
Research Article
Separation Transformation and a Class of Exact Solutions to
the Higher-Dimensional Klein-Gordon-Zakharov Equation

Jing Chen,1 Ling Liu,2 and Li Liu3

1 School of Statistics and Mathematics, Central University of Finance and Economics, Beijing 100081, China
2 School of Science, Beijing Information Science and Technology University, Beijing 100192, China
3 China Petroleum Engineering and Construction Corp., Beijing 100028, China

Correspondence should be addressed to Jing Chen; chenjingcufe@163.com

Received 8 February 2014; Accepted 30 March 2014; Published 24 April 2014

Academic Editor: Christian Maes

Copyright © 2014 Jing Chen et al.This is an open access article distributed under theCreativeCommonsAttributionLicense,which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The separation transformation method is extended to the (𝑛 + 1)-dimensional Klein-Gordon-Zakharov equation describing the
interaction of the Langmuir wave and the ion acoustic wave in plasma. We first reduce the (𝑛 + 1)-dimensional Klein-Gordon-
Zakharov equation to a set of partial differential equations and two nonlinear ordinary differential equations of the separation
variables.Then the general solutions of the set of partial differential equations are given and the two nonlinear ordinary differential
equations are solved by extended𝐹-expansionmethod. Finally, some new exact solutions of the (𝑛 + 1)-dimensional Klein-Gordon-
Zakharov equation are proposed explicitly by combining the separation transformation with the exact solutions of the separation
variables. It is shown that, for the case of 𝑛 ≥ 2, there is an arbitrary function in every exact solution, which may reveal more
nontrivial nonlinear structures in the high-dimensional Klein-Gordon-Zakharov equation.

1. Introduction

The Klein-Gordon equation (sometimes called Klein-
Gordon-Fock equation) [1] is a relativistic version of the
Schrödinger equation. Its nonlinear counterpart is the
nonlinear Klein-Gordon equation [2]:

𝜕
2𝑢

𝜕𝑡2
−
𝜕2𝑢

𝜕𝑥2
+ 𝛼𝑢 − 𝛽|𝑢|

2
𝑢 = 0, (1)

where 𝛼 and 𝛽 are constants, which has important applica-
tions in various fields. For example, it is attributed to the
classical 𝑢4 field theory in the physics of elementary particles
and fields, and it can describe the propagation of dislocations
within crystals and the propagation of magnetic flux on a
Josephson line, and so on. One extension of the nonlinear
Klein-Gordon equation is the (1 + 1)-dimensional Klein-
Gordon-Zakharov (KGZ) equation [3, 4]:

𝜕
2𝑢

𝜕𝑡2
−
𝜕2𝑢

𝜕𝑥2
+ 𝛼𝑢 + 𝑢V − 𝛽|𝑢|2𝑢 = 0,

𝜕
2V
𝜕𝑡2

−
𝜕2V
𝜕𝑥2

= 𝛾
𝜕2|𝑢|
2

𝜕𝑥2
,

(2)

with 𝑢(𝑡, 𝑥) as a complex function and V(𝑡, 𝑥) as a real
function, which is a classicalmodel describing the interaction
of the Langmuir wave and the ion acoustic wave in plasma [3,
4].The variable 𝑢(𝑡, 𝑥) denotes the fast time scale component
of electric field raised by electrons and the variable V(𝑡, 𝑥)
denotes the deviation of ion density from its equilibrium. In
recent years, some authors applied analytical and numerical
methods [5–8] to solve the (1+1)-dimensional KGZ equation
(2) and obtained many exact and numerical solutions.

The high-dimensional extension of KGZ equation is
important in real applications, so in this paper we would like
to investigate the (𝑛 + 1)-dimensional KGZ equation:

𝜕
2𝑢

𝜕𝑡2
− Δ𝑢 + 𝛼𝑢 + 𝑢V − 𝛽|𝑢|2𝑢 = 0,

𝜕2V
𝜕𝑡2

− ΔV + 𝛾
𝜕2|𝑢|
2

𝜕𝑡2
= 𝛾Δ|𝑢|

2
,

(3)

Hindawi Publishing Corporation
Advances in Mathematical Physics
Volume 2014, Article ID 974050, 8 pages
http://dx.doi.org/10.1155/2014/974050



2 Advances in Mathematical Physics

where Δ = 𝜕2/𝜕𝑥2
1
+ 𝜕2/𝜕𝑥2

2
+ ⋅ ⋅ ⋅ + 𝜕2/𝜕𝑥2

𝑛
= ∑
𝑛

𝑗=1
(𝜕2/𝜕𝑥2

𝑗
)

is the Laplacian operator and x ∈ R𝑛. This equation is the
generalization of the KGZ equation (2) and we will show that
it has many exact solutions with an arbitrary function.

