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Amodel describing a truncated operatorH (truncated with respect to the number of particles) and acting in the direct sum of zero-,
one-, and two-particle subspaces of fermionic Fock space F

𝑎
(𝐿2 (T3)) over 𝐿2(T3) is investigated. The location of the essential

spectrum of the model operator H is described by means of the spectrum of the Friedreich model ℎ(𝑝); 𝑝 ∈ T3. Moreover, for the
resolvent of H, the Faddeev type system of integral equations is obtained.

1. Introduction

The main goal of the present paper is to give a thorough
mathematical treatment of some properties for a model
operator 𝐻 with emphasis on the essential spectrum and its
resolvent. This operator, associated to a system describing
two identical fermions and one particle of another nature in
interactions, without conservation of the number of particles
on the three-dimensional lattice, acts in the direct sum of
zero-, one-, and two-particle subspaces of fermionic Fock
spaceF

𝑎
(𝐿2(T3)) over 𝐿2(T3).

In statistical physics Minlos and Spohn [1], Malyshev
and Minlos [2], solid-state physics Mattis [3], Mogilner [4]
and the theory of quantum fields Friedrichs [5], Buhler et
al. [6] some important problems arise where the number of
quasiparticles is bounded, but not fixed. Sigal et al. [7] have
developed geometric and commutator techniques to find the
location of the spectrum and to prove absence of singular
continuous spectrum for Hamiltonians without conservation
of the particle number.

Notice that the study of systems describing 𝑛 particles in
interaction, without conservation of the number of particles,
is reduced to the investigation of the spectral properties of

self-adjoint operators acting in the cut subspace H(𝑛) of the
Fock space, consisting of 𝑟 ≤ 𝑛 particles [1, 4–8].

In the works [9–16], the location of essential spectra of
model operators, associated with a system describing three
particles, without conservation of the number of particles,
was investigated. However, the corresponding operators act
in the direct sum of zero-, one-, and two-particle subspaces
of Fock space or bosonic Fock space, in some cases (see,
e.g., [9, 10]) over 𝐿2(T3). We also refer to [17] for essential
spectrum of discrete Schrödinger operators, associated to a
system of two identical fermions and one particle of another
nature in interactions.

Recently, the authors in [18, 19] have proved that the
fermionic Fock space case has some assertions being related
to the Efimov effect (infinite number of bound states if the
associated generalized Friedrichsmodel (FM) has a threshold
resonance). These results show that this effect does not hold
even this FM has a threshold resonance while it holds in the
(bosonic) Fock space case. This fact pushes us to study the
resolvent and essential spectrumof the investigating operator.

In the present paper, under some smoothness assump-
tions we obtain the location of the essential spectrum of
the model operator 𝐻, described by means of the spectrum

Hindawi Publishing Corporation
Advances in Mathematical Physics
Volume 2014, Article ID 943868, 10 pages
http://dx.doi.org/10.1155/2014/943868



2 Advances in Mathematical Physics

of the Friedreich model ℎ(𝑝), 𝑝 ∈ T3, and we derive the
Faddeev type systemof integral equations for the components
of the resolvent of this model operator and find the form for
resolvent.

The organization of the present paper is as follows.
Section 1 is an introduction to the whole work. In Section 2,
the model operator is described as a bounded self-adjoint
operator 𝐻 in H(3). Some spectral properties of the cor-
responding channel operator and Friedrichs models 𝐻(𝑝),
𝑝 ∈ T3, are given in Section 3. Section 4 deals with the
review of the Faddeev type system of integral equations for
the eigenfunction of operator 𝐻. In Section 5, we represent
the main results (Theorems 9 and 11) and the sketch of their
proofs.

2. Conventions and Definition of the Model
Operator

Let T3 be the three-dimensional torus, the cube (−𝜋, 𝜋]3 with
appropriately identified sides. We remark that the torus T3
will always be considered as an abelian group with respect to
the addition andmultiplication by the real numbers regarded
as operations on R3 modulo (2𝜋Z)3. Denote by 𝐿2as((T

3)2)
the subspace of antisymmetric functions of the Hilbert space
𝐿2((T3)2).

We also introduce the following notations:

H
0
= C, H

1
= 𝐿2 (T3) , H

2
= 𝐿2as ((T

3)
2

) , (1)

and let 𝐼
𝑗
, respectively, ⟨⋅, ⋅⟩

𝑗
be an identity operator, respec-

tively, an inner product inH
𝑗
, 𝑗 = 0, 1, 2.

TheHilbert spaceH(3) = H
0
⊕H
1
⊕H
2
is called the direct

sum of zero-, one-, and two-particle subspaces of fermionic
Fock spaceF

𝑎
(𝐿2(T3)) over 𝐿2(T3).

For 𝑔 ∈ 𝐿2(T3) we define the following operator:

g : 𝐿2 (T3) 󳨀→ C, g (𝑓
1
) = ⟨𝑓

1
, 𝑔⟩
1
, 𝑓
1
∈ 𝐿2 (T3) ,

g∗ : C 󳨀→ 𝐿2 (T3) , g∗𝑓
0
= 𝑔 (⋅) 𝑓

0
, 𝑓
0
∈ C,

𝐿
𝑔
, 𝐿
𝑠𝑔
: 𝐿2 ((T3)

2

) 󳨀→ 𝐿2 (T3) ,

𝐿
𝑔
= 𝐼
1
⊗ g, 𝐿

𝑠𝑔
= g ⊗ 𝐼

1
,

𝐿∗
𝑔
, 𝐿∗
𝑠𝑔
: 𝐿2 (T3) 󳨀→ 𝐿2 ((T3)

2

) ,

𝐿∗
𝑔
= 𝐼
1
⊗ g∗, 𝐿∗

𝑠𝑔
= g∗ ⊗ 𝐼

1
.

(2)

Let𝐻
𝑖𝑗
be annihilation (creation) operators [5] defined in

the Fock space for 𝑖 < 𝑗 (𝑖 > 𝑗). We note that, in physics, an
annihilation operator is an operator that lowers the number
of particles in a given state by one; a creation operator being
an adjoint of the annihilation operator is an operator that
increases the number of particles in a given state by one.

In this paper, we consider the case, where the number of
annihilations and creations of the particles of the considering
system is equal to 1. It means that𝐻

𝑖𝑗
≡ 0 for all |𝑖−𝑗| > 1. So,

a model describing a truncated operator𝐻 acts in the Hilbert
spaceH(3) as a matrix operator and given by

𝐻 = (
𝐻
00

𝐻
01

0
𝐻
10

𝐻
11

𝐻
12

0 𝐻
21

𝐻
22

) , (3)

where
𝐻
01
= a, 𝐻

10
= a∗,

𝐻
12
= 𝐿
𝑏
, 𝐻

11
= 𝐻0
11
,

𝐻
21
=
1

2
(𝐿∗
𝑏
− 𝐿∗
𝑠𝑏
) ,

𝐻
22
= 𝐻0
22
− 𝐿∗
𝜑
𝐿
𝜑
− 𝐿∗
𝑠𝜑
𝐿
𝑠𝜑
,

(4)

the operators 𝐻
00
, 𝐻0
11
, and 𝐻0

22
are multiplication by the

functions 𝑢
0
, 𝑢(⋅), and𝐸(⋅, ⋅) inH

0
,H
1
, andH

2
, respectively.

