
Research Article
Higher-Stage Noether Identities and Second Noether Theorems

G. Sardanashvily

Department of Theoretical Physics, Moscow State University, Moscow 119999, Russia

Correspondence should be addressed to G. Sardanashvily; sardanashvi@phys.msu.ru

Received 16 February 2015; Accepted 1 June 2015

Academic Editor: Kamil Brádler

Copyright © 2015 G. Sardanashvily. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The direct and inverse second Noether theorems are formulated in a general case of reducible degenerate Grassmann-graded
Lagrangian theory of even and odd variables on graded bundles. Such Lagrangian theory is characterized by a hierarchy of nontrivial
higher-stageNoether identities which is described in the homology terms. If a certain homology regularity condition holds, one can
associate with a reducible degenerate Lagrangian the exact Koszul–Tate chain complex possessing the boundary operator whose
nilpotentness is equivalent to all complete nontrivial Noether and higher-stage Noether identities. The second Noether theorems
associate with the above-mentioned Koszul–Tate complex a certain cochain sequence whose ascent operator consists of the gauge
and higher-order gauge symmetries of a Lagrangian system. If gauge symmetries are algebraically closed, this operator is extended
to the nilpotent BRST operator which brings the above-mentioned cochain sequence into the BRST complex and provides a BRST
extension of an original Lagrangian.

1. Introduction

The second Noether theorems are well known to provide the
correspondence between Noether identities (henceforth NI)
and gauge symmetries of a Lagrangian system [1]. We aim
to formulate these theorems in a general case of reducible
degenerate Lagrangian systems characterized by a hierarchy
of nontrivial higher-stageNI [2, 3]. To describe this hierarchy,
one needs to involve Grassmann-graded objects. In a general
setting, we therefore considerGrassmann-graded Lagrangian
systems of even and odd variables on a smooth manifold 𝑋

(Section 5).
Lagrangian theory of even (commutative) variables on

an 𝑛-dimensional smooth manifold 𝑋 conventionally is
formulated in terms of smooth fibre bundles over 𝑋 and
jet manifolds of their sections [3–5] in the framework of
general technique of nonlinear differential operators and
equations [3, 6, 7]. At the same time, different geometric
models of odd variables either on graded manifolds or
supermanifolds are discussed [8–12]. Both graded manifolds
and supermanifolds are phrased in terms of sheaves of graded
commutative algebras [12, 13]. However, graded manifolds
are characterized by sheaves on smooth manifolds, while
supermanifolds are constructed by gluing of sheaves on
supervector spaces. Since nontrivial higher-stage NI of a

Lagrangian system on a smooth manifold 𝑋 form graded
𝐶
∞

(𝑋)-modules, we follow the well known Serre–Swan
theorem extended to graded manifolds (Theorem 5) [12]. It
states that if a graded commutative 𝐶

∞

(𝑋)-ring is generated
by a projective𝐶∞(𝑋)-module of finite rank, it is isomorphic
to a ring of graded functions on a graded manifold whose
body is 𝑋. Accordingly, we describe odd variables in terms
of graded manifolds [3, 12].

Let us recall that a graded manifold is a locally ringed
space, characterized by a smooth body manifold 𝑍 and some
structure sheaf A of Grassmann algebras on 𝑍 [12, 13]. Its
sections form a graded commutative 𝐶

∞

(𝑍)-ring of graded
functions on a graded manifold (𝑍,A). The differential
calculus on a graded manifold is defined as the Chevalley–
Eilenberg differential calculus over this ring (Section 2). By
virtue of Batchelor’s theorem (Theorem 4), there exists a
vector bundle 𝐸 → 𝑍 with a typical fibre 𝑉 such that the
structure sheaf A of (𝑍,A) is isomorphic to a sheaf A

𝐸
of

germs of sections of the exterior bundle ∧𝐸∗ of the dual 𝐸∗ of
𝐸whose typical fibre is the Grassmann algebra ∧𝑉∗ [13].This
Batchelor’s isomorphism is not canonical. In applications, it
however is fixed from the beginning. Therefore, we restrict
our consideration to graded manifolds (𝑍,A

𝐸
), called the

simple graded manifolds (Section 3).
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Lagrangian theory on fibre bundles 𝑌 → 𝑋 can be
adequately formulated in algebraic terms of a variational
bicomplex of exterior forms on the infinite order jet manifold
𝐽
∞

𝑌 of sections of 𝑌 → 𝑋, without appealing to the
calculus of variations [3–5, 14]. This technique is extended
to Lagrangian theory on graded manifolds and bundles
[2, 12, 15, 16]. It is phrased in terms of the Grassmann-
graded variational bicomplex of graded exterior forms on a
graded infinite order jet manifold (𝐽

∞

𝑌,A
𝐽
∞
𝐹
) (Section 5).