More recently, Wang [9] extended the separation trans-
formation method proposed in [10–12] to the (𝑁 + 1)-
dimensional coupled nonlinear Klein-Gordon equations.
Then Liu et al. [13] and we [14] further extended the sepa-
ration transformation method to various high-dimensional
nonlinear soliton equations and obtained explicitly many
exact solutions with arbitrary functions.

In this paper, by means of the separation transformation
approach [9–14] we derive the exact solutions of the (𝑛 +
1)-dimensional KGZ equation (3). The rest of this paper is
organized as follows. In Section 2, a separation transforma-
tion is presented and the (𝑛 + 1)-dimensional KGZ equation
(3) is reduced to a set of partial differential equations and
two nonlinear ordinary differential equations. In Section 3,
the two nonlinear ordinary differential equations are solved
and some special exact solutions of the (𝑛 + 1)-dimensional
KGZ equation (3) are constructed explicitly. Conclusions are
presented in Section 4.

2. Separation Transformation and
Its Application

The following proposition reveals the relationship between
the exact solutions of the (𝑛 + 1)-dimensional KGZ equation
(3) and two nonlinear ordinary differential equations (ODEs)
along with a set of partial differential equations (PDEs).

Proposition 1. The functions 𝑢(𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) = 𝑈[𝜔(𝑡; 𝑥

1
, . . . ,

𝑥
𝑛
)] exp[𝑖𝑋(𝑡; 𝑥

1
, . . . , 𝑥

𝑛
)] and V(𝑡; 𝑥

1
, . . . , 𝑥

𝑛
) = 𝑉[𝜔(𝑡;

𝑥
1
, . . . , 𝑥

𝑛
)] solve the (𝑛 + 1)-dimensional KGZ equation (3)

if the functions 𝜔 = 𝜔(𝑡; 𝑥
1
, . . . , 𝑥

𝑛
), 𝑋 = 𝑋(𝑡; 𝑥

1
, . . . , 𝑥

𝑛
),

𝑈(𝜔) = 𝑈[𝜔(𝑡; 𝑥
1
, . . . , 𝑥

𝑛
)], and 𝑉(𝜔) = 𝑉[𝜔(𝑡; 𝑥

1
, . . . , 𝑥

𝑛
)]

solve the following set of differential equations:

𝜔
𝑡𝑡
− Δ𝜔 = 0, (4)

𝜔
2

𝑡
−

𝑛

∑
𝑗=1

𝜔
2

𝑥𝑗
= 𝐾
1
,

𝑋
𝑡𝑡
− Δ𝑋 = 0,

𝑋
2

𝑡
−

𝑛

∑
𝑗=1

𝑋
2

𝑥𝑗
= 𝐾
2
,

𝜔
𝑡
𝑋
𝑡
−

𝑛

∑
𝑗=1

𝜔
𝑥𝑗
𝑋
𝑥𝑗
= 0,

𝑉

(𝜔) + 𝛾(𝑈

2
(𝜔))


= 0,

𝐾
1
𝑈

(𝜔) + (𝛼 − 𝐾

2
) 𝑈 (𝜔) + 𝑈 (𝜔)𝑉 (𝜔) − 𝛽𝑈

3
(𝜔) = 0,

(5)

where 𝑈 = 𝑑2𝑈/𝑑𝜔2, 𝑉 = 𝑑2𝑉/𝑑𝜔2, and 𝐾
1
> 0 and 𝐾

2

are constants.

Proof. Assume that the (𝑛+1)-dimensional KGZ equation (3)
has the following solution:

𝑢 (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
)

= 𝑈 [𝜔 (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
)] exp [𝑖𝑋 (𝑡; 𝑥

1
, . . . , 𝑥

𝑛
)] ,

V (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) = 𝑉 [𝜔 (𝑡; 𝑥

1
, . . . , 𝑥

𝑛
)] ,

(6)

where 𝜔(𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) and𝑋(𝑡; 𝑥

1
, . . . , 𝑥

𝑛
) are functions to be

determined.
Substituting (6) into the (𝑛 + 1)-dimensional KGZ equa-

tion (3) yields two ODEs:

(𝜔
2

𝑡
−

𝑛

∑
𝑗=1

𝜔
2

𝑥𝑗
)𝑈

(𝜔) + (𝜔

𝑡𝑡
− Δ𝜔)𝑈


(𝜔)

