛

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐹 (𝑥
𝑘
, V (𝑥
𝑘
) , V󸀠 (𝑥

𝑘
)) 𝜓
𝑖
(𝑥) + 𝛽

2
𝑥 + (𝛼

2
− 𝑎𝛽
2
) , 𝑥 ∈ [𝑥

1
, 𝑥
2
] ,

...

𝑢
𝑀𝑛

(𝑥) =

𝑛

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐹 (𝑥
𝑘
, V (𝑥
𝑘
) , V󸀠 (𝑥

𝑘
)) 𝜓
𝑖
(𝑥) + 𝛽

𝑀
𝑥 + (𝛼

𝑀
− 𝑎𝛽
𝑀
) , 𝑥 ∈ [𝑥

𝑀−1
, 𝑥
𝑀
] ,

(9)

where 𝑥
𝑖
= 𝑥
𝑚−1

+ (𝑥
𝑚
− 𝑥
𝑚−1

)((𝑖 − 1)/(𝑛 − 1)) and 𝑥
𝑖
∈

[𝑥
𝑚−1

, 𝑥
𝑚
].

The spaces 𝑊3
2
[𝑎, 𝑏] and 𝑊

1

2
[𝑎, 𝑏] are complete Hilbert

with some special properties. So, all the properties of the
Hilbert space will hold. Further, these spaces possess some
special and better properties which could make some prob-
lems be solved easier. For instance, many problems studied in

𝐿
2
[𝑎, 𝑏] space, which is a completeHilbert space, require large

amount of integral computations and such computationsmay
be very difficult in some cases. Thus, the numerical integrals
have to be calculated at the cost of losing some accuracy.
However, the properties of 𝑊3

2
[𝑎, 𝑏] and 𝑊

1

2
[𝑎, 𝑏] require

no more integral computation for some functions, instead
of computing some values of a function at some nodes.
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Figure 1: (a) Plots of displacement of 𝑢 versus time: solid line the multistep RKHS method and dashed line exact solution. (b) Phase plane
diagram of Example 1.

In fact, this simplification of integral computation not only
improves the computational speed, but also improves the
computational accuracy.

3. Numerical Examples and Graphical Results

Numerical techniques are widely used by scientists and
engineers to solve their problems. A major advantage for
numerical techniques is that a numerical answer can be
obtained even when a problem has no analytical solution.
However, result fromnumerical analysis is an approximation,
in general, which can bemade as accurate as desired. Because
a computer has a finite word length only a fixed number
of digits are stored and used during computation. In order
to demonstrate the applicability and effectiveness of the
proposed algorithm, four exampleswill be solvednumerically
in this section.

Example 1. Consider the following linear oscillators equa-
tion: 𝑢󸀠󸀠(𝑥) + 2𝑢(𝑥) − 1 = 0, subject to the initial conditions
𝑢(0) = 0, 𝑢󸀠(0) = 0. The exact solution is 𝑢(𝑥) = (1/2)(1 −

cos(√2𝑥)).

In this example, we apply the proposed algorithm on
the interval [0, 15] and choose to divide the interval into
subintervals with time step size Δ𝑥 = 1. In fact, assume that
the interval [0, 15] is divided into 15 subintervals [𝑥𝑚−1, 𝑥𝑚],
𝑚 = 1, 2, . . . , 15, of equal step size ℎ = 1/(𝑛 − 1). Anyhow, we
apply RKHS method with 𝑛 = 26 in each IVP:

𝐿𝑢
𝑖
(𝑥) = 1 − 2𝑢

𝑖
(𝑥) ;

𝑢
𝑖
(𝑥
𝑖−1

) = 𝑢
𝑖−1

(𝑥
𝑖−1

) ,

𝑢
󸀠

𝑖
(𝑥
𝑖−1

) = 𝑢
󸀠

𝑖−1
(𝑥
𝑖−1

) ,

𝑥 ∈ [𝑥
𝑖−1

, 𝑥
𝑖
] .