Here 𝑢
0
is a fixed number; 𝑎(⋅), 𝑏(⋅), 𝑢(⋅), 𝜑(⋅) are real-

valued continuous functions on T3; 𝐸(⋅, ⋅) is a real-valued
continuous symmetric function on (T3)2.

Remark that under these conditions the operator 𝐻 is
bounded and self-adjoint.

3. The Spectrum of the Channel Operator and
of the Friedrichs Model

To study the essential spectrum, along with the operator 𝐻,
we also consider a bounded self-adjoint operator 𝐻ch acting
in Ĥ = 𝐿2(T3) ⊕ 𝐿2((T3)2) with form

𝐻ch = (
𝐻
11

1

√2
𝐿
𝑏

1

√2
𝐿∗
𝑏
𝐻0
22
− 𝐿∗
𝜑
𝐿
𝜑

). (5)

This operator has a characteristic property of a channel
operator (see, e.g., [20]) of three-particle discrete Schrödinger
operator.Therefore, we call it a channel operator, correspond-
ing to the model operator𝐻. Note that the channel operator
𝐻ch has a simpler structure than the 𝐻, and therefore the
study of the spectral properties of𝐻ch plays an important role
in future studies of the spectrum of𝐻.

Since 𝐻ch commutes with the abelian group of multipli-
cation operators 𝑈

𝛼
, by the function 𝛼(⋅):

𝑈
𝛼
(
𝑓
1
(𝑝)

𝑓
2
(𝑝, 𝑞)

) = (
𝛼 (𝑝) 𝑓

1
(𝑝)

𝛼 (𝑝) 𝑓
2
(𝑝, 𝑞)

) , 𝛼 ∈ 𝐿2 (T3) , (6)

the decomposition of Ĥ into Ĥ = ∫
𝑝∈T3

H(2)𝑑𝑝, where
H(2) = H

0
⊕H
1
, implies that the operator𝐻ch is decomposed

into a direct von Neumann integral (see, e.g., [21, Theorem
XIII.84]):

𝐻ch = ∫
T3
⊕𝐻 (𝑝) 𝑑𝑝. (7)

Here𝐻(𝑝), 𝑝 ∈ T3, is a Friedrichs model being bounded,
self-adjoint, and acting inH(2) by the rule

𝐻(𝑝) = 𝐻
0
(𝑝) + 𝑉, (8)
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where

𝐻
0
(𝑝) = (

0 0
0 ℎ
0
(𝑝)

) , 𝑉 = (
𝑢 (𝑝)

1

√2
b

1

√2
b∗ −𝜑∗𝜑

), (9)

and ℎ
0
(𝑝),𝑝 ∈ T3, is amultiplication operator by the function

𝑒
𝑝
(⋅) := 𝐸(𝑝, ⋅):

(ℎ
0
(𝑝) 𝑓
1
) (𝑞) = 𝑒

𝑝
(𝑞) 𝑓
1
(𝑞) , 𝑓

1
∈ H
1
. (10)

Remark 1. The spectral properties of such type of Friedrichs
models are studied in [9, 10].

According to the theorem on the spectrum of decompos-
able operators (see, e.g., [21, Theorem XIII.85]) from (7), we
obtain the following.

Theorem 2. For the essential spectrum 𝜎
𝑒𝑠𝑠
(𝐻) of the operator

𝐻 the equality,
𝜎 (𝐻
𝑐ℎ
) = ∪
𝑝∈T3 {𝜎𝑑 (𝐻 (𝑝))} ∪ [𝐸min, 𝐸max] , (11)

holds, where 𝜎
𝑑
(𝐻(𝑝)) is the discrete spectrum of the operator

𝐻(𝑝), 𝑝 ∈ T3, and

𝐸min = min
𝑝,𝑞∈T3

𝐸 (𝑝, 𝑞) , 𝐸max = max
𝑝,𝑞∈T3

𝐸 (𝑝, 𝑞) . (12)

3.1. The Spectral Properties of the Friedrichs Model 𝐻(𝑝), 𝑝 ∈
T3. Since rank𝑉 ≤ 3, and then in accordance with the stabil-
ity of the essential spectrum under finite rank perturbations,
the essential spectrum 𝜎ess(ℎ(𝑝)) of ℎ(𝑝) coincides with the
spectrum of ℎ

0
(𝑝), and, namely, the equality,

𝜎ess (𝐻 (𝑝)) = 𝜎ess (ℎ0 (𝑝)) = [𝑚 (𝑝) ,𝑀 (𝑝)] , 𝑝 ∈ T
3,
(13)

holds, where𝑚(𝑝) and𝑀(𝑝) are defined by

𝑚(𝑝) = min
𝑞∈T3

𝑒
𝑝
(𝑞) , 𝑀 (𝑝) = max

𝑞∈T3
𝑒
𝑝
(𝑞) . (14)

For any𝑝 ∈ T3 we define an analytic functionΔ(𝑝, 𝑧) (the
Fredholm determinant associated with the operator𝐻(𝑝)) in
C \ [𝑚(𝑝),𝑀(𝑝)] by

Δ (𝑝; 𝑧) = (𝐼
0
− 𝜑𝑟
0
(𝑝, 𝑧) 𝜑∗)

× (𝐻
00
(𝑝) − 𝑧𝐼

0
−
1

2
b𝑟
0
(𝑝, 𝑧) b∗)𝑓

0

−
1

2
(b𝑟
0
(𝑝, 𝑧)𝜑∗)

2

𝑓
0
, 𝑓
0
≡ 1;

(15)

that is,

Δ (𝑝; 𝑧) = (1 − ∫
T3

𝜑2 (𝑠) 𝑑𝑠

𝐸 (𝑝, 𝑠) − 𝑧
)

× (𝑢 (𝑝) − 𝑧 −
1

2
∫
T3

𝑏2 (𝑠) 𝑑𝑠

𝐸 (𝑝, 𝑠) − 𝑧
)

−
1

2
(∫

T3

𝑏 (𝑠) 𝜑 (𝑠) 𝑑𝑠

𝐸 (𝑝, 𝑠) − 𝑧
)
2

,

(16)

where 𝑟
0
(𝑝; 𝑧), 𝑧 ∈ C \ [𝑚(𝑝),𝑀(𝑝)], is the resolvent of

ℎ
0
(𝑝), 𝑝 ∈ T3.

Lemma 3. For any 𝑝 ∈ T3 the number 𝑧 ∈ C \ [𝑚(𝑝),𝑀(𝑝)]
is an eigenvalue of𝐻(𝑝) if and only if Δ(𝑝, 𝑧) = 0.