− (𝑋
2

𝑡
−

𝑛

∑
𝑗=1

𝑋
2

𝑥𝑗
)𝑈 (𝜔) + 𝛼𝑈 (𝜔) + 𝑈 (𝜔)𝑉 (𝜔)

− 𝛽𝑈
3
(𝜔) + 2𝑖(𝜔

𝑡
𝑋
𝑡
−

𝑛

∑
𝑗=1

𝜔
𝑥𝑗
𝑋
𝑥𝑗
)𝑈

(𝜔)

+ 𝑖 (𝑋
𝑡𝑡
− Δ𝑋)𝑈 (𝜔) = 0,

(𝜔
2

𝑡
−

𝑛

∑
𝑗=1

𝜔
2

𝑥𝑗
)[𝑉

(𝜔) + 𝛾(𝑈

2
(𝜔))


]

+ (𝜔
𝑡𝑡
− Δ𝜔) [𝑉


(𝜔) + 𝛾(𝑈

2
(𝜔))


] = 0.

(7)

If asking 𝜔(𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) and𝑋(𝑡; 𝑥

1
, . . . , 𝑥

𝑛
) to solve

𝜔
𝑡𝑡
− Δ𝜔 = 0,

𝜔
2

𝑡
−

𝑛

∑
𝑗=1

𝜔
2

𝑥𝑗
= 𝐾
1
,

𝑋
𝑡𝑡
− Δ𝑋 = 0,

𝑋
2

𝑡
−

𝑛

∑
𝑗=1

𝑋
2

𝑥𝑗
= 𝐾
2
,

𝜔
𝑡
𝑋
𝑡
−

𝑛

∑
𝑗=1

𝜔
𝑥𝑗
𝑋
𝑥𝑗
= 0,

(8)

where𝐾
1
and𝐾

2
are auxiliary constants, then (7) are reduced

to two nonlinear ODEs of functions 𝑈(𝜔) and 𝑉(𝜔) as

𝑉

(𝜔) + 𝛾(𝑈

2
(𝜔))


= 0,

𝐾
1
𝑈

(𝜔) + (𝛼 − 𝐾

2
) 𝑈 (𝜔) + 𝑈 (𝜔)𝑉 (𝜔) − 𝛽𝑈

3
(𝜔) = 0.

(9)

This finishes the proof of the proposition.

We see that under the separation transformation (6) the
(𝑛 + 1)-dimensional KGZ equation (3) is separated into
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two sets of differential equations, namely, the PDEs in (8)
and ODEs in (9). If we can obtain the exact solutions of
the differential equations (8) and (9), the explicitly exact
solutions of the (𝑛 + 1)-dimensional KGZ equation (3) can
be built immediately. In what follows, we solve the PDEs in
(8) firstly.

When 𝑛 = 1, the PDEs of functions 𝜔(𝑡; 𝑥
1
), 𝑋(𝑡; 𝑥

1
) in

(8) become

𝜔
𝑡𝑡
− 𝜔
𝑥1𝑥1

= 0,

𝜔
2

𝑡
− 𝜔
2

𝑥1
= 𝐾
1
,

𝑋
𝑡𝑡
− 𝑋
𝑥1𝑥1

= 0,

𝑋
2

𝑡
− 𝑋
2

𝑥1
= 𝐾
2
,

𝜔
𝑡
𝑋
𝑡
− 𝜔
𝑥1
𝑋
𝑥1
= 0,

(10)

which has the following general solutions:

𝜔 (𝑡; 𝑥
1
) = 𝑐
1
(𝑥
1
+ 𝑡) −

𝐾
1

4𝑐
1

(𝑥
1
− 𝑡) + 𝑐

2
,

𝑋 (𝑡; 𝑥
1
) = 𝑑
0
𝑡 + 𝑑
1
𝑥
1
+ 𝑑
2
,

(11)

where 𝑑2
0
= 𝑑2
1
+ 𝐾
2
, 𝑑
0
(4𝑐2
1
+ 𝐾
1
) + 𝑑
1
(𝐾
1
− 4𝑐2
1
) = 0, and 𝑐

2
,

𝑑
2
are integral constants.
When 𝑛 ≥ 2, the PDEs in (8) have the following general

solutions:

𝜔 (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) = 𝑓(

𝑛

∑
𝑗=1

𝑘
𝑗
𝑥
𝑗
+ 𝑘
0
𝑡 + 𝑐
3
)