Lagrangians and the Euler–Lagrange operator are defined
as elements (63) and the coboundary operator (64) of this
bicomplex, respectively.

A problem is that any Euler–Lagrange operator satisfies
NI, which therefore must be separated into the trivial and
nontrivial ones. These NI can obey first-stage NI, which in
turn are subject to the second-stage ones, and so on. Thus,
there is a hierarchy of NI and higher-stage NI which must
be separated into the trivial and nontrivial ones (Section 7).
If certain homology regularity conditions hold (Condition 1),
one can associate with a Lagrangian system the exact Koszul–
Tate (henceforth KT) complex (123) possessing the boundary
KT operator whose nilpotentness is equivalent to all complete
nontrivial NI (99) and higher-stage NI (124) [2, 12].

The inverse second Noether theorem formulated in
homology terms (Theorem 33) associates with this KT com-
plex (123) the cochain sequence (138) with the ascent oper-
ator (139), called the gauge operator, whose components
are nontrivial gauge and higher-stage gauge symmetries of
Lagrangian theory [2, 12]. Conversely, given these symme-
tries, the direct second Noether theorem (Theorem 34) states
that the corresponding NI and higher-stage NI hold.

The gauge operator unlike the KT one is not nilpotent,
and gauge symmetries need not form an algebra [17–19].
Gauge symmetries are said to be algebraically closed if the
gauge operator admits the nilpotent BRST extension (155). If
this extension exists, the above-mentioned cochain sequence
(138) is brought into the BRST complex (156). The KT and
BRST complexes provide the BRST extension (177) of an
original Lagrangian theory by antifields and ghosts [12, 18].

The most physically relevant Yang–Mills gauge theory on
principal bundles and gauge gravitation theory on natural
bundles are irreducible degenerate Lagrangian systemswhich
possess nontrivial Noether identities, but trivial first-stage
ones [2, 20]. In Section 10, we analyze topological BF theory
which exemplifies a finitely reducible degenerate Lagrangian
model.

Remark 1. Smooth manifolds throughout are assumed to be
Hausdorff, second-countable, and, consequently, paracom-
pact. Given a smooth manifold 𝑋, its tangent and cotangent
bundles 𝑇𝑋 and 𝑇

∗

𝑋 are endowed with bundle coordinates
(𝑥
𝜆

, 𝑥̇
𝜆

) and (𝑥
𝜆

, 𝑥̇
𝜆
) with respect to holonomic frames {𝜕

𝜆
}

and {𝑑𝑥
𝜆

}, respectively. Given a coordinate chart (𝑈; 𝑥
𝜆

) of
𝑋, a multi-index Λ of length |Λ| = 𝑘 denotes a collection of
indices (𝜆1 ⋅ ⋅ ⋅ 𝜆𝑘)modulo permutations. By 𝜆 +Λ is meant a
multi-index (𝜆𝜆1 ⋅ ⋅ ⋅ 𝜆𝑘). We use the compact notation 𝜕

Λ
=

𝜕
𝜆
𝑘

∘ ⋅ ⋅ ⋅ ∘ 𝜕
𝜆1
.

2. Grassmann-Graded Differential Calculus

Throughout this work, by the Grassmann gradation is meant
the Z2-one, and a Grassmann-graded structure is called
graded if there is no danger of confusion. The symbol [⋅]

stands for the Grassmann parity. Let us recall the relevant
basics of the graded algebraic calculus [12, 13].

Let K be a commutative ring. A K-module 𝑄 is called
graded if it is endowed with a grading automorphism 𝛾, 𝛾2 =

Id. A graded module falls into a direct sum of modules 𝑄 =

𝑄0 ⊕ 𝑄1 such that 𝛾(𝑞) = (−1)[𝑞]𝑞, 𝑞 ∈ 𝑄
[𝑞]
. One calls 𝑄0 and

𝑄1 the even and odd parts of 𝑄, respectively. In particular,
by a real graded vector space 𝐵 = 𝐵0 ⊕ 𝐵1 is meant a graded
R-module.