Proof. The equation

𝐻(𝑝)𝑓 = 𝑧𝑓, 𝑓 ∈ H
(2), (17)

that is, the system of equations,

(𝑢 (𝑝) − 𝑧) 𝑓
0
+

1

√2
b𝑓
1
= 0,

−
1

√2
𝑟
0
(𝑝; 𝑧) b∗𝑓

0
+ 𝑟
0
(𝑝; 𝑧)𝜑∗𝜑𝑓

1
= 𝑓
1
,

𝑓 = (𝑓
0
, 𝑓
1
) ∈ H

(2),

(18)

is equivalent to the system,

(𝐻
00
(𝑝) − 𝑧𝐼

0
−
1

2
b𝑟
0
(𝑝, 𝑧) b∗)𝑓

0

+
1

√2
b𝑟
0
(𝑝, 𝑧)𝜑∗𝛼 = 0,

−
1

√2
𝜑𝑟
0
(𝑝, 𝑧) b∗𝑓

0

+ (𝐼
0
− 𝜑𝑟
0
(𝑝, 𝑧)𝜑∗) 𝛼 = 0,

𝑓
0
, 𝛼 ∈ C.

(19)

The solutions of (17) and (19) are connected with relations

𝑓
0
= 𝑓
0
, 𝛼 = 𝜑𝑓

1
,

𝑓
1
(𝑞) = 𝑟

0
(𝑝; 𝑧) (−

1

2
𝑏 (𝑞) 𝑓

0
+ 𝜑 (𝑞) 𝛼) .

(20)

Since the determinant of (19) is equal to Δ(𝑝; 𝑧), the
equation, 𝐻(𝑝)𝑓 = 𝑧𝑓, 𝑓 ∈ H(2), has nontrivial solution if
and only if Δ(𝑝; 𝑧) = 0.

Denote by 𝑛
−
(𝐻(𝑝), 𝑧), 𝑧 ≤ inf 𝜎ess(𝐻(𝑝)), (resp.,

𝑛
+
(𝐻(𝑝), 𝑧), 𝑧 ≥ sup𝜎ess(𝐻(𝑝))) the number of eigenvalues,

counted according their multiplicities of𝐻(𝑝) lying below 𝑧
(resp., above 𝑧).

Lemma 4. For any fixed 𝑝 ∈ T3, the following are true:

(a) if 𝜑(⋅) and 𝑏(⋅) are linearly dependent (independent),
then

𝑛
−
(𝐻 (𝑝) ,𝑚 (𝑝)) ≤ 1 (𝑛

−
(𝐻 (𝑝) ,𝑚 (𝑝)) ≤ 2) ; (21)

(b)

𝑛
+
(𝐻 (𝑝) ,𝑀 (𝑝)) ≤ 1. (22)
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Proof. Simple calculation gives that the numbers

𝑧
1,2

= −
𝑢 (𝑝) ± √𝑢2 (𝑝) + 4‖𝑏‖2

2
𝑧
1
< 0 < 𝑧

2

(23)

are simple eigenvalues of

𝑉󸀠 = (
𝑢 (𝑝)

1

√2
b

1

√2
b∗ 0

) . (24)

Since Range(𝑉) = C⊕⟨𝑏, 𝜑⟩, where ⟨𝑏, 𝜑⟩ is the subspace
spanned by 𝑏 and 𝜑, we have dimRange(𝑉) = 3 if 𝜑(⋅) and
𝑏(⋅) are linearly independent and dimRange(𝑉) = 2 if 𝜑(⋅)
and 𝑏(⋅) are linearly dependent.

Then, using −𝜑∗𝜑 ≤ 0, 𝜎ess(𝑉
󸀠) = {0} for the operator 𝑉,

we obtain the following:

(i) if 𝜑(⋅) and 𝑏(⋅) are linearly independent, then 𝑉 has
two negative eigenvalues (with multiplicities) and a
unique (simple) positive one;

(ii) if 𝜑(⋅) and 𝑏(⋅) are linearly independent, then 𝑉 has
only one (simple) negative and one (simple) positive
eigenvalue.

According to𝐻(𝑝) ≥ 𝑚(𝑝) + 𝑉,𝐻(𝑝) ≤ 𝑀(𝑝) + 𝑉, and
the minimax principle the number 𝑛

−
(𝐻(𝑝),𝑚(𝑝)) (resp.,

𝑛
+
(𝐻(𝑝),𝑀(𝑝))) satisfies

𝑛
−
(𝐻 (𝑝) ,𝑚 (𝑝)) ≤ 𝑛

−
(𝑚 (𝑝) + 𝑉,𝑚 (𝑝))

(resp., 𝑛
+
(𝐻 (𝑝) ,𝑀 (𝑝)) ≤ 𝑛

+
(𝑀 (𝑝) + 𝑉,𝑀 (𝑝))) .

(25)

Hence, using (i), (ii), and 𝑛
−
(𝑚(𝑝) + 𝑉,𝑚(𝑝)) = 𝑛

−
(𝑉, 0),

𝑛
+
(𝑀(𝑝) + 𝑉,𝑀(𝑝)) = 𝑛

+
(𝑉, 0) we get proof.

Corollary 5. Let 𝑝 ∈ T3. Consider the following:

(a) if 𝜑(⋅) and 𝑏(⋅) are linearly (dependent) independent,
then the function Δ(𝑝, ⋅) can have no more than one
zero (two zeros) in the interval (−∞,𝑚(𝑝));

(b) Δ(𝑝, ⋅) can have only one zero in the interval
(𝑀(𝑝),∞).

4. The Faddeev Type Equation

Set

Σ = [𝐸min, 𝐸max] ∪ 𝜎two, (26)

where

𝜎two = {𝑧 : 𝑧 ∈ R \ [𝑚 (𝑝) ,𝑀 (𝑝)]

Δ (𝑝; 𝑧) = 0 for some 𝑝 ∈ T
3} .

(27)

Clearly, according toTheorem 2 and Lemma 3 the equal-
ities Σ = 𝜎(𝐻ch) and 𝜎two = ∪

𝑝∈T3𝜎𝑑(𝐻(𝑝)) hold.

Remark 6. Note that for any 𝑎, 𝑏 ∈ 𝐿2(T3) the operators

𝐿
𝑎
𝑅0
22
(𝑧) 𝐿∗
𝑏
(𝐿
𝑠𝑎
𝑅0
22
(𝑧) 𝐿∗
𝑠𝑏
) resp.,

𝐿
𝑎
𝑅0
22
(𝑧) 𝐿∗
𝑠𝑏
(𝐿
𝑠𝑎
𝑅0
22
(𝑧) 𝐿∗
𝑏
)

(28)

is the multiplication operator by the function

∫
T3

𝑎 (𝑠) 𝑏 (𝑠)𝑑𝑠

𝐸 (𝑝, 𝑠) − 𝑧
(∫

T3

𝑎 (𝑠) 𝑏 (𝑠)𝑑𝑠

𝐸 (𝑠, 𝑝) − 𝑧
) , (29)

respectively, is the integral operator with the kernel

𝑎 (𝑠) 𝑏 (𝑝)

𝐸 (𝑝, 𝑠) − 𝑧
(

𝑎 (𝑠) 𝑏 (𝑞)

𝐸 (𝑠, 𝑝) − 𝑧
) , (30)

in 𝐿2(T3).