+ √
𝐾
1

𝑙2
0
− ∑
𝑛

𝑗=1
𝑙2
𝑗

(

𝑛

∑
𝑗=1

𝑙
𝑗
𝑥
𝑗
+ 𝑙
0
𝑡 + 𝑐
4
) ,

𝑋 (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) =

𝑛

∑
𝑗=1

𝜆
𝑗
𝑥
𝑗
+ 𝜆
0
𝑡 + 𝑑
3
,

(12)

where 𝑓 = 𝑓(⋅) is an arbitrary function, 𝑐
3
, 𝑐
4
, and 𝑑

3
are

constants, and 𝑘
0
, 𝑘
𝑗
, 𝜆
0
, 𝜆
𝑗
, 𝑙
0
, and 𝑙

𝑗
(𝑗 = 1, . . . , 𝑛) are

constants satisfying

𝑘
2

0
=

𝑛

∑
𝑗=1

𝑘
2

𝑗
, 𝑘

0
𝑙
0
=

𝑛

∑
𝑗=1

𝑘
𝑗
𝑙
𝑗
, 𝜆

0
𝑙
0
=

𝑛

∑
𝑗=1

𝜆
𝑗
𝑙
𝑗
,

𝜆
0
𝑘
0
=

𝑛

∑
𝑗=1

𝜆
𝑗
𝑘
𝑗
, 𝜆

2

0
=

𝑛

∑
𝑗=1

𝜆
2

𝑗
+ 𝐾
2
.

(13)

Thus we conclude in this section that the exact solution of
the (𝑛 + 1)-dimensional KGZ equation (3) can be written as

𝑢 (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
)

= 𝑈 [𝜔 (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
)] exp [𝑖𝑋 (𝑡; 𝑥

1
, . . . , 𝑥

𝑛
)] ,

V (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) = 𝑉 [𝜔 (𝑡; 𝑥

1
, . . . , 𝑥

𝑛
)] ,

(14)

where 𝑈(𝜔) and 𝑉(𝜔) satisfy ODEs (9) and 𝜔(𝑡; 𝑥
1
, . . . , 𝑥

𝑛
),

𝑋(𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) are functions given by (11) for 𝑛 = 1 and (12)

with (13) for 𝑛 ≥ 2.
It is remarked that when 𝑛 ≥ 2, there is an arbitrary

function 𝑓(∑𝑛
𝑗=1
𝑘
𝑗
𝑥
𝑗
+ 𝑘
0
𝑡 + 𝑐
3
) in each exact solution of

the (𝑛 + 1)-dimensional KGZ equation (3), which may reveal
abundant nonlinear structures in this nonlinear equation.

3. New Exact Solutions of the (𝑛+1)-
Dimensional KGZ Equation (3)

In this section, we search for the exact solutions of the
nonlinear ODEs in (9) by means of the 𝐹-expansion method
proposed by Wang et al. [15–17]. Based on the explicit
solutions of the ODEs in (11), many exact solutions of the
(𝑛 + 1)-dimensional KGZ equation (3) are obtained explicitly
via the separation transformation (6).

Integrating the first equation in (9) we have

𝑉 (𝜔) = −𝛾𝑈
2
(𝜔) . (15)

Thus the second equation in (9) becomes anODE of𝑈(𝜔)
as

𝐾
1
𝑈

(𝜔) + (𝛼 − 𝐾

2
) 𝑈 (𝜔) − 𝛾𝑈

3
(𝜔) − 𝛽𝑈

3
(𝜔) = 0. (16)

In what follows, we solve the ODE (16) by using the
extended 𝐹-expansion method proposed by Wang et al. [15–
17]. In doing so, assume that the solution of ODE (16) is

𝑈 (𝜔) = 𝑎
0
+ 𝑎
1
𝐹 (𝜔) +

𝑏
1

𝐹 (𝜔)
, (17)

where 𝑎
0
, 𝑎
1
, and 𝑏

1
are constants to be determined and 𝐹(𝜔)

satisfies the elliptic equation [18]:

(
𝑑𝐹 (𝜔)

𝑑𝜔
)

2

= 𝑟 + 𝑞𝐹
2
(𝜔) + 𝑝𝐹

4
(𝜔) , (18)

whose solutions in Jacobi elliptic function forms [18] are listed
in Table 1 in the Appendix.

Substituting (17) with (18) into ODE (16), we find that the
variables 𝑎

0
, 𝑎
1
, 𝑏
1
, and 𝛼 have two groups of solutions.

Group 1. Consider that

𝑎
0
= 0, 𝑏

1
= 0, 𝛼 = 𝐾

2
− 𝐾
1
𝑞, 𝑎

1
= √

2𝐾
1
𝑝

𝛾 + 𝛽
.