(10)

Thenumerical results at some selected points in [0, 15] are
given in Table 1, while, on the other aspect as well, Figure 1
shows that the results of our computations are in excellent
agreement with the exact solution.

Table 1: Numerical results for Example 1.

𝑥 Exact solution Approximate solution Absolute error
1 0.422028152617 0.422025539209 2.613408511 × 10

−6

2 0.975681564063 0.975679846174 1.717889282 × 10
−6

3 0.726330928646 0.726337897921 6.969275154 × 10
−6

5 0.147326046846 0.147316914492 9.132353861 × 10
−6

7 0.944711061916 0.944719149810 8.087893972 × 10
−6

9 0.006510539200 0.006507180434 3.358766650 × 10
−6

11 0.994264292331 0.994259400506 4.891824396 × 10
−6

12 0.651670468807 0.651700265815 2.979700811 × 10
−5

14 0.208928285637 0.208898850504 2.943513285 × 10
−5

15 0.856178588587 0.856150469874 2.811871259 × 10
−5

It is observed that the increase in the number of node
results in a reduction in the absolute error and corre-
spondingly an improvement in the accuracy of the obtained
solution. This goes in agreement with the known fact; the
error is monotone decreasing, where more accurate solutions
are achieved using an increase in the number of nodes.

Example 2. Consider the following nonlinear oscillators
equation: 𝑢󸀠󸀠(𝑥) + 𝑢(𝑥) + 0.1𝑢

2
(𝑥)𝑢
󸀠
(𝑥) = 0, subject to the

initial conditions 𝑢(0) = 1, 𝑢󸀠(0) = 0.

In this example, we apply the proposed algorithm on the
interval [0, 150] and choose to divide the interval [0, 150] to
subintervals with time step size Δ𝑥 = 1. Similarly, assume
that the interval [0, 150] is divided into 150 subintervals
[𝑥
𝑚−1

, 𝑥
𝑚
],𝑚 = 1, 2, . . . , 150, of equal step size ℎ = 1/(𝑛 − 1).

Anyhow, we apply RKHS method with 𝑛 = 26 in each IVP:

𝐿𝑢
𝑖
(𝑥) = −𝑢

𝑖
(𝑥) − 0.1𝑢

2

𝑖
(𝑥) 𝑢
󸀠

𝑖
(𝑥) ;

𝑢
𝑖
(𝑥
𝑖−1

) = 𝑢
𝑖−1

(𝑥
𝑖−1

) , 𝑢
󸀠

𝑖
(𝑥
𝑖−1

) = 𝑢
󸀠

𝑖−1
(𝑥
𝑖−1

) ,

𝑥 ∈ [𝑥
𝑖−1

, 𝑥
𝑖
] .

(11)

Figure 2(a) shows that the results of our computations
are in excellent agreement with the results obtained by
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Figure 2: (a) Plots of displacement of 𝑢 versus time. (b) Phase plane diagram of Example 2: solid line the multistep RKHSmethod and dotted
line RK method.
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Figure 3: (a) Plots of displacement of 𝑢 versus time. (b) Phase plane diagram of Example 3: solid line themultistep RKHSmethod and dashed
line RK method.

the numerical solution of [11] using multistep differential
transform method. In Figure 2(b) we give a comparison
between the multistep RKHSmethod and RKmethod for the
problem.

This procedure can be repeated till the arbitrary order
coefficients of the multistep RKHS solution are obtained.
Moreover, higher accuracy can be achieved by evaluating
more components of the solution.

Example 3. Consider the following nonlinear oscillators
equation: 𝑢󸀠󸀠(𝑥) + 𝑢(𝑥) + 𝑢

3
(𝑥) + sin(𝑢(𝑥)) = 0, subject to

the initial conditions 𝑢(0) = 1, 𝑢󸀠(0) = 0.