One may check that the operator

𝐷(𝑧) = 𝐼
1
− 𝐿
𝜑
𝑅0
22
(𝑧) 𝐿∗
𝜑
𝐻0
11
− 𝑧𝐼
1

−
1

2
𝐿
𝑏
𝑅0
22
(𝑧) 𝐿∗
𝑏
−
1

2
𝐿
𝜑
𝑅0
22
(𝑧) 𝐿∗
𝑏

(31)

is amultiplication operator by the functionΔ(⋅; 𝑧) in the space
𝐿2(T3), where 𝑅0

22
(𝑧) = (𝐻0

22
− 𝑧𝐼
2
)−1; 𝑧 ∈ C \ [𝐸min, 𝐸max] is

the resolvent of𝐻0
22
.

4.1. Faddeev Type Integral Equation. SetH = H
0
⊕H
1
⊕H
2
,

H
0
= H
0
,H
1
= H
1
, andH

2
= H
1
.

Let the followingmatrix operators𝐴(𝑧) and𝐾(𝑧), for any
𝑧 ∈ C \ Σ, act in the spaceH by form

𝐴 (𝑧) = (
𝐴
00
(𝑧) 0 0
0 𝐴

11
(𝑧) 𝐴

12
(𝑧)

0 𝐴
21
(𝑧) 𝐴

22
(𝑧)

) ,

𝐾 (𝑧) = (
𝐾
00
(𝑧) 𝐾

01
(𝑧) 0

𝐾
10
(𝑧) 𝐾

11
(𝑧) 𝐾

12
(𝑧)

0 𝐾
21
(𝑧) 𝐾

22
(𝑧)

) ,

(32)

where 𝐴
𝑖𝑗
(𝑧) : H

𝑗
→ H

𝑖
, 𝑖, 𝑗 = 0, 1, 2, is multiplication by

the function 𝑎
𝑖𝑗
(𝑝, 𝑧):

𝑎
00
(𝑝, 𝑧) ≡ 1,

𝑎
11
(𝑝, 𝑧) = 𝐻

11
− 𝑧𝐼
1
−
1

2
𝐿
𝑏
𝑅0
22
(𝑧) 𝐿∗
𝑏
,

𝑎
12
(𝑝, 𝑧) =

1

√2
𝐿
𝑏
𝑅0
22
(𝑧) 𝐿∗
𝜑
,

𝑎
21
(𝑝, 𝑧) = 𝑎

12
(𝑝, 𝑧) =

1

√2
𝐿
𝜑
𝑅0
22
(𝑧) 𝐿∗
𝑏
,

𝑎
22
(𝑝, 𝑧) = 𝐼

1
− 𝐿
𝜑
𝑅0
22
(𝑧) 𝐿∗
𝜑
,

(33)
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and the operators𝐾
𝑖𝑗
(𝑧) : H

𝑗
→ H

𝑖
, 𝑖, 𝑗 = 0, 1, 2 are defined

by

𝐾
00
(𝑧) = (𝑧 + 1) 𝐼

0
− 𝐻
00
, 𝐾

01
(𝑧) = −a,

𝐾
10
(𝑧) = 𝐾∗

01
(𝑧) , 𝐾

11
(𝑧) = −

1

2
𝐿
𝑏
𝑅0
22
(𝑧) 𝐿∗
𝑠𝑏
,

𝐾
12
(𝑧) =

1

√2
𝐿
𝑏
𝑅0
22
(𝑧) 𝐿∗
𝑠𝜑
, 𝐾

21
(𝑧) = 𝐾∗

12
(𝑧) ,

𝐾
22
(𝑧) = −𝐿

𝜑
𝑅0
22
(𝑧) 𝐿∗
𝑠𝜑
.

(34)

Note that𝐾
𝑖𝑗
(𝑧) is Hilbert-Schmidt operators for any 𝑧 ∈

C \ Σ and so is 𝐾(𝑧) inH.

Lemma 7. The operator 𝐴(𝑧), 𝑧 ∈ C \ Σ, is bounded and
invertible, and the inverse operator 𝐴−1(𝑧) has form

𝐴−1 (𝑧) = (
𝐵
00
(𝑧) 0 0
0 𝐵

11
(𝑧) 𝐵

12
(𝑧)

0 𝐵
21
(𝑧) 𝐵

22
(𝑧)

) , (35)

where 𝐵
𝑖𝑗
(𝑧) : H

𝑗
→ H

𝑖
, 𝑖, 𝑗 = 0, 1, 2, is a multiplication

operator by the function 𝑏
𝑖𝑗
(𝑝, 𝑧):

𝑏
00
(𝑝, 𝑧) ≡ 1, 𝑏

11
(𝑝, 𝑧) =

𝑎
22
(𝑝, 𝑧)

Δ (𝑝; 𝑧)
,

𝑏
12
(𝑝, 𝑧) = −

𝑎
12
(𝑝, 𝑧)

Δ (𝑝; 𝑧)
, 𝑏

21
(𝑝, 𝑧) = −

𝑎
21
(𝑝, 𝑧)

Δ (𝑝; 𝑧)
,

𝑏
22
(𝑝, 𝑧) =

𝑎
11
(𝑝, 𝑧)

Δ (𝑝; 𝑧)
.

(36)

Moreover, for any 𝑧 ∈ C \ Σ the operator �̂�(𝑧) = 𝐴−1(𝑧)𝐾(𝑧)
is compact.

Proof. Due to the definition of 𝐴(𝑧) this operator is multipli-
cation by matrix

𝐴 (𝑝, 𝑧) = (
𝑎
00
(𝑝, 𝑧) 0 0
0 𝑎

11
(𝑝, 𝑧) 𝑎

12
(𝑝, 𝑧)

0 𝑎
12
(𝑝, 𝑧) 𝑎

22
(𝑝, 𝑧)

) . (37)

Clearly, 𝐴(𝑝, 𝑧) is continuous matrix-valued function in
T3, a fact making the boundedness of 𝐴(𝑧).

Since det(𝐴(𝑝, 𝑧)) = Δ(𝑝; 𝑧) and Δ(𝑝; 𝑧) ̸= 0, 𝑝 ∈ T3 for
𝑧 ∉ Σ, then det(𝐴(𝑝, 𝑧)) ̸= 0.

Consequently, for any 𝑝 ∈ T3 the matrix 𝐴(𝑝, 𝑧) is
invertible and

𝐴−1 (𝑝, 𝑧) = (

𝑎
00
(𝑝, 𝑧) 0 0

0
𝑎
22
(𝑝, 𝑧)

Δ (𝑝; 𝑧)
−
𝑎
12
(𝑝, 𝑧)

Δ (𝑝; 𝑧)

0 −
𝑎
21
(𝑝, 𝑧)

Δ (𝑝; 𝑧)

𝑎
11
(𝑝, 𝑧)

Δ (𝑝; 𝑧)

),

(38)

which gives a fact that the inverse operator 𝐴−1(𝑧) is multi-
plication by 𝐴−1(𝑝, 𝑧) inH.

Since every component of 𝐾(𝑧) is compact so is 𝐾(𝑧), a
fact that together boundedness of𝐴−1(𝑧) ends the proof.

Next assertion establishes connection between eigenval-
ues of the operators𝐻 and �̂�(𝑧) = 𝐴−1(𝑧)𝐾(𝑧).

Lemma 8. The number 𝑧 ∈ C \ Σ is an eigenvalue of the
operator 𝐻 if and only if the number 𝜆 = 1 is an eigenvalue
of �̂�(𝑧).