(19)

Group 2. Consider that

𝑎
0
= 0, 𝑎

1
= √

2𝐾
1
𝑝

𝛾 + 𝛽
, 𝑏

1
= √

2𝐾
1
𝑟

𝛾 + 𝛽
,

𝛼 = 𝐾
2
− 𝐾
1
𝑞 + 6√

𝐾
1
𝑝

𝛾 + 𝛽
√
𝐾
1
𝑟

𝛾 + 𝛽
(𝛾 + 𝛽) .

(20)

Combining the separation transformation (6) with (15),
(17), (19), or (20) along with (11)–(13) and the solutions



4 Advances in Mathematical Physics

Table 1: Exact solutions of (𝑑𝑓(𝑤)/𝑑𝑤)2 = 𝑟 + 𝑞𝐹2 + 𝑝𝐹4(𝜔)(𝜔).

𝑟 𝑞 𝑝 𝐹(𝜔)

1 1 −(1 + 𝑚2) 𝑚2 sn(𝜔,𝑚)
2 1 − 𝑚

2
2𝑚
2
− 1 −𝑚

2 cn(𝜔,𝑚)
3 𝑚2 − 1 2 − 𝑚2 −1 dn(𝜔,𝑚)
4 𝑚2 −(1 + 𝑚2) 1 𝑛𝑠(𝜔,𝑚) = [sn(𝜔,𝑚)]−1

5 −𝑚
2

2𝑚
2
− 1 1 − 𝑚

2
𝑛𝑐(𝜔,𝑚) = [cn(𝜔,𝑚)]−1

6 −1 2 − 𝑚2 𝑚2 − 1 𝑛𝑑(𝜔,𝑚) = [dn(𝜔,𝑚)]−1

7 1 2 − 𝑚2 1 − 𝑚2 sc(𝜔,𝑚) = sn(𝜔,𝑚)/cn(𝜔,𝑚)
8 1 2𝑚

2
− 1 −𝑚

2
(1 − 𝑚

2
) sd(𝜔,𝑚) = sn(𝜔,𝑚)/dn(𝜔,𝑚)

9 1 − 𝑚2 2 − 𝑚2 1 cs(𝜔,𝑚) = cn(𝜔,𝑚)/sn(𝜔,𝑚)
10 1 −(1 + 𝑚2) 𝑚2 cd(𝜔,𝑚) = cn(𝜔,𝑚)/dn(𝜔,𝑚)
11 −𝑚2(1 − 𝑚2) 2𝑚2 − 1 1 ds(𝜔,𝑚) = dn(𝜔,𝑚)/sn(𝜔,𝑚)
12 𝑚

2
−(1 + 𝑚

2
) 1 dc(𝜔,𝑚) = dn(𝜔,𝑚)/cn(𝜔,𝑚)

13 1/4 (1 − 2𝑚2)/2 1/4 ns(𝜔,𝑚) + cs(𝜔,𝑚)
14 (1 − 𝑚2)/4 (1 + 𝑚2)/2 (1 − 𝑚2)/4 nc(𝜔,𝑚) + sc(𝜔,𝑚)
15 𝑚

4
/4 (𝑚

2
− 2)/2 1/4 ns (𝜔,𝑚) + ds(𝜔,𝑚)

of elliptic equation (18) in Table 1 yields the special exact
solutions of the (𝑛 + 1)-dimensional KGZ equation (3) as
follows.

Solution 1. Jacobi elliptic sn-function solution is as follows:

𝑢 (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) = 𝑚√

2𝐾
1

𝛾 + 𝛽
sn (𝜔,𝑚) 𝑒𝑖𝑋,

V (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) = −

2𝐾
1
𝑚2𝛾

𝛾 + 𝛽
sn2 (𝜔,𝑚) ,

(21)

where sn(𝜔,𝑚) is Jacobi elliptic sn-function with modulus
0 ≤ 𝑚 ≤ 1 and the functions 𝜔 and 𝑋 are given by (11) for
𝑛 = 1 and (12) with (13) for 𝑛 ≥ 2. When𝑚 → 1, we have the
soliton solution of the (𝑛 + 1)-dimensional KGZ equation (3)
as

𝑢 (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) = √

2𝐾
1

𝛾 + 𝛽
tanh (𝜔) 𝑒𝑖𝑋,

V (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) = −

2𝐾
1
𝛾

𝛾 + 𝛽
tanh2 (𝜔) .