AK-algebraA is called graded if it is a gradedK-module
such that [𝑎𝑎

󸀠

] = [𝑎] + [𝑎
󸀠

], where 𝑎 and 𝑎
󸀠 are graded-

homogeneous elements ofA. Its even partA0 is a subalgebra
ofA, and the odd oneA1 is anA0-module. IfA is a graded
ringwith the unit 1, then [1] = 0. A graded algebraA is called
graded commutative if 𝑎𝑎󸀠 = (−1)[𝑎][𝑎

󸀠

]

𝑎
󸀠

𝑎.
Hereafter, all algebras and vector spaces are assumed to

be real.

Remark 2. Let 𝑉 be a vector space and Λ = ∧𝑉 its
exterior algebra. It is a graded commutative ring, called the
Grassmann algebra, with respect to the Grassmann gradation

Λ = Λ 0 ⊕Λ 1,

Λ 0 = R⨁

1≤𝑘

2𝑘
⋀ 𝑉,

Λ 1 = ⨁

1≤𝑘

2𝑘−1
⋀ 𝑉.

(1)

Hereafter, Grassmann algebras of finite rank when 𝑉 = R𝑁

only are considered.

Given a graded algebra A, a left graded A-module 𝑄

is defined as a left A-module where [𝑎𝑞] = [𝑎] + [𝑞].
Similarly, right gradedA-modules are treated. IfA is graded
commutative, a graded A-module 𝑄 is provided with a
gradedA-bimodule structure by letting 𝑞𝑎 = (−1)[𝑎][𝑞]𝑎𝑞.

Remark 3. Agraded algebra g is called a Lie superalgebra if its
product [⋅, ⋅], called the Lie superbracket, obeys the relations

[𝜀, 𝜀
󸀠

] = − (−1)[𝜀][𝜀
󸀠

]

[𝜀
󸀠

, 𝜀] ,

(−1)[𝜀][𝜀
󸀠󸀠

]

[𝜀, [𝜀
󸀠

, 𝜀
󸀠󸀠

]] + (−1)[𝜀
󸀠

][𝜀]

[𝜀
󸀠

, [𝜀
󸀠󸀠

, 𝜀]]

+ (−1)[𝜀
󸀠󸀠

][𝜀
󸀠

]

[𝜀
󸀠󸀠

, [𝜀, 𝜀
󸀠

]] = 0.

(2)

A graded vector space 𝑃 is a g-module if it is provided with
an R-bilinear map

g×𝑃 ∋ (𝜀, 𝑝) 󳨀→ 𝜀𝑝 ∈ 𝑃,

[𝜀𝑝] = [𝜀] + [𝑝] ,

[𝜀, 𝜀
󸀠

] 𝑝 = (𝜀 ∘ 𝜀
󸀠

− (−1)[𝜀][𝜀
󸀠

]

𝜀
󸀠

∘ 𝜀) 𝑝.

(3)
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Given a graded commutative ring A, the following are
standard constructions of new graded modules from the old
ones.

(i) The direct sum of graded modules and a graded
factor module are defined just as those of modules over a
commutative ring.

(ii)The tensor product 𝑃⊗𝑄 of gradedA-modules 𝑃 and
𝑄 is their tensor product asA-modules such that

[𝑝 ⊗ 𝑞] = [𝑝] + [𝑞] ,

𝑎𝑝 ⊗ 𝑞 = (−1)[𝑝][𝑎] 𝑝𝑎⊗ 𝑞 = (−1)[𝑝][𝑎] 𝑝⊗ 𝑎𝑞.

(4)

In particular, the tensor algebra ⊗𝑃 of a gradedA-module 𝑃

is defined just as that of amodule over a commutative ring. Its
quotient ∧𝑃 with respect to the ideal generated by elements

𝑝⊗𝑝
󸀠

+ (−1)[𝑝][𝑝
󸀠

]

𝑝
󸀠

⊗𝑝, 𝑝, 𝑝
󸀠

∈ 𝑃, (5)

is a bigraded exterior algebra of a graded module 𝑃 provided
with a graded exterior product

𝑝∧𝑝
󸀠

= − (−1)[𝑝][𝑝
󸀠

]

𝑝
󸀠

∧𝑝. (6)