Proof.

Necessity. Let 𝑧 ∈ C \ Σ be an eigenvalue of 𝐻 with a
corresponding eigenfunction 𝑓; that is, a system

(𝐻
00
− 𝑧) 𝑓

0
+ 𝐻
01
𝑓
1
= 0,

𝐻
10
𝑓
0
+ (𝐻
11
− 𝑧) 𝑓

1
+ 𝐻
12
𝑓
2
= 0,

𝐻
21
𝑓
1
+ (𝐻
22
− 𝑧) 𝑓

2
= 0,

(39)

has a nontrivial solution 𝑓 = (𝑓
0
, 𝑓
1
, 𝑓
2
).

Whereas for 𝑧 ∉ [𝐸min, 𝐸max] the resolvent 𝑅0
22
(𝑧) =

(𝐻0
22
− 𝑧𝐼
2
) exists from the third equation of (39) for 𝑓

2
, we

obtain

𝑓
2
= 𝑅0
22
(𝑧) (

1

√2
(𝐿∗
𝜑
− 𝐿∗
𝑠𝜑
) 𝑐 −

1

2
(𝐿∗
𝑏
− 𝐿∗
𝑠𝑏
) 𝑓
1
) , (40)

where

𝑐 = √2𝐿
𝜑
𝑓
2
, (41)

since 𝐿
𝑠𝜑
𝑓
2
(𝑞) = −𝐿

𝑠𝜑
𝑓
2
(𝑞).

Now we change (39) to the equivalent system of equa-
tions, using 𝑓

0
, 𝑓
1
, and 𝑐. For this purpose, putting (40) for

𝑓
2
in (39), (41), we get

𝑓
0
= ((𝑧 + 1) 𝐼

0
− 𝐻
00
) 𝑓
0
− a𝑓
1
,

(𝐻
11
− 𝑧𝐼
1
−
1

2
𝐿
𝑏
𝑅0
22
(𝑧) 𝐿∗
𝑏
)𝑓
1
+

1

√2
𝐿
𝑏
𝑅0
22
(𝑧) 𝐿∗
𝜑
𝑐

= −a∗𝑓
0
−
1

2
𝐿
𝑏
𝑅0
22
(𝑧) 𝐿∗
𝑠𝑏
𝑓
1
+

1

√2
𝐿
𝑏
𝑅0
22
(𝑧) 𝐿∗
𝑠𝜑
𝑐,

1

√2
𝐿
𝜑
𝑅0
22
(𝑧) 𝐿∗
𝑏
𝑓
1
+ (𝐼
1
− 𝐿
𝜑
𝑅0
22
(𝑧) 𝐿∗
𝜑
) 𝑐

=
1

√2
𝐿
𝜑
𝑅0
22
(𝑧) 𝐿∗
𝑠𝑏
𝑓
1
− 𝐿
𝜑
𝑅0
22
(𝑧) 𝐿∗
𝑠𝜑
𝑐;

(42)

that is, due to (32), (33), and (34)

𝐴 (𝑧) 𝜓 = 𝐾 (𝑧) 𝜓, 𝜓 = (𝑓
0
, 𝑓
1
, 𝑐) ∈ H. (43)

The last fact and Lemma 7 conclude

𝜓 = 𝐴−1 (𝑧)𝐾 (𝑧) 𝜓, i.e., 𝜓 = �̂� (𝑧) 𝜓. (44)

The system (39) has nontrivial solution, so is the system
(44), a fact implying that the number 1 is an eigenvalue of the
operator �̂�(𝑧).

Sufficiency. Let �̂�(𝑧), 𝑧 ∈ C \Σ, have an eigenvalue 𝜆 = 1with
corresponding eigenfunction 𝜓 = (𝑓

0
, 𝑓
1
, 𝑐) ∈ H. Thus (44)
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has nontrivial solution. Multiplying (44) with the operator
𝐴(𝑧) from left side we get 𝐴(𝑧)𝜓 = 𝐾(𝑥)𝜓; that is,

(𝐻
00
− 𝑧𝐼
0
) 𝑓
0
+ a𝑓
1
= 0,

a∗𝑓
0
+ (𝐻
11
− 𝑧𝐼
1
) 𝑓
1
+𝑊𝑓
1

+ 𝐿
𝑏
(𝑅0
22
(𝑧) (

1

√2
(𝐿∗
𝜑
− 𝐿∗
𝜑
) 𝑐 −

1

2
(𝐿∗
𝑏
− 𝐿∗
𝑠𝑏
) 𝑓
1
))

= 0,

𝑐 = 𝐿
𝜑
(𝑅0
22
(𝑧) (

1

√2
(𝐿∗
𝜑
− 𝐿∗
𝜑
) 𝑐 −

1

2
(𝐿∗
𝑏
− 𝐿∗
𝑠𝑏
) 𝑓
1
)) .

(45)

Set

𝑓
2
= 𝑅0
22
(𝑧) (

1

√2
(𝐿∗
𝜑
− 𝐿∗
𝑠𝜑
) 𝑐 −

1

2
(𝐿∗
𝑏
− 𝐿∗
𝑠𝑏
) 𝑓
1
) . (46)

Then the last two equations of (45) give

𝑐 = √2𝐿
𝜑
𝑓
2
. (47)

It is easy to see that the vector function 𝑓 = (𝑓
0
, 𝑓
1
, 𝑓
2
) ∈

H satisfies the equation𝐻𝑓 = 𝑧𝑓; that is, the number 𝑧 is an
eigenvalue of𝐻.

5. Formulation and Proof of the Main Results

The first main result of the paper is given in the following
theorem.

Theorem 9. The essential spectrum 𝜎
𝑒𝑠𝑠
(𝐻) of 𝐻 coincides

with the set Σ; that is,

𝜎
𝑒𝑠𝑠
(𝐻) = Σ. (48)

Proof.

First Part. 𝜎two ⊂ 𝜎ess(𝐻). This inclusion will be showed
using the Weyl criterion (see [22, VII.12]) by constructing an
appropriate sequence of trial functions.

Let 𝑧
0
∈ Σ. First we consider case 𝑧

0
∈ 𝜎two and 𝑧

0
∉

[𝐸min, 𝐸max].
Then due toTheorem 2 and Lemma 3 there exists 𝑝

0
∈ T3

such that det(𝐴(𝑝
0
, 𝑧
0
)) = Δ(𝑝

0
, 𝑧
0
) = 0 and the system of

equations,

𝛼
0
= 0,

(𝐻
00
− 𝑧
0
𝐼
0
−
1

2
b𝑟
0
(𝑝
0
, 𝑧
0
) b∗)𝛼

1

+
1

√2
b𝑟
0
(𝑝
0
, 𝑧
0
)𝜑∗𝛼
2
= 0,

1

√2
𝜑𝑟
0
(𝑝
0
, 𝑧
0
) b∗𝛼
1
+ (𝐼
0
− 𝜑𝑟
0
(𝑝
0
, 𝑧
0
)𝜑∗) 𝛼

2
= 0,

(49)

has an infinite number solutions, and some solutions have
form l = (0, 𝛼

1
, 𝛼
2
) with the condition 𝛼2

1
+ 𝛼2
2
> 0.