(22)

Solution 2. Jacobi elliptic cn-function solution is as follows:

𝑢 (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) = 𝑚√−

2𝐾
1

𝛾 + 𝛽
cn (𝜔,𝑚) 𝑒𝑖𝑋,

V (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) =

2𝐾
1
𝑚2𝛾

𝛾 + 𝛽
cn2 (𝜔,𝑚) ,

(23)

where cn(𝜔,𝑚) is Jacobi elliptic cn-function with modulus
0 ≤ 𝑚 ≤ 1 and the functions 𝜔 and 𝑋 are given by (11) for
𝑛 = 1 and (12) with (13) for 𝑛 ≥ 2. When𝑚 → 1, we have the

soliton solution of the (𝑛 + 1)-dimensional KGZ equation (3)
as

𝑢 (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) = √−

2𝐾
1

𝛾 + 𝛽
sech (𝜔) 𝑒𝑖𝑋,

V (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) =

2𝐾
1
𝛾

𝛾 + 𝛽
sech2 (𝜔) .

(24)

Solution 3. Jacobi elliptic dn-function solution is as follows:

𝑢 (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) = √−

2𝐾
1

𝛾 + 𝛽
dn (𝜔,𝑚) 𝑒𝑖𝑋,

V (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) =

2𝐾
1
𝛾

𝛾 + 𝛽
dn2 (𝜔,𝑚) ,

(25)

where dn(𝜔,𝑚) is Jacobi elliptic dn-function with modulus
0 ≤ 𝑚 ≤ 1 and the functions 𝜔 and 𝑋 are given by (11) for
𝑛 = 1 and (12) with (13) for 𝑛 ≥ 2.

Solution 4. Jacobi elliptic ns-cs-function solution is as fol-
lows:

𝑢 (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) =

1

2
√
2𝐾
1

𝛾 + 𝛽
[ns (𝜔,𝑚) + cs (𝜔,𝑚)] 𝑒𝑖𝑋,

V (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) = −

𝛾𝐾
1

2 (𝛾 + 𝛽)
[ns (𝜔,𝑚) + cs (𝜔,𝑚)]2,

(26)

where ns(𝜔,𝑚) = 1/sn(𝜔,𝑚) and cs(𝜔,𝑚) = cn(𝜔,
𝑚)/sn(𝜔,𝑚) are Jacobi elliptic functions with modulus 0 ≤
𝑚 ≤ 1 and the functions 𝜔 and 𝑋 are given by (11) for 𝑛 = 1
and (12) with (13) for 𝑛 ≥ 2.



Advances in Mathematical Physics 5

Solution 5. Jacobi elliptic nc-sc-function solution is as fol-
lows:

𝑢 (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
)

=
√2

2
√−
𝐾
1
(𝑚2 − 1)

𝛾 + 𝛽
[nc (𝜔,𝑚) + sc (𝜔,𝑚)] 𝑒𝑖𝑋,

V (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) =

𝛾𝐾
1
(𝑚2 − 1)

2 (𝛾 + 𝛽)
[nc (𝜔,𝑚) + sc (𝜔,𝑚)]2,

(27)

wherenc(𝜔,𝑚) = 1/cn(𝜔,𝑚)andsc(𝜔,𝑚) = sn(𝜔,𝑚)/cn(𝜔,𝑚)
are Jacobi elliptic functions with modulus 0 ≤ 𝑚 ≤ 1 and the
functions 𝜔 and 𝑋 are given by (11) for 𝑛 = 1 and (12) with
(13) for 𝑛 ≥ 2. Note that𝑚 ̸= 1 here.

Solution 6. Jacobi elliptic ns-ds-function solution is as fol-
lows:

𝑢 (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) =

√2

2
√
𝐾
1

𝛾 + 𝛽
[ns (𝜔,𝑚) + ds (𝜔,𝑚)] 𝑒𝑖𝑋,

V (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) = −

𝛾𝐾
1

2 (𝛾 + 𝛽)
[ns (𝜔,𝑚) + ds (𝜔,𝑚)]2,

(28)

where ds(𝜔,𝑚) = dn(𝜔,𝑚)/sn(𝜔,𝑚) is a Jacobi elliptic
function with modulus 0 ≤ 𝑚 ≤ 1 and the functions 𝜔 and𝑋
are given by (11) for 𝑛 = 1 and (12) with (13) for 𝑛 ≥ 2.

Solution 7. Jacobi elliptic sn-ns-function solution is as fol-
lows:

𝑢 (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) = √

2𝐾
1

𝛾 + 𝛽
[𝑚sn (𝜔,𝑚) + ns (𝜔,𝑚)] 𝑒𝑖𝑋,

V (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) = −

2𝛾𝐾
1

𝛾 + 𝛽
[𝑚sn (𝜔,𝑚) + ns (𝜔,𝑚)]2,

(29)

where the functions 𝜔 and 𝑋 are given by (11) for 𝑛 = 1 and
(12) with (13) for 𝑛 ≥ 2.