(iii) A morphismΦ : 𝑃 → 𝑄 of gradedA-modules seen
as additive groups is said to be an even (resp., odd) graded
morphism if Φ preserves (resp., changes) the Grassmann
parity of all graded-homogeneous elements of 𝑃 and if the
relations

Φ(𝑎𝑝) = (−1)[Φ][𝑎] 𝑎Φ (𝑝) , 𝑝 ∈ 𝑃, 𝑎 ∈ A, (7)

hold. A morphism Φ : 𝑃 → 𝑄 of graded A-modules as
additive groups is called a graded A-module morphism if it
is represented by a sumof even and odd gradedmorphisms. A
set HomA(𝑃, 𝑄) of gradedmorphisms of a gradedA-module
𝑃 to a graded A-module 𝑄 is naturally a graded A-module.
A graded A-module 𝑃

∗

= HomA(𝑃,A) is called the dual of
𝑃.

Linear differential operators and the differential calculus
over a graded commutative ring are defined similarly to those
in commutative geometry [3].

Let A be a graded commutative ring and 𝑃, 𝑄 graded
A-modules. A vector space Hom(𝑃, 𝑄) of graded real space
homomorphisms Φ : 𝑃 → 𝑄 admits two gradedA-module
structures

(𝑎Φ) (𝑝) = 𝑎Φ (𝑝) ,

(Φ⋆ 𝑎) (𝑝) = Φ (𝑎𝑝) ,

𝑎 ∈ A, 𝑝 ∈ 𝑃.

(8)

Let us put

𝛿
𝑎
Φ = 𝑎Φ− (−1)[𝑎][Φ]Φ⋆𝑎, 𝑎 ∈ A. (9)

An element Δ ∈ Hom(𝑃, 𝑄) is said to be a 𝑄-valued graded
differential operator of order 𝑠 on 𝑃 if 𝛿

𝑎0
∘ ⋅ ⋅ ⋅ ∘ 𝛿

𝑎
𝑠

Δ = 0 for
any tuple of 𝑠 + 1 elements 𝑎0, . . . , 𝑎𝑠 ofA.

In particular, zero order graded differential operators are
A-module morphisms 𝑃 → 𝑄. For instance, let 𝑃 = A.

Any zero order 𝑄-valued graded differential operator Δ on
A is given by its value Δ(1). A first order 𝑄-valued graded
differential operator Δ onA obeys a condition

Δ (𝑎𝑏) = Δ (𝑎) 𝑏 + (−1)[𝑎][Δ] 𝑎Δ (𝑏)

− (−1)([𝑏]+[𝑎])[Δ] 𝑎𝑏Δ (1) , 𝑎, 𝑏 ∈ A.

(10)

It is called the 𝑄-valued graded derivation of A if Δ(1) = 0;
that is, the graded Leibniz rule

Δ (a𝑏) = Δ (𝑎) 𝑏 + (−1)[𝑎][Δ] 𝑎Δ (𝑏) , 𝑎, 𝑏 ∈ A, (11)

holds. If 𝜕 is a graded derivation of A, then 𝑎𝜕 is so for any
𝑎 ∈ A. Hence, graded derivations of A constitute a graded
A-module d(A, 𝑄), called the graded derivation module. If
𝑄 = A, a graded derivation module dA also is a real Lie
superalgebra with respect to a superbracket

[𝑢, 𝑢
󸀠

] = 𝑢 ∘ 𝑢
󸀠

− (−1)[𝑢][𝑢
󸀠

]

𝑢
󸀠

∘ 𝑢, 𝑢, 𝑢
󸀠

∈ A. (12)

Since dA is a Lie superalgebra, let us consider the
Chevalley–Eilenberg complex 𝐶

∗

[dA;A], where a graded
commutative ring A is regarded as a dA-module [3, 21]. It
is a complex

0 󳨀→ R 󳨀→ A
𝑑

󳨀→ 𝐶
1
[dA;A]

𝑑

󳨀→ ⋅ ⋅ ⋅ 𝐶
𝑘

[dA;A]

𝑑

󳨀→ ⋅ ⋅ ⋅ ,

(13)

where 𝐶
𝑘

[dA;A] = Hom(∧
𝑘dA,A) are dA-modules of real

linear graded morphisms of graded exterior products ∧𝑘dA
toA. One can show that complex (13) contains a subcomplex
O∗[dA] of A-linear graded morphisms [