Then from (49) we obtain

𝐴 (𝑝
0
, 𝑧
0
) l = 0, l = (0, 𝛼

1
, 𝛼
2
) ∈ C
3. (50)

Let 𝜒
𝑛
(𝑝), 𝑛 ∈ N, be a characteristic function of a set

𝑉
𝑛
= {𝑝 ∈ T

3 :
1

𝑛 + 1
< 󵄨󵄨󵄨󵄨𝑝 − 𝑝

0

󵄨󵄨󵄨󵄨 <
1

𝑛
} , (51)

and 𝜇(𝑉
𝑛
) Lebesgue measure of 𝑉

𝑛
.

A sequences of trial functions {𝑓(𝑛)} is chosen by

𝑓(𝑛) = (0, 𝑓(𝑛)
1
, 𝑓(𝑛)
2
) , (52)

where

𝑓(𝑛)
1

= 𝛼
1
𝜓(𝑛),

𝑓(𝑛)
2

= 𝑅0
22
(𝑧
0
) (𝛼
2
(𝐿∗
𝜑
− 𝐿∗
𝑠𝜑
) 𝜓(𝑛) −

𝛼
1

2
(𝐿∗
𝑏
− 𝐿∗
𝑠𝑏
) 𝜓(𝑛)) ,

𝜓(𝑛) =
𝑐
𝑛
𝜒
𝑛

√𝜇 (𝑉
𝑛
)
.

(53)

Here the function 𝑐
𝑛

∈ 𝐿2(T3) is found from the
orthogonality condition {𝑓(𝑛)}; that is,

⟨𝑓(𝑛), 𝑓(𝑚)⟩H(3)

= −⟨𝑅0
22
(𝑧
0
) (𝛼
2
𝐿∗
𝜑
−
𝛼
1

2
𝐿∗
𝑏
)𝜓(𝑛),

𝑅0
22
(𝑧
0
) (𝛼
2
𝐿∗
𝑠𝜑
−
𝛼
1

2
𝐿∗
𝑠𝑏
)𝜓(𝑚)⟩

2

= 0, 𝑛 ̸=𝑚,

(54)

since

⟨𝑅0
22
(𝑧
0
)𝐿∗
𝛼
𝜓(𝑛), 𝑅0

22
(𝑧
0
)𝐿∗
𝛽
𝜓(𝑚)⟩

2

= 0,

⟨𝑅0
22
(𝑧
0
)𝐿∗
𝑠𝛼
𝜓(𝑛), 𝑅0

22
(𝑧
0
)𝐿∗
𝑠𝛽
𝜓(𝑚)⟩

2

= 0,

𝑛 ̸=𝑚,

(55)

where the notation 𝛼, 𝛽 admits function-value either 𝑏 or 𝜑.
There existence of 𝑐

𝑛
follows from the following assertion,

and theymay be constructed by themethod of induction.

Proposition 10. There exists orthonormal system {𝑐
𝑛
} ⊂

𝐿2(T3), satisfying conditions

(a) supp 𝑐
𝑛
⊂ 𝑉
𝑛
,

(b) ⟨𝑅0
22
(𝑧
0
) (𝛼
2
𝐿∗
𝜑
−
𝛼
1

2
𝐿∗
𝑏
)𝜓(𝑛),

𝑅0
22
(𝑧
0
) (𝛼
2
𝐿∗
𝑠𝜑
−
𝛼
1

2
𝐿∗
𝑠𝑏
)𝜓(𝑚)⟩

2

= 0.

(56)
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Proof. Let 𝑐
1
= 𝜒
1
/√𝜇(𝑉

1
). Then we chose 𝑐

2
∈ 𝐿2(𝑉

2
) so

that ‖𝑐
2
‖ = 1 (𝑐

2
, 𝜀(2)
1
) = 0, where

𝜀(2)
1

(𝑝)

= ∫
T3
(
[𝛼
2
𝜑 (𝑞) − (𝛼

1
/2) 𝑏 (𝑞)] [(𝛼

1
/2) 𝑏 (𝑝) − 𝛼

2
𝜑 (𝑝)]

(𝐸 (𝑝, 𝑞) − 𝑧
0
)
2

)

× 𝑐
1
(𝑞) 𝜒
2
(𝑞) 𝑑𝑞.

(57)
Set 𝑐
2
(𝑝) = 𝑐

2
(𝑝)𝜒
2
(𝑝). We continue this process. Assume

that we have constructed 𝑐
1
(𝑝), . . . , 𝑐

𝑛
(𝑝). Then a function

𝑐
𝑛+1

∈ 𝐿2(𝑉
𝑛+1

) is chosen so that ‖𝑐
𝑛+1

‖ = 1 and it is orthogonal
to
𝜀(𝑛+1)
𝑖

(𝑝)

= ∫
T3
(
[𝛼
2
𝜑 (𝑞) − (1/2) 𝛼

1
𝑏 (𝑞)] [𝛼

1
𝑏 (𝑝) − 2𝛼

2
𝜑 (𝑝)]

(𝐸 (𝑝, 𝑞) − 𝑧
0
)
2

)

× 𝑐
𝑖
(𝑞) 𝜒
𝑛+1

(𝑞) 𝑑𝑞, 𝑖 = 1, 𝑛.
(58)

Set 𝑐
𝑛+1

(𝑝) = 𝑐
𝑛+1

(𝑝)𝜒
𝑛+1

(𝑝).Thus we have built orthonor-
mal system {𝑐

𝑛
}, satisfying the conditions of the proposal.

Continuation of the Proof ofTheorem 9. AssumeΔ(𝑝
0
, 𝑧
0
) = 0.

Then

󵄩󵄩󵄩󵄩󵄩𝑓
(𝑛)
󵄩󵄩󵄩󵄩󵄩
2

≥
𝜉
0

2𝜇 (𝑉
𝑛
)
, 𝜉

0
= 𝛼2
1
+

𝛼2
2

󵄩󵄩󵄩󵄩𝜑2
󵄩󵄩󵄩󵄩
2

(𝐸max − 𝑧
0
)
2
. (59)

Define an orthonormal system 𝑓(𝑛) = 𝑓(𝑛)/‖𝑓(𝑛)‖.
We estimate the norm of (𝐻 − 𝑧

0
)𝑓(𝑛) as

󵄩󵄩󵄩󵄩󵄩(𝐻 − 𝑧
0
)𝑓(𝑛)

󵄩󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩󵄩𝐴(𝑧0)�̃�

(𝑛)
󵄩󵄩󵄩󵄩󵄩
2

H
+
󵄩󵄩󵄩󵄩󵄩𝐾(𝑧0)�̃�

(𝑛)
󵄩󵄩󵄩󵄩󵄩
2

H
,

�̃�(𝑛) = (0,
𝜓(𝑛)
1

󵄩󵄩󵄩󵄩𝑓
(𝑛)
󵄩󵄩󵄩󵄩
,
𝜓(𝑛)
2

󵄩󵄩󵄩󵄩𝑓
(𝑛)
󵄩󵄩󵄩󵄩
) .

(60)

Note that {�̃�(𝑛)} ⊂ H is an orthogonal system, a fact that
follows from disjointness of the supports of �̃�(𝑛) and �̃�(𝑚).