Solution 8. Jacobi elliptic cn-nc-function solution is as fol-
lows:

𝑢 (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) = [𝑚√−

2𝐾
1

𝛾 + 𝛽
cn (𝜔,𝑚)

+√
2𝐾
1

𝛾 + 𝛽
(1 − 𝑘2)nc (𝜔,𝑚)] 𝑒𝑖𝑋,

V (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) = − 𝛾[𝑚√−

2𝐾
1

𝛾 + 𝛽
cn (𝜔,𝑚)

+√
2𝐾
1

𝛾 + 𝛽
(1 − 𝑘2)nc (𝜔,𝑚)]

2

,

(30)

where the functions 𝜔 and 𝑋 are given by (11) for 𝑛 = 1 and
(12) with (13) for 𝑛 ≥ 2.

Solution 9. Jacobi elliptic dn-nd-function solution is as fol-
lows:

𝑢 (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) = [√−

2𝐾
1

𝛾 + 𝛽
dn (𝜔,𝑚)

+√
2𝐾
1

𝛾 + 𝛽
(𝑚2 − 1)nd (𝜔,𝑚)] 𝑒𝑖𝑋,

V (𝑡; 𝑥
1
, . . . , 𝑥

𝑛
) = − 𝛾[√−

2𝐾
1

𝛾 + 𝛽
dn (𝜔,𝑚)

+√
2𝐾
1

𝛾 + 𝛽
(𝑚2 − 1)nd (𝜔,𝑚)]

2

,

(31)

where nd(𝜔,𝑚) = 1/dn(𝜔,𝑚) is a Jacobi elliptic function
with modulus 0 ≤ 𝑚 ≤ 1 and the functions 𝜔 and 𝑋 are
given by (11) for 𝑛 = 1 and (12) with (13) for 𝑛 ≥ 2.

Remark 2. It is noted that we can also list many other types
of exact solutions for the (𝑛 + 1)-dimensional KGZ equation
(3) by using the exact solutions of the elliptic equation (18) in
Table 1.

When 𝑛 = 2, denote 𝑥
1
= 𝑥 and 𝑥

2
= 𝑦; we find that (3)

becomes the (2 + 1)-dimensional KGZ equation as

𝜕
2𝑢

𝜕𝑡2
− (

𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
)𝑢 + 𝛼𝑢 + 𝑢V − 𝛽|𝑢|2𝑢 = 0,

𝜕2V
𝜕𝑡2

− (
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
) V + 𝛾

𝜕2|𝑢|
2

𝜕𝑡2
= 𝛾(

𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
) |𝑢|
2
,

(32)

which has separation solution of the form

𝑢 (𝑡, 𝑥, 𝑦) = 𝑈 [𝜔 (𝑡, 𝑥, 𝑦)] exp [𝑖𝑋 (𝑡, 𝑥, 𝑦)] ,

V (𝑡, 𝑥, 𝑦) = 𝑉 [𝜔 (𝑡, 𝑥, 𝑦)] ,
(33)
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Figure 1: Nonlinear soliton structures of the (2 + 1)-dimensional
KGZ equation at time 𝑡 = 0, given by (33)-(34) and (24) with
parameters in (36) and function 𝑓(𝜂) satisfying (37).
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Figure 2: Nonlinear periodic-wave structure of the (2 + 1)-
dimensional KGZ equation at time 𝑡 = 0, given by (33)-(34) and
(23) with parameters in (36) and function 𝑓(𝜂) satisfying (37) and
elliptic modulus𝑚 = 0.98.

where 𝑈[𝜔(𝑡, 𝑥, 𝑦)] and 𝑉[𝜔(𝑡, 𝑥, 𝑦)] are expressed by Solu-
tions 1–9 above and 𝜔(𝑡, 𝑥, 𝑦) and𝑋(𝑡, 𝑥, 𝑦) satisfy

𝜔 (𝑡; 𝑥, 𝑦) = 𝑓 (𝑘
1
𝑥 + 𝑘
2
𝑦 + 𝑘
0
𝑡 + 𝑐
3
)

+ √
𝐾
1

𝑙2
0
− 𝑙2
1
− 𝑙2
2

(𝑙
1
𝑥 + 𝑙
2
𝑦 + 𝑙
0
𝑡 + 𝑐
4
) ,

𝑋 (𝑡; 𝑥, 𝑦) = 𝜆
1
𝑥 + 𝜆
2
𝑦 + 𝜆
0
𝑡 + 𝑑
3
,

(34)

where 𝑐
3
, 𝑐
4
, and 𝑑

3
are constants and 𝑘

0
, 𝑘
1
, 𝑘
2
, 𝜆
0
, 𝜆
1
, 𝜆
2
, 𝑙
0
,

𝑙
1
, and 𝑙

2
are constants satisfying

𝑘
2

0
= 𝑘
2

1
+ 𝑘
2

2
, 𝑘

0
𝑙
0
= 𝑘
1
𝑙
1
+ 𝑘
2
𝑙
2
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2

1
+ 𝜆
2

2
+ 𝐾
2
.
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Figure 3: Nonlinear soliton-like structure of the (2+1)-dimensional
KGZ equation at time 𝑡 = 0, given by (33)-(34) and (23) with
function 𝑓(𝜂) satisfying (39).