In this example, we apply the proposed algorithm on the
interval [0, 60] and choose to divide the interval [0, 60] to
subintervals with time step size Δ𝑥 = 1. In fact, assume that
the interval [0, 60] is divided into 60 subintervals [𝑥𝑚−1, 𝑥𝑚],
𝑚 = 1, 2, . . . , 60, of equal step size ℎ = 1/(𝑛 − 1). Anyhow, we
apply RKHS method with 𝑛 = 26 in each IVP:

𝐿𝑢
𝑖
(𝑥) = −𝑢

𝑖
(𝑥) − 𝑢

3

𝑖
(𝑥) − sin (𝑢

𝑖
(𝑥)) ;

𝑢
𝑖
(𝑥
𝑖−1

) = 𝑢
𝑖−1

(𝑥
𝑖−1

) , 𝑢
󸀠

𝑖
(𝑥
𝑖−1

) = 𝑢
󸀠

𝑖−1
(𝑥
𝑖−1

) ,

𝑥 ∈ [𝑥
𝑖−1

, 𝑥
𝑖
] .

(12)

As in the last example, Figure 3(a) shows that the results
of our computations are in excellent agreement with the
results obtained by the numerical solution of [11] using
multistep differential transform method. On the other hand,
in Figure 3(b), we give a comparison between the multistep
RKHS method and RK method for the problem.

Example 4. Consider the following nonlinear oscillators
equation: 𝑢󸀠󸀠(𝑥) + 𝑢

3

𝑖
(𝑥)/(1 + 𝑢

2

𝑖
(𝑥)) = 0, subject to the initial

conditions 𝑢(0) = 0, 𝑢󸀠(0) = 0.3.
In this example, we apply the proposed algorithm on the

interval [0, 100] and choose to divide the interval [0, 100] to
subintervals with time step size Δ𝑥 = 1. Similarly, assume
that the interval [0, 100] is divided into 100 subintervals
[𝑥
𝑚−1

, 𝑥
𝑚
],𝑚 = 1, 2, . . . , 100, of equal step size ℎ = 1/(𝑛 − 1).

Anyhow, we apply RKHS method with 𝑛 = 26 in each IVP:

𝐿𝑢
𝑖
(𝑥) =

−𝑢
3

𝑖
(𝑥)

(1 + 𝑢
2

𝑖
(𝑥))

;

𝑢
𝑖
(𝑥
𝑖−1

) = 𝑢
𝑖−1

(𝑥
𝑖−1

) ,

𝑢
󸀠

𝑖
(𝑥
𝑖−1

) = 𝑢
󸀠

𝑖−1
(𝑥
𝑖−1

) ,

𝑥 ∈ [𝑥
𝑖−1

, 𝑥
𝑖
] .

(13)
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Figure 4: (a) Plots of displacement of 𝑢 versus time. (b) Phase plane diagram of Example 4: solid line themultistep RKHSmethod and dashed
line RK method.

As a result, Figure 4(a) shows that the results of our
computations are in excellent agreement with the results
obtained by the numerical solution of [11] using multistep
differential transform method. Anyhow, in Figure 4(b), we
give a comparison between the multistep RKHS method and
RK method for the problem.

4. Conclusions

In this study, a new algorithm is proposed for finding
a numerical solution of linear and nonlinear oscillators,
namely, multistep reproducing kernel Hilbert space method.
The main characteristic feature of the multistep RKHS
method is that the global approximation can be established on
the whole solution domain, in contrast with other numerical
methods like one step and multistep methods, and the con-
vergence is uniform. Indeed, the present method is accurate,
needs less effort to achieve the results, and is especially
developed for nonlinear case. On the other aspect as well, the
derivatives of the approximate solutions are also uniformly
convergent. Comparison results between multistep RKHS
method solution and RK method are discussed; the results
show that this method is accurate for solving this kind of
equations.
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