From the equality,
󵄩󵄩󵄩󵄩󵄩�̃�
(𝑛)
󵄩󵄩󵄩󵄩󵄩
2

=
1

‖ 𝑓(𝑛)‖2
1

𝜇 (𝑉
𝑛
)
(𝛼2
1
+ 𝛼2
2
) , (61)

and (59) we take the uniformly boundedness of the system
{�̃�(𝑛)}; that is, ‖�̃�(𝑛)‖

2

≤ (1/𝜉
0
)‖l‖2C3 for all 𝑛 ∈ N.

Then, due to the compactness of 𝐾(𝑧
0
), the limit

‖𝐾(𝑧
0
)�̃�(𝑛)‖ → 0, as 𝑛 → ∞, holds.

Now we estimate ‖𝐴(𝑧
0
)�̃�(𝑛)‖. Using the Schwartz

inequality we receive
󵄩󵄩󵄩󵄩󵄩𝐴(𝑧0)�̃�

(𝑛)
󵄩󵄩󵄩󵄩󵄩
2

≤ 𝐶2 sup
𝑝∈𝑉𝑛

󵄩󵄩󵄩󵄩𝐴(𝑝, 𝑧0)l
󵄩󵄩󵄩󵄩
2

C3
,

where 𝐶2 = max{ 2

𝜉
0

,
8󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩
2

𝜉
0

} .

(62)

By the continuity of the matrix-valued function 𝐹(𝑝) =
𝐴(𝑝, 𝑧

0
), the limit sup

𝑝∈𝑉𝑛

‖𝐴(𝑝, 𝑧
0
)l‖C3 → 0, as 𝑛 → ∞, is

obtained.
Therefore, the sequence of orthonormal vector functions

{𝑓(𝑛)} satisfies ‖(𝐻 − 𝑧
0
)𝑓(𝑛)‖ → 0, as 𝑛 → ∞, a fact that

means 𝑧
0
∈ 𝜎ess(𝐻). Consequently, 𝜎two ⊂ 𝜎ess(𝐻) since 𝑧

0
is

arbitrary.
In case 𝑧

0
∈ [𝐸min, 𝐸max], we chose (𝑝0, 𝑞0) ∈ (T3)2 as

𝑧 = 𝐸(𝑝
0
, 𝑞
0
) and we can construct an appropriate sequence

of trial functions as

𝑓(𝑛) = (0, 0, 𝑓(𝑛)
2
)
𝑇

,

𝑓(𝑛)
2

(𝑝, 𝑞) = sgn (𝑝2 − 𝑞2)
𝜒
𝑛
(𝑝, 𝑞)

𝜇 (𝑈
𝑛
)
,

(63)

where 𝜒
𝑛
(𝑝, 𝑞) is a characteristic function of the set𝑈

𝑛
= 𝑉
𝑛
×

𝑉
𝑛
⊂ (T3)2, 𝜇(𝑈

𝑛
) is Lebesgue measure of 𝑈

𝑛
, and sgn is sign

function.
Consequently, [𝐸min, 𝐸max] ∪ 𝜎two ⊂ 𝜎ess(𝐻).

Second Part. 𝜎ess(𝐻) ⊂ Σ. Denote by

𝑅 (𝑧) = (
𝑅
00
(𝑧) 𝑅

01
(𝑧) 𝑅

02
(𝑧)

𝑅
10
(𝑧) 𝑅

11
(𝑧) 𝑅

12
(𝑧)

𝑅
20
(𝑧) 𝑅

21
(𝑧) 𝑅

22
(𝑧)

) , 𝑧 ∈ Σ, (64)

the resolvent form of 𝐻, where 𝑅
𝑖𝑗
(𝑧) : H

𝑗
→ H

𝑖
, 𝑖 ⋅ 𝑗 =

1, 2, 3, is its matrix “entries,” it’s rows𝑅
𝑖
(𝑧) : H(3) → H

𝑖
, 𝑖 =

1, 2, 3 we denote by

𝑅
𝑖
(𝑧) = (𝑅

𝑖0
(𝑧) , 𝑅

𝑖1
(𝑧) , 𝑅

𝑖2
(𝑧)) . (65)

Setting

R
0
(𝑧) = diag {𝐼

0
, 𝐼
1
, 𝑅0
22
(𝑧)} ,

𝐻
0
(𝑧) = diag {𝐼

0
, 𝐼
1
, 𝐻0
22
− 𝑧𝐼
2
} ,

(66)

where 𝑅0
22
(𝑧) = (𝐻0

22
− 𝑧𝐼
2
)−1, 𝑧 ∈ C \ [𝐸min, 𝐸max], is

the resolvent of the operator 𝐻0
22
, we obtain the resolvent

equation

𝑅 (𝑧) = R
0
(𝑧) −R

0
(𝑧) ((𝐻 − 𝑧𝐼) − 𝐻

0
(𝑧)) 𝑅 (𝑧) . (67)

In our case resolvent Equation (67) is not compact.
Therefore to overcome this difficulty, we derive Faddeev
type system of integral equations (see, e.g., [23]) for the
components of the resolvent.
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We write (67) as the form

{
{
{

𝑅
0
(𝑧)

𝑅
1
(𝑧)

𝑅
2
(𝑧)

)

= R
0
(𝑧) −R

0
(𝑧)

×(

𝐻
00
− (𝑧 + 1) 𝐼

0
𝐻
01

0
𝐻
10

𝐻
11
− (𝑧 + 1) 𝐼

1
𝐻
12

0 𝐻
21

(𝐻
22
− 𝐻0
22
)
)

× (
𝑅
0
(𝑧)

𝑅
1
(𝑧)

𝑅
2
(𝑧)

) ;

(68)

that is,

(
𝑅
0
(𝑧)

𝑅
1
(𝑧)

𝑅
2
(𝑧)

)

= 𝑅
0
(𝑧)

− (
(𝐻
00
− 𝑧𝐼
0
− 𝐼
0
) 𝑅
0
(𝑧) + 𝐻

01
𝑅
1
(𝑧)

𝐻
10
𝑅
0
(𝑧) + (𝐻

11
− 𝑧𝐼
1
− 𝐼
1
) 𝑅
1
(𝑧) + 𝐻

12
𝑅
2
(𝑧)

𝑅0
22
(𝑧)𝐻
21
𝑅
1
(𝑧) − 𝑅0

22
(𝑧) (𝐿∗

𝜑
𝐿
𝜑
+ 𝐿∗
𝑠𝜑
𝐿
𝑠𝜑
) 𝑅
2
(𝑧)

) .