In what follows, we take Solution 2 in (23)-(24) as an
example to study the novel nonlinear structures in (2 + 1)-
dimensional KGZ equation. To do so, choose a set of special
solution of (35) as

𝐾
2
= 0, 𝑘

0
= 2, 𝑘

1
=
√15

2
, 𝑘

2
=
1

2
,

𝑙
0
=
9

4
−
5√15

2
, 𝑙

1
= −10, 𝑙

2
= 9,

𝜆
0
= 4, 𝜆

1
= √15, 𝜆

2
= 1.

(36)

Because 𝑓(𝑘
1
𝑥 + 𝑘
2
𝑦 + 𝑘

0
𝑡 + 𝑐
3
) = 𝑓(𝜂) is an arbitrary

function of 𝜂, we can select special form of 𝑓(𝜂) to describe
the nonlinear excitations of the (2 + 1)-dimensional KGZ
equation.

Figures 1 and 2 show particular nonlinear wave structures
at time 𝑡 = 0, given by (33)-(34), (23), and (24) with (36) and
the function selection

𝑓 (𝜂) = √𝜂2 + 1 (37)

and the choice of other parameters

𝐾
1
= −1, 𝛾 = 1, 𝛽 = 1,

𝑐
3
= 0, 𝑐

4
= 0, 𝑑

3
= 1.

(38)

Figure 3 demonstrates a particular nonlinear wave struc-
ture at time 𝑡 = 0, given by (33)-(34) and (24) with parameters
in (36) and (38) and the function selection

𝑓 (𝜂) = sin (𝜂 + 1) . (39)

It is observed from Figure 3 that the special choice
of arbitrary function 𝑓(𝜂) reveals a nonlinear soliton-like
structure in the (2 + 1)-dimensional KGZ equation, which is
periodic in the direction of plane 𝑘

1
𝑥 + 𝑘
2
𝑦.

4. Conclusion

In conclusion, we have derived some exact Jacobi elliptic
function solutions and soliton solutions of the (𝑛 + 1)-
dimensional Klein-Gordon-Zakharov equation by separation



Advances in Mathematical Physics 7

transformation method proposed in [9, 10, 12]. It is shown
that, for the high-dimensional case, that is, 𝑛 ≥ 2, there is
an arbitrary function in every exact solution of the (𝑛 + 1)-
dimensional Klein-Gordon-Zakharov equation. For the case
of 𝑛 = 2 we demonstrate some novel nonlinear structures
by choosing the arbitrary function 𝑓(𝑘

1
𝑥 + 𝑘

2
𝑦 + 𝑘

0
𝑡 + 𝑐
3
)

specially. The separation transformation method may also be
useful to solve other nonlinear wave models to explain the
nonlinear excitations and localized nonlinear wave structures
[19–23] in the physics of elementary particles and fields.

Appendix

In the Appendix, we present the relationships between the
values of (𝑝, 𝑞, 𝑟) and the corresponding solutions of the
elliptic equation (18) in Table 1; see also [18].

In the following table, the functions sn(𝜔,𝑚), cn(𝜔,𝑚),
and dn(𝜔,𝑚) are three basic Jacobi elliptic functions with
modulus 0 ≤ 𝑚 ≤ 1. As seen in Table 1, the other
Jacobi elliptic functions are the combinations of these three
Jacobian elliptic functions. For example, as shown before
we have cs(𝜔,𝑚) = cn(𝜔,𝑚)/sn(𝜔,𝑚). When the modulus
𝑚 = 1, the Jacobi elliptic functions degenerate as the
hyperbolic functions: sn(𝜔, 1) = tanh(𝜔), cn(𝜔, 1) = sech(𝜔),
and dn(𝜔, 1) = sech(𝜔). When the modulus 𝑚 = 0,
they degenerate as the trigonometric functions or constant:
sn(𝜔, 0) = sin(𝜔), cn(𝜔, 0) = cos(𝜔), and dn(𝜔, 0) = 1.
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