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A conservative Crank-Nicolson finite difference scheme for the initial-boundary value problem of generalized Rosenau-KdV
equation is proposed. The difference scheme shows a discrete analogue of the main conservation law associated to the equation.
On the other hand the scheme is implicit and stable with second order convergence. Numerical experiments verify the theoretical
results.

1. Introduction

In this paper, we consider the following initial-boundary
value problem of the generalized Rosenau-KdV equation:

𝑢
𝑡
+ 𝑢
𝑥𝑥𝑥𝑥𝑡

+ 𝑢
𝑥
+ (𝑢
𝑝
)
𝑥
+ 𝑢
𝑥𝑥𝑥

= 0, (1)

with an initial condition

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑥 ∈ [𝑥

𝐿
, 𝑥
𝑅
] , (2)

and boundary conditions

𝑢 (𝑥
𝐿
, 𝑡) = 𝑢 (𝑥

𝑅
, 𝑡) = 0,

𝑢
𝑥
(𝑥
𝐿
, 𝑡) = 𝑢

𝑥
(𝑥
𝑅
, 𝑡) = 0,

𝑢
𝑥𝑥

(𝑥
𝐿
, 𝑡) = 𝑢

𝑥𝑥
(𝑥
𝑅
, 𝑡) = 0,

𝑡 ∈ [0, 𝑇] ,

(3)

where 𝑝 ≥ 2 is a integer and 𝑢
0
(𝑥) is a known smooth

function. When 𝑝 = 2, (1) is called usual Rosenau-KdV
equation:

𝑢
𝑡
+ 𝑢
𝑥𝑥𝑥𝑥𝑡

+ 𝑢
𝑥
+ 𝑢𝑢
𝑥
+ 𝑢
𝑥𝑥x = 0. (4)

Zuo [1] discussed the solitary wave solutions and periodic
solutions for Rosenau-KdV equation. In [2], a conservative

nonlinear finite difference scheme for an initial-boundary
value problem of Rosenau-Kdv equation is considered.

In [3, 4] the solitary solution and invariant for generalized
Rosenau-KdV equation are given. In [4] the singular 1-
soliton solution is derived by the ansatz method, and the
adiabatic parameter dynamics of the water waves is obtained
by perturbation theory. In [5, 6], the ansatz method is
applied to obtain the topological soliton solution of the
generalized Rosenau-KdV equation. The method as well as
the exp-function method is also applied to extract a few
more solutions to this equation. In [7], Zheng and Zhou give
an average linear scheme for the generalized Rosenau-KdV
equation. In this paper, we propose a conservative Crank-
Nicolson finite difference scheme for an initial-boundary
value problem of the generalized Rosenau-Kdv equation.

The initial-boundary value problem (1)–(3) possesses the
following conservative property [3, 4]:

𝐸 (𝑡) = ‖𝑢‖
2

𝐿
2

+




𝑢
𝑥𝑥






2

𝐿
2

= 𝐸 (0) . (5)

When −𝑥
𝐿

≫ 0, 𝑥
𝑅

≫ 0, the initial-boundary value
problem (1)–(3) and the Cauchy problem (1) are consistent,
so that the boundary conditions (3) are reasonable.

It is known that the conservative scheme is better than
the nonconservative ones. The nonconservative scheme may
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easily show nonlinear blow-up. A lot of numerical experi-
ments show that the conservative scheme can possess some
invariant properties of the original differential equation [7–
18]. The conservative scheme is more suitable for long-time
calculations. In [18] Pan andZhang said “. . . in some areas, the
ability to preserve some invariant properties of the original
differential equation is a criterion to judge the success of a
numerical simulation”.

The rest of this paper is organized as follows. In Section 2,
we propose a Crank-Nicolson implicit nonlinear finite differ-
ence scheme for the generalized Rosenau-KdV equation and
discuss the property of its solution. In Section 3, we prove that
the finite difference scheme is of second order convergence.
Finally, some numerical tests are given in Section 4 to verify
our theoretical analysis.

2. Finite Difference Scheme and Its Property

Let ℎ = (𝑥
𝑅
− 𝑥
𝐿
)/𝐽 and let 𝜏 be the uniform step size in

the spatial and temporal direction, respectively. Denote 𝑥
𝑗
=

𝑥
𝐿

+ 𝑗ℎ (𝑗 = −1, 0, 1, 2, . . . , 𝐽, 𝐽 + 1), 𝑡
𝑛

= 𝑛𝜏 (𝑛 =

0, 1, 2, . . . , 𝑁,𝑁 = [𝑇/𝜏]), 𝑢𝑛
𝑗

≈ 𝑢(𝑥
𝑗
, 𝑡
𝑛
), and 𝑍

0

ℎ
= {𝑢 =

(𝑢
𝑗
) | 𝑢
−1

= 𝑢
0
= 𝑢
𝐽
= 𝑢
𝐽+1

= 0, 𝑗 = −1, 0, 1, 2, . . . , 𝐽, 𝐽 + 1}.
Throughout this paper, we denote 𝐶 as a generic positive
constant independent of ℎ and 𝜏, which may have different
values in different occurrences. We introduce the following
notations:

(𝑢
𝑛

𝑗
)
𝑥
=

𝑢
𝑛

𝑗+1
− 𝑢
𝑛

𝑗

ℎ

, (𝑢
𝑛

𝑗
)
𝑥
=

𝑢
𝑛

𝑗
− 𝑢
𝑛

𝑗−1

ℎ

,

(𝑢
𝑛

𝑗
)
𝑥
=

𝑢
𝑛

𝑗+1
− 𝑢
𝑛

𝑗−1

2ℎ

, (𝑢
𝑛

𝑗
)
𝑡
=

𝑢
𝑛+1

𝑗
− 𝑢
𝑛

𝑗

𝜏

,

𝑢
𝑛+(1/2)

𝑗
=

𝑢
𝑛+1

𝑗
+ 𝑢
𝑛

𝑗

2

,

⟨𝑢
𝑛
, V𝑛⟩ = ℎ

𝐽−1

∑

𝑗=1

𝑢
𝑛

𝑗
V𝑛
𝑗
,





𝑢
𝑛




2

= ⟨𝑢
𝑛
, 𝑢
𝑛
⟩ ,





𝑢
𝑛


∞

= max
1≤𝑗≤𝐽−1






𝑢
𝑛

𝑗






.

(6)

We propose a conservative Crank-Nicolson finite differ-
ence scheme for the solution of (1)–(3):

(𝑢
𝑛

𝑗
)
𝑡
+ (𝑢
𝑛

𝑗
)
𝑥𝑥𝑥𝑥𝑡

+ (𝑢
𝑛+(1/2)

𝑗
)
𝑥
+ (𝑢
𝑛+(1/2)

𝑗
)
𝑥𝑥𝑥

+

𝑝

𝑝 + 1

(𝑢
𝑛+(1/2)

𝑗
)

𝑝−1

(𝑢
𝑛+(1/2)

𝑗
)
𝑥
+ [(𝑢

𝑛+(1/2)

𝑗
)

𝑝

]

𝑥

,

(7)

𝑗 = 1, 2, 3, . . . , 𝐽 − 1; 𝑛 = 1, 2, 3, . . . , 𝑁 − 1, (8)

𝑢
0

𝑗
= 𝑢
0
(𝑥
𝑗
) , 𝑗 = 0, 1, 2, 3, . . . , 𝐽, (9)

(𝑢
𝑛

0
)
𝑥
= (𝑢
𝑛

𝐽
)
𝑥
= 0 (𝑢

𝑛

0
)
𝑥𝑥

= (𝑢
𝑛

𝐽
)
𝑥𝑥

= 0,

𝑢
𝑛
∈ 𝑍
0

ℎ
, 𝑛 = 1, 2, 3, . . . , 𝑁.

(10)

From the boundary conditions (3), we know that (10) is
reasonable.

Lemma 1. It follows from summation by parts that, for any two
mesh functions 𝑢, V ∈ 𝑍

0

ℎ
,

⟨𝑢
𝑥
, V⟩ = − ⟨𝑢, V

𝑥
⟩ , ⟨𝑢

𝑥
, V⟩ = − ⟨𝑢, V

𝑥
⟩ ,

⟨𝑢
𝑥𝑥
, V⟩ = − ⟨𝑢

𝑥
, V
𝑥
⟩ .

(11)

Then one has

⟨𝑢
𝑥𝑥
, 𝑢⟩ = − ⟨𝑢

𝑥
, 𝑢
𝑥
⟩ = −





𝑢
𝑥






2

. (12)

Furthermore, if (𝑢𝑛
0
)
𝑥𝑥

= (𝑢
𝑛

𝐽
)
𝑥𝑥

= 0, then

⟨𝑢
𝑥𝑥𝑥𝑥

, 𝑢⟩ =




𝑢
𝑥𝑥






2

. (13)

To show the existence of the solution for (7)–(10), the
following Brouwer fixed point theorem should be introduced.
For the proof, see [19].

Lemma 2. Let 𝐻 be a finite dimensional inner product space,
let ‖ ⋅ ‖ be the associated norm, and let 𝑔 : 𝐻 → 𝐻 be
continuous. Assume, moreover, that there exists an 𝛼 > 0, for
all 𝑥 ∈ 𝐻 and ‖𝑥‖ = 𝛼, ⟨𝑔(𝑥), 𝑥⟩ > 0.Then there exists 𝑥∗ ∈ 𝐻

such that 𝑔(𝑥∗) = 0 and ‖𝑥
∗
‖ ≤ 𝛼.

Then one has the following theorem.

Theorem 3. There exists 𝑢𝑛 ∈ 𝑍
0

ℎ
which satisfies the difference

scheme (7)–(10) (1 ≤ 𝑛 ≤ 𝑁).

Proof. In order to prove the theorem by the mathematical
induction, we assume that 𝑢0, 𝑢1, . . . , 𝑢𝑛 which satisfy (7)–
(10) exist for 𝑛 ≤ 𝑁− 1. Next prove that there also exists 𝑢𝑛+1
which satisfies (7)–(10).

We define 𝑔 on 𝑍
0

ℎ
as follows:

𝑔 (V) = 2V − 2𝑢
𝑛
+ 2V
𝑥𝑥𝑥𝑥

− 2𝑢
𝑛

𝑥𝑥𝑥𝑥
+ 𝜏V
𝑥

+ 𝜏V
𝑥𝑥𝑥

+

𝜏𝑝

1 + 𝑝

[V𝑝−1V
𝑥
+ (V𝑝)

𝑥
] .

(14)

Taking an inner product of (14) with V and considering

⟨V
𝑥
, V⟩ = 0, ⟨V

𝑥𝑥𝑥
, V⟩ = 0, ⟨V𝑝−1V

𝑥
+ (V𝑝)

𝑥
, V⟩ = 0,

(15)

we have

⟨𝑔 (V) , V⟩ = 2‖V‖2 − 2 ⟨𝑢
𝑛
, V⟩ + 2





V
𝑥𝑥






2

− 2 ⟨𝑢
𝑛

𝑥𝑥
, V
𝑥𝑥
⟩

≥ 2‖V‖2 − 2




𝑢
𝑛



⋅ ‖V‖ + 2





V
𝑥𝑥






2

− 2




𝑢
𝑛

𝑥𝑥





⋅




V
𝑥𝑥






≥ 2‖V‖2 − (




𝑢
𝑛




2

+ ‖V‖2) + 2




V
𝑥𝑥






2

− (




𝑢
𝑛

𝑥𝑥






2

+




V
𝑥𝑥






2

)

≥ ‖V‖2 − (




𝑢
𝑛




2

+




𝑢
𝑛

𝑥𝑥






2

) +




V
𝑥𝑥






2

≥ ‖V‖2 − (




𝑢
𝑛




2

+




𝑢
𝑛

𝑥𝑥






2

) .

(16)
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Hence, it is obvious that ⟨𝑔(V), V⟩ > 0 for all ∀V ∈ 𝑍
0

ℎ
with

‖V‖2 = ‖𝑢
𝑛
‖
2
+ ‖𝑢
𝑛

𝑥𝑥
‖
2
+1. It follows from Lemma 2 that there

exists V∗ ∈ 𝑍
0

ℎ
such that 𝑔(V∗) = 0. Let 𝑢𝑛+1 = 2V∗ − 𝑢

𝑛; then
𝑢
𝑛+1 satisfies (7).

The difference scheme (7)–(10) simulates the conserva-
tion property of the problem (1)–(3) as follows.

Theorem 4. Suppose that 𝑢
0
∈ 𝐻
2

0
[𝑥
𝐿
, 𝑥
𝑅
], then the difference

scheme (7)–(10) is conservative:

𝐸
𝑛
=




𝑢
𝑛




2

+




𝑢
𝑛

𝑥𝑥






2

= 𝐸
𝑛−1

= ⋅ ⋅ ⋅ = 𝐸
0
. (17)

Proof. Taking an inner product of (7) with 2𝑢
𝑛+(1/2)(i.e.,

𝑢
𝑛+1

+ 𝑢
𝑛), according to the boundary condition (10) and

Lemma 1, we obtain
1

𝜏

(






𝑢
𝑛+1





2

−




𝑢
𝑛




2

) +

1

𝜏

(






𝑢
𝑛+1

𝑥𝑥







2

−




𝑢
𝑛

𝑥𝑥






2

)

+ 2 ⟨𝑢
𝑛+(1/2)

𝑥
, 𝑢
𝑛+(1/2)

⟩ + 2 ⟨𝑢
𝑛+(1/2)

𝑥𝑥𝑥
, 𝑢
𝑛+(1/2)

⟩

+ 2 ⟨𝜑 (𝑢
𝑛+(1/2)

) , 𝑢
𝑛+(1/2)

⟩ = 0,

(18)

where 𝜑(𝑢
𝑛+(1/2)

𝑗
) = (𝑝/(𝑝 + 1))[(𝑢

𝑛+(1/2)

𝑗
)

𝑝−1

⋅ (𝑢
𝑛+(1/2)

𝑗
)
𝑥
+

((𝑢
𝑛+(1/2)

𝑗
)

𝑝

)
𝑥
].

From

⟨𝑢
𝑛+(1/2)

𝑥
, 𝑢
𝑛+(1/2)

⟩ = 0,

⟨𝑢
𝑛+(1/2)

𝑥𝑥𝑥
, 𝑢
𝑛+(1/2)

⟩ = 0,

(19)

⟨𝜑 (𝑢
𝑛+(1/2)

) , 2𝑢
𝑛+(1/2)

⟩

=

2𝑝

𝑝 + 1

ℎ

𝐽−1

∑

𝑗=1

[(𝑢
𝑛+(1/2)

𝑗
)

𝑝−1

⋅ (𝑢
𝑛+(1/2)

𝑗
)
𝑥

+𝑢
𝑛+(1/2)

𝑗
+ ((𝑢

𝑛+(1/2)

𝑗
)

𝑝

)

𝑥

] 𝑢
𝑛+(1/2)

𝑗

=

𝑝

𝑝 + 1

ℎ

𝐽−1

∑

𝑗=1

(𝑢
𝑛+(1/2)

𝑗
)

𝑝−1

⋅ (𝑢
𝑛+(1/2)

𝑗+1
− 𝑢
𝑛+(1/2)

𝑗−1
)

+ [(𝑢
𝑛+(1/2)

𝑗+1
)

𝑝

− (𝑢
𝑛+(1/2)

𝑗−1
)

𝑝

] 𝑢
𝑛+(1/2)

𝑗

=

𝑝

𝑝 + 1

𝐽−1

∑

𝑗=1

[(𝑢
𝑛+(1/2)

𝑗+1
)

𝑝−1

𝑢
𝑛+(1/2)

𝑗
+ (𝑢
𝑛+(1/2)

𝑗
)

𝑝

]

⋅ 𝑢
𝑛+(1/2)

𝑗+1
−

𝑝

𝑝 + 1

𝐽−1

∑

𝑗=1

[(𝑢
𝑛+(1/2)

𝑗
)

𝑝−1

𝑢
𝑛+(1/2)

𝑗−1
+ (𝑢
𝑛+(1/2)

𝑗−1
)

𝑝

]

⋅ 𝑢
𝑛+(1/2)

𝑗
= 0,

(20)

we have

(






𝑢
𝑛+1





2

−




𝑢
𝑛




2

) + (






𝑢
𝑛+1

𝑥𝑥







2

−




𝑢
𝑛

𝑥𝑥






2

) = 0. (21)

Then (17) is gotten from (21).

In order to prove the bounded quality of the difference
solution, we introduce the following lemma.

Lemma 5 (discrete Sobolev’s inequality [2]). There exist two
constants 𝐶

1
and 𝐶

2
such that





𝑢
𝑛


∞

≤ 𝐶
1





𝑢
𝑛



+ 𝐶
2





𝑢
𝑛

𝑥





. (22)

Theorem 6. Suppose 𝑢
0

∈ 𝐻
2

0
[𝑥
𝐿
, 𝑥
𝑅
]; then the solution of

(7)–(10) satisfies




𝑢
𝑛



≤ 𝐶,





𝑢
𝑛

𝑥





≤ 𝐶, (23)

which yield




𝑢
𝑛


∞

≤ 𝐶,




𝑢
𝑛

𝑥




∞

≤ 𝐶 (𝑛 = 1, 2, . . . , 𝑁) . (24)

Proof. It follows from (17) that




𝑢
𝑛



≤ 𝐶,





𝑢
𝑛

𝑥𝑥





≤ 𝐶. (25)

According to (12) and Schwarz inequality, we get





𝑢
𝑛

𝑥






2

≤




𝑢
𝑛



⋅




𝑢
𝑛

𝑥𝑥





≤

1

2

(




𝑢
𝑛




2

+




𝑢
𝑛

𝑥𝑥






2

) ≤ 𝐶. (26)

Using Lemma 5, we have




𝑢
𝑛


∞

≤ 𝐶,




𝑢
𝑛

𝑥




∞

≤ 𝐶. (27)

Remark 7. Theorem 6 implies that the solution of difference
scheme (7)–(10) is stable in the sense of norm ‖ ⋅ ‖

∞
.

3. Convergence

In order to prove the convergence of the difference scheme,
we need to introduce the lemma as follows:

Lemma 8 (discrete Gronwall inequality [2]). Suppose 𝑤(𝑘)

and 𝜌(𝑘) are nonnegative functions and 𝜌(𝑘) is nondecreasing.
If 𝐶 > 0 and

𝑤 (𝑘) ≤ 𝜌 (𝑘) + 𝐶𝜏

𝑘−1

∑

𝑙=0

𝑤 (𝑙) , ∀𝑘, (28)

then

𝑤 (𝑘) ≤ 𝜌 (𝑘) 𝑒
𝐶𝜏𝑘

, ∀𝑘. (29)

Theorem 9. Suppose that 𝑢
0
∈ 𝐻
2

0
[𝑥
𝐿
, 𝑥
𝑅
]; then the solution

𝑢
𝑛 of (1)–(3) satisfies

‖𝑢‖
𝐿
2

≤ 𝐶,




𝑢
𝑥




𝐿
2

≤ 𝐶,

‖𝑢‖
𝐿
∞

≤ 𝐶,




𝑢
𝑥




𝐿
∞

≤ 𝐶.

(30)

Proof. It follows from (5) that

‖𝑢‖
𝐿
2

≤ 𝐶,




𝑢
𝑥𝑥




𝐿
2

≤ 𝐶. (31)
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By Holder inequality and Schwarz inequality, we get





𝑢
𝑥






2

𝐿
2

= ∫

𝑥
𝑅

𝑥
𝐿

𝑢
𝑥
𝑢
𝑥
𝑑𝑥 = 𝑢𝑢

𝑥






𝑥
𝑅

𝑥
𝐿

− ∫

𝑥
𝑅

𝑥
𝐿

𝑢𝑢
𝑥𝑥
𝑑𝑥

= −∫

𝑥
𝑅

𝑥
𝐿

𝑢𝑢
𝑥𝑥
𝑑𝑥

≤ ‖𝑢‖
𝐿
2

⋅




𝑢
𝑥𝑥




𝐿
2

≤

1

2

(‖𝑢‖
2

𝐿
2

+




𝑢
𝑥𝑥






2

𝐿
2

) ,

(32)

which implies




𝑢
𝑥




𝐿
2

≤ 𝐶. (33)

Using Sobolev inequality, we get

‖𝑢‖
𝐿
∞

≤ 𝐶,




𝑢
𝑥




𝐿
∞

≤ 𝐶. (34)

Let V(𝑥, 𝑡) be the solution of problem (1)–(3), V𝑛
𝑗

=

V(𝑥
𝑗
, 𝑡
𝑛
); then the truncation error of the difference scheme

(7)–(10) is

𝑟
𝑛

𝑗
= (V𝑛
𝑗
)
𝑡
+ (V𝑛
𝑗
)
𝑥𝑥𝑥𝑥𝑡

+ (V𝑛+(1/2)
𝑗

)
𝑥𝑥

+ (V𝑛+(1/2)
𝑗

)
𝑥𝑥𝑥

+ 𝜑 (V𝑛+(1/2)
𝑗

) .

(35)

Making use of Taylor expansion, we know that 𝑟𝑛
𝑗
= 𝑂(𝜏

2
+ℎ
2
)

holds if ℎ, 𝜏 → 0.

Theorem 10. Suppose 𝑢
0
∈ 𝐻
2

0
[𝑥
𝐿
, 𝑥
𝑅
]; then the solution 𝑢

𝑛 of
the difference scheme (7)–(10) converges to the solution V(𝑥, 𝑡)
of the problem (1)–(3) with order 𝑂(𝜏

2
+ ℎ
2
) in norm ‖ ⋅ ‖

∞
.

Proof. Subtracting (7) from (35) and letting 𝑒
𝑛

𝑗
= V𝑛
𝑗
− 𝑢
𝑛

𝑗
, we

have

𝑟
𝑛

𝑗
= (𝑒
𝑛

𝑗
)
𝑡
+ (𝑒
𝑛

𝑗
)
𝑥𝑥𝑥𝑥𝑡

+ (𝑒
𝑛+(1/2)

𝑗
)
𝑥
+ (𝑒
𝑛+(1/2)

𝑗
)
𝑥𝑥𝑥

+𝜑 (V𝑛+(1/2)
𝑗

) − 𝜑 (𝑢
𝑛+(1/2)

𝑗
) .

(36)

Computing the inner product of (36) with 2𝑒
𝑛+(1/2), we obtain

⟨𝑟
𝑛
, 2𝑒
𝑛+(1/2)

⟩ =

1

𝜏

(






𝑒
𝑛+1





2

−




𝑒
𝑛




2

)

+

1

𝜏

(






𝑒
𝑛+1

𝑥𝑥







2

−




𝑒
𝑛

𝑥𝑥






2

) + ⟨𝑒
𝑛+1

𝑥
, 2𝑒
𝑛+(1/2)

⟩

+ ⟨𝑒
𝑛+(1/2)

𝑥𝑥𝑥
, 2𝑒
𝑛+(1/2)

⟩

+ ⟨𝜑 (V𝑛+(1/2)) − 𝜑 (𝑢
𝑛+(1/2)

) , 2𝑒
𝑛+(1/2)

⟩ .

(37)

Similar to the proof of (19), we have

⟨𝑒
n+1
𝑥

, 2𝑒
𝑛+(1/2)

⟩ = 0,

⟨𝑒
𝑛+(1/2)

𝑥𝑥𝑥
, 2𝑒
𝑛+(1/2)

⟩ = 0.

(38)

This indicates

(






𝑒
𝑛+1





2

−




𝑒
𝑛




2

) + (






𝑒
𝑛+1

𝑥𝑥







2

−




𝑒
𝑛

𝑥𝑥






2

)

= 𝜏 ⟨𝑟
𝑛
, 2𝑒
𝑛+(1/2)

⟩ − 𝜏 ⟨𝑄
1
+ 𝑄
2
, 2𝑒
𝑛+1/2

⟩ ,

(39)

where

𝑄
1
=

𝑝ℎ

𝑝 + 1

𝐽−1

∑

𝑗=1

[(V𝑛+(1/2)
𝑗

)

𝑝−1

⋅ (V𝑛+(1/2)
𝑗

)
𝑥

− (𝑢
𝑛+(1/2)

𝑗
)

𝑝−1

⋅ (𝑢
𝑛+(1/2)

𝑗
)
𝑥
] ,

𝑄
2
=

𝑝ℎ

𝑝 + 1

𝐽−1

∑

𝑗=1

[((V𝑛+(1/2)
𝑗

)

𝑝

)

𝑥

− ((𝑢
𝑛+(1/2)

𝑗
)

𝑝

)

𝑥

] .

(40)

Noting that

⟨𝑄
1
, 2𝑒
𝑛+(1/2)

⟩

= −

2𝑝

1 + 𝑝

ℎ

𝐽−1

∑

𝑗=0

[(V𝑛+(1/2)
𝑗

)

𝑝−1

⋅ (V𝑛+(1/2)
𝑗

)
𝑥

−(𝑢
𝑛+(1/2)

𝑗
)

𝑝−1

⋅ (𝑢
𝑛+(1/2)

𝑗
)
𝑥
] 𝑒
𝑛+(1/2)

𝑗

= −

2𝑝

1 + 𝑝

ℎ

𝐽−1

∑

𝑗=0

[(V𝑛+(1/2)
𝑗

)

𝑝−1

⋅ (𝑒
𝑛+(1/2)

𝑗
)
𝑥
𝑒
𝑛+(1/2)

𝑗
]

−

2𝑝

1 + 𝑝

ℎ

𝐽−1

∑

𝑗=0

[(V𝑛+(1/2)
𝑗

)

𝑝−1

− (𝑢
𝑛+(1/2)

𝑗
)

𝑝−1

]

× (𝑢
𝑛+(1/2)

𝑗
)
𝑥
𝑒
𝑛+(1/2)

𝑗

= −

2𝑝

1 + 𝑝

ℎ

𝐽−1

∑

𝑗=0

(V𝑛+(1/2)
𝑗

)

𝑝−1

⋅ (𝑒
𝑛+(1/2)

𝑗
)
𝑥

× 𝑒
𝑛+(1/2)

𝑗
−

2𝑝

1 + 𝑝

ℎ

𝐽−1

∑

𝑗=0

𝑒
𝑛+(1/2)

𝑗

×

𝑝−2

∑

𝑘=0

[(V𝑛+(1/2)
𝑗

)

𝑝−2−𝑘

(𝑢
𝑛+(1/2)

𝑗
)

𝑘

]

× (𝑢
𝑛+(1/2)

𝑗
)
𝑥
𝑒
𝑛+(1/2)

𝑗

≤ 𝐶ℎ

𝐽−1

∑

𝑗=0








(𝑒
𝑛+(1/2)

𝑗
)
𝑥








⋅






𝑒
𝑛+(1/2)

𝑗






+ 𝐶ℎ

𝐽−1

∑

𝑗=0








(𝑒
𝑛+(1/2)

𝑗
)

2





≤ 𝐶 (






𝑒
𝑛+(1/2)

𝑥







2

+






𝑒
𝑛+(1/2)





2

)

≤ 𝐶 (






𝑒
𝑛+1

𝑥







2

+




𝑒
𝑛

𝑥






2

+






𝑒
𝑛+1





2

+




𝑒
𝑛




2

) ,

⟨𝑄
2
, 2𝑒
𝑛+(1/2)

⟩

= −

2𝑝

1 + 𝑝

ℎ

𝐽−1

∑

𝑗=0

[((V𝑛+(1/2)
𝑗

)

𝑝

)

𝑥

− ((𝑢
𝑛+(1/2)

𝑗
)

𝑝

)

𝑥

] 𝑒
𝑛+(1/2)

𝑗
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= −

2𝑝

1 + 𝑝

ℎ

𝐽−1

∑

𝑗=0

[(V𝑛+(1/2)
𝑗

)

𝑝

− (𝑢
𝑛+(1/2)

𝑗
)

𝑝

] (𝑒
𝑛+(1/2)

𝑗
)
𝑥

=

2𝑝

1 + 𝑝

ℎ

𝐽−1

∑

𝑗=0

[

𝑝−1

∑

𝑘=0

(V𝑛+(1/2)
𝑗

)

𝑝−1−𝑘

(𝑢
𝑛+(1/2)

𝑗
)

𝑘

]

× (𝑢
𝑛+(1/2)

𝑗
)
𝑥
𝑒
𝑛+(1/2)

𝑗

≤ 𝐶(






𝑒
𝑛+(1/2)

𝑥







2

+






𝑒
𝑛+(1/2)





2

)

≤ 𝐶 (






𝑒
𝑛+1

𝑥







2

+




𝑒
𝑛

𝑥






2

+






𝑒
𝑛+1





2

+




𝑒
𝑛




2

)

(41)

and with

⟨𝑟
𝑛
, 2𝑒
𝑛+(1/2)

⟩ = ⟨𝑟
𝑛
, 𝑒
𝑛+1

+ 𝑒
𝑛
⟩

≤




𝑟
𝑛




2

+

1

2

(






𝑒
𝑛+1





2

+




𝑒
𝑛




2

) ,

(42)

we have

(






𝑒
𝑛+1





2

−




𝑒
𝑛




2

) + (






𝑒
𝑛+1

𝑥𝑥







2

−




𝑒
𝑛

𝑥𝑥






2

)

≤ 𝐶𝜏 (






𝑒
𝑛+1





2

+




𝑒
𝑛




2

+






𝑒
𝑛+1

𝑥







2

+




𝑒
𝑛

𝑥






2

) + 𝜏




𝑟
𝑛




2

.

(43)

Similar to the proof of Theorem 6, we have






𝑒
𝑛+1

𝑥







2

≤

1

2

(






𝑒
𝑛+1





2

+






𝑒
𝑛+1

𝑥𝑥







2

) ;





𝑒
𝑛

𝑥






2

≤

1

2

(




𝑒
𝑛




2

+




𝑒
𝑛

𝑥𝑥






2

) .

(44)

This yields






𝑒
𝑛+1





2

+






𝑒
𝑛+1

𝑥𝑥







2

− (




𝑒
𝑛




2

+




𝑒
𝑛

𝑥𝑥






2

)

≤ 𝐶𝜏 (






𝑒
𝑛+1





2

+




𝑒
𝑛




2

+






𝑒
𝑛+1

𝑥𝑥







2

+




𝑒
𝑛

𝑥𝑥






2

) + 𝜏




𝑟
𝑛




2

.

(45)

Let 𝐵𝑛 = ‖𝑒
𝑛
‖
2
+ ‖𝑒
𝑛

𝑥𝑥
‖
2. We claim that

𝐵
𝑛+1

− 𝐵
𝑛
≤ 𝐶𝜏 (𝐵

𝑛+1
+ 𝐵
𝑛
) + 𝜏





𝑟
𝑛




2

, (46)

which yields

(1 − 𝐶𝜏) (B𝑛+1 − 𝐵
𝑛
) ≤ 2𝐶𝜏𝐵

𝑛
+ 𝜏





𝑟
𝑛




2

. (47)

If 𝜏 is sufficiently small which satisfies 1 − 𝐶𝜏 > 0, then

𝐵
𝑛+1

− 𝐵
𝑛
≤ 𝐶𝜏𝐵

𝑛
+ 𝐶𝜏





𝑟
𝑛




2

. (48)

Summing up (48) from 0 to 𝑛 − 1, we have

𝐵
𝑛
≤ 𝐵
0
+ 𝐶𝜏

𝑛−1

∑

𝑙=0






𝑟
𝑙




2

+ 𝐶𝜏

𝑛−1

∑

𝑙=0

𝐵
𝑙
. (49)

Since

𝜏

𝑛−1

∑

𝑙=0






𝑟
𝑙




2

≤ 𝑛𝜏 max
0≤𝑙≤𝑛−1






𝑟
𝑙




2

≤ 𝑇 ⋅ 𝑂(𝜏
2
+ ℎ
2
)

2

(50)

and 𝐵
0
= 𝑂(𝜏

2
+ ℎ
2
)

2, we obtain

𝐵
𝑛
≤ 𝑂(𝜏

2
+ ℎ
2
)

2

+ 𝐶𝜏

𝑛−1

∑

𝑙=0

𝐵
𝑙
. (51)

By Lemma 8, we get

𝐵
𝑛
≤ 𝑂(𝜏

2
+ ℎ
2
)

2

, (52)

which implies





𝑒
𝑛



≤ 𝑂 (𝜏

2
+ ℎ
2
) ,





𝑒
𝑛

𝑥𝑥





≤ 𝑂 (𝜏

2
+ ℎ
2
) . (53)

From (44), we have





𝑒
𝑛

𝑥





≤ 𝑂 (𝜏

2
+ ℎ
2
) . (54)

By Lemma 5 we get





𝑒
𝑛


∞

≤ 𝑂 (𝜏
2
+ ℎ
2
) . (55)

Finally, we can similarly prove the results as follows.

Theorem 11. The solution 𝑢
𝑛 of (7)–(10) is unique.

4. Numerical Simulations

The difference scheme (7)–(10) is a nonlinear system about
𝑢
𝑛+1

𝑗
that can be easily solved by the Newton iterative

algorithm.
Let 𝑥
𝐿
= −60, 𝑥

𝑅
= 90, and 𝑇 = 40. According to [3, 4],

when 𝑝 = 3, the soliton solution is as follows:

𝑢 (𝑥, 𝑡) =

1

4

√
−15 + 3√41sech2 1

4

×√
−5 + √41

2

[𝑥 −

1

10

(5 + √41) 𝑡] ,

(56)

and the initial condition is

𝑢
0
(𝑥) =

1

4

√
−15 + 3√41sech2 1

4

√
−5 + √41

2

𝑥.
(57)

When 𝑝 = 5, the soliton solution is as follows:

𝑢 (𝑥, 𝑡) =
4
√

4

15

(−5 + √34)sech1
3

×√−5 + √34 [𝑥 −

1

10

(5 + √34) 𝑡] ,

(58)
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Table 1: The error at various time step.

𝜏 = ℎ = 0.25 𝜏 = ℎ = 0.125 𝜏 = ℎ = 0.0625

𝑝 = 3 𝑝 = 5 𝑝 = 3 𝑝 = 5 𝑝 = 3 𝑝 = 5

𝑡 = 10 2.53343𝑒 − 3 3.43739𝑒 − 3 6.35973𝑒 − 4 8.64177𝑒 − 4 1.59182𝑒 − 4 2.16316𝑒 − 4

𝑡 = 20 4.40914𝑒 − 3 6.31248𝑒 − 3 1.10927𝑒 − 3 1.58976𝑒 − 3 2.77703𝑒 − 4 3.98160𝑒 − 4

𝑡 = 30 6.03109𝑒 − 3 9.13274𝑒 − 3 1.51828𝑒 − 3 2.30402𝑒 − 3 3.80216𝑒 − 4 5.77288𝑒 − 4

𝑡 = 40 7.53941𝑒 − 3 1.20204𝑒 − 2 1.89987𝑒 − 3 3.03743𝑒 − 3 4.75848𝑒 − 4 7.61418𝑒 − 4

Table 2: The error comparison when 𝑡 = 40.

𝜏 = ℎ = 0.25 𝜏 = ℎ = 0.125 𝜏 = ℎ = 0.0625

𝑝 = 3 𝑝 = 5 𝑝 = 3 𝑝 = 5 𝑝 = 3 𝑝 = 5

Scheme I 7.53941𝑒 − 3 1.20204𝑒 − 2 1.89987𝑒 − 3 3.03743𝑒 − 3 4.75848𝑒 − 4 7.61418𝑒 − 4

Scheme II 1.34986𝑒 − 2 1.79985𝑒 − 2 3.42489𝑒 − 3 4.56804𝑒 − 3 8.59570𝑒 − 4 1.14689𝑒 − 3

Table 3: The verification of the second convergence.




𝑒
𝑛
(ℎ, 𝜏)





/‖𝑒
2𝑛

(ℎ/2, 𝜏/2)‖

𝑝 = 3 𝑝 = 5

𝜏 = ℎ = 0.1 𝜏 = ℎ = 0.05 𝜏 = ℎ = 0.025 𝜏 = ℎ = 0.1 𝜏 = ℎ = 0.05 𝜏 = ℎ = 0.025

𝑡 = 10 — 3.98355 3.99527 — 3.97764 3.99497
𝑡 = 20 — 3.97483 3.99443 — 3.97073 3.99275
𝑡 = 30 — 3.97233 3.99319 — 3.96382 3.99112
𝑡 = 40 — 3.96837 3.99261 — 3.95742 3.98917

Table 4: Numerical simulations on conservation invariant 𝐸𝑛.

𝜏 = ℎ = 0.25 𝜏 = ℎ = 0.125 𝜏 = ℎ = 0.0625

𝑝 = 3 𝑝 = 5 𝑝 = 3 𝑝 = 5 𝑝 = 3 𝑝 = 5

𝑡 = 0 1.68252899330 3.11067490241 1.68254308255 3.11070293879 1.68254661109 3.11070996431
𝑡 = 10 1.68252899329 3.11067490241 1.68254308255 3.11070293879 1.68254661108 3.11070996430
𝑡 = 20 1.68252899328 3.11067490240 1.68254308255 3.11070293879 1.68254661095 3.11070996426
𝑡 = 30 1.68252899327 3.11067490240 1.68254308255 3.11070293879 1.68254661102 3.11070996417
𝑡 = 40 1.68252899325 3.11067490240 1.68254308254 3.11070293879 1.68254661095 3.11070996435
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0.2

0.4

0.6

t = 0

t = 20

t = 40

−0.2

−100 −50

Figure 1: When 𝑝 = 3 and 𝜏 = ℎ = 0.125, the wave graph of 𝑢(𝑥, 𝑡)
at various times.
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0.6
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t = 40

−0.2

−100 −50

Figure 2: When 𝑝 = 5 and 𝜏 = ℎ = 0.125, the wave graph of 𝑢(𝑥, 𝑡)
at various times.
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and the initial condition is

𝑢
0
(𝑥) =

4
√

4

15

(−5 + √34)sech1
3

√
−5 + √34𝑥. (59)

In Table 1 we give the error at various time step. We denote
the C-N scheme in this paper as scheme I and the difference
scheme in [7] as scheme II. In Table 2 we give the error
comparison between scheme I and scheme II. It is easy to
see that the calculation results of scheme I are slightly better
than scheme II. Using the method in [20, 21], we verified
the second convergence of the difference scheme in Table 3.
Numerical simulations on the conservation invariant 𝐸𝑛 are
given in Table 4.

The wave graph comparison of 𝑢(𝑥, 𝑡) at various times is
given in Figures 1 and 2 when 𝑝 = 3 and 𝑝 = 5.

5. Conclusions

In this paper, we propose a conservative Crank-Nicolson
finite difference scheme for the initial-boundary value
problem of the generalized Rosenau-KdV equation.The two-
level finite difference scheme is of second order convergence
and unconditionally stable, which can start by itself. From
Table 2 we conclude that the C-N scheme is more efficient
than scheme II in [7]. From Table 3 we conclude that the
C-N scheme is of second order convergence obviously.
Numerical simulations on the conservation invariant 𝐸𝑛 are
given in Table 4. Figures 1 and 2 show that the height of the
wave graph at different time is almost identical. Table 4 and
Figures 1 and 2 imply that the finite difference scheme is
conservative and efficient.
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