(69)

Defining the unitary operator 𝑃 : 𝐿2as((T
3)2) →

𝐿2as((T
3)2) : 𝑃𝑓(𝑝, 𝑞) = −𝑓(𝑞, 𝑝), we can take 𝑃𝐿∗

𝑠𝜑
𝐿
𝑠𝜑

=
−𝐿∗
𝜑
𝐿
𝜑
and an equality

𝐿∗
𝑠𝜑
𝐿
𝑠𝜑
𝑅
2
(𝑧) = −𝐿∗

𝑠𝜑
𝑃𝐿
𝜑
𝑅
2
(𝑧) . (70)

Then, putting the third equation

𝑅
2
(𝑧) = 𝑅0

22
(𝑧) − (𝑅0

22
(𝑧)𝐻
21
𝑅
1
(𝑧)

−𝑅0
22
(𝑧) (𝐿∗

𝜑
− 𝐿∗
𝑠𝜑
𝑃) 𝐿
𝜑
𝑅
2
(𝑧)) ,

(71)

of (69) into𝐻
12
𝑅
2
(𝑧), we take

𝑅 (𝑧) = R
0
(𝑧) − 𝑄

0
(𝑧) − 𝐻

1
X (𝑧) , (72)

where

𝑄
0
(𝑧) = diag {0,𝐻

12
𝑅0
22
(𝑧) , 0} ,

X (𝑧) = (𝑅
0
(𝑧) , 𝑅

1
(𝑧) , 𝐿

𝜑
𝑅
2
(𝑧))
𝑇

,
(73)

is an unknown vector operator and 𝐻
1
: H → H has the

form

𝐻
1
= (

𝐻
00
− (𝑧 + 1) 𝐼

0
𝐻
01

0
𝐻
10

𝐻
11
− (𝑧 + 1) 𝐼

1
− 𝐻
12
𝑅0
22
(𝑧)𝐻
21

𝐻
12
𝑅0
22
(𝑧) (𝐿∗

𝜑
− 𝐿∗
𝑠𝜑
𝑃)

0 𝑅0
22
(𝑧)𝐻
21

−𝑅0
22
(𝑧) (𝐿∗

𝜑
− 𝐿∗
𝑠𝜑
𝑃)

) . (74)

Set

𝐿 (𝑧) = diag {𝐼
0
, 𝐼
1
, 𝐿
𝜑
} . (75)

According toX(𝑧) = 𝐿(𝑧)𝑅(𝑧)we write equation forX(𝑧)
as

X (𝑧) = 𝐿 (𝑧)R
0
(𝑧) − 𝐿 (𝑧)𝑄

0
(𝑧)

− (

𝐻
00
− (𝑧 + 1) 𝐼

0
𝐻
01

0
𝐻
10

𝐻
11
− (𝑧 + 1) 𝐼

1
− 𝐻
12
𝑅0
22
(𝑧)𝐻
21

𝐻
12
𝑅0
22
(𝑧) (𝐿∗

𝜑
− 𝐿∗
𝑠𝜑
𝑃)

0 𝐿
𝜑
𝑅0
22
(𝑧)𝐻
21

−𝐿
𝜑
𝑅0
22
(𝑧) (𝐿∗

𝜑
− 𝐿∗
𝑠𝜑
𝑃)
)X (𝑧) .

(76)
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Due to (33), (34) we have

𝐻
00
− (𝑧 + 1) 𝐼

0
= −𝐼
0
− 𝐴
00
(𝑧) − 𝐵

00
(𝑧) ,

𝐻
11
− (𝑧 + 1) 𝐼

1

− 𝐻
12
𝑅0
22
(𝑧)𝐻
21
= −𝐼
1
− 𝐴
11
(𝑧) − 𝐾

11
(𝑧) ,

−𝐻
12
𝑅0
22
(𝑧) (𝐿∗

𝜑
− 𝐿∗
𝑠𝜑
𝑃) = 𝐴

12
(𝑧) − 𝐾

12
(𝑧)

𝐿
𝜑
𝑅0
22
(𝑧)𝐻
21
= 𝐴
21
(𝑧) − 𝐾

21
(𝑧) ,

𝐿
𝜑
𝑅0
22
(𝑧) (𝐿∗

𝜑
− 𝐿∗
𝑠𝜑
𝑃) = −𝐼

2
+ 𝐴
22
(𝑧) − 𝐾

22
(𝑧) .

(77)

Using these and (33), (34) we get

(𝐴 (𝑧) − 𝐾 (𝑧))X (𝑧) = 𝐿 (𝑧) (R
0
(𝑧) − 𝑄

0
(𝑧)) . (78)

By virtue of Lemma 7 the operator 𝐴(𝑧), 𝑧 ∈ C \ Σ, is
invertible and then we get the Faddeev type equation [23]

(𝐼 − 𝐴−1 (𝑧)𝐾 (𝑧))X (𝑧) = 𝐴−1 (𝑧) 𝐿 (𝑧) (R
0
(𝑧) − 𝑄

0
(𝑧)) ,
(79)

where 𝐼 is the identity operator onH.
The operator �̂�(𝑧) = 𝐴−1(𝑧)𝐾(𝑧) is a compact operator-

valued function on C \ Σ and 𝐹(𝑧) = 𝐼 − �̂�(𝑧) is invertible;
even 𝑧 is real and either very negative or very positive. The
analytic Fredholm theorem (see, e.g., in [22,TheoremVI .14])
implies that there is a discrete set 𝑆 ⊂ C \ Σ such that
𝐹(𝑧)−1 exists and is analytic in C \ (Σ ∪ 𝑆) and meromorphic
in C \ Σ with finite rank residues. Thus the function (𝐼 −
�̂�(𝑧))−1𝐴−1(𝑧)𝐿(𝑧)(R

0
(𝑧) − 𝑄

0
(𝑧)) ≡ 𝐺(𝑧) is analytic in

C \ (Σ ∪ 𝑆) with finite rank residues at the points of 𝑆.
Let 𝑧 ∉ 𝑆 and Im 𝑧 ̸= 0; then, by (81) and (79) we have

𝐺(𝑧) = X(𝑧). In particular,

𝑅 (𝑧) (𝐻 − 𝑧𝐼)

= (R
0
(𝑧) − 𝑄

0
(𝑧) − 𝐻

1
X (𝑧)) (𝐻 − 𝑧I) = 𝐼,

(80)

where 𝐼 is the identity operator inH(3).
By analytic continuation, this holds for any 𝑧 ∉ Σ ∪ 𝑆.

Thus, for any such 𝑧, the operator 𝐻 − 𝑧𝐼 has a bounded
inverse.Therefore𝜎(𝐻)\Σ consists of isolated points and only
the frontier points of Σ are possible their limit points. Finally,
since 𝑅(𝑧) has finite rank residues at 𝑧 ∈ 𝑆, we conclude that
𝜎(𝐻) \Σ belongs to the discrete spectrum 𝜎

𝑑
(𝐻) of𝐻, which

completes the proof of Theorem 9.
Now we derive resolvent form (64) of the operator𝐻.

Theorem 11. Let 𝑧 ∈ C \ 𝜎(𝐻). Then the resolvent 𝑅(𝑧) =
(𝐻 − 𝑧𝐼)−1 of𝐻 has the form

𝑅 (𝑧) = R
0
(𝑧) − 𝑄

0
(𝑧)

− 𝐻
1
(𝐴 (𝑧) − 𝐾 (𝑧))−1𝐿 (𝑧) (R

0
(𝑧) − 𝑄

0
(𝑧)) ,

(81)

where 𝐴(𝑧), 𝐾(𝑧), R
0
(𝑧), 𝐻

1
, and 𝐿(𝑧) are defined by (33),

(34), (66), (74), and (75), respectively.

Proof. Lemma 8, (69), and (79) give the proof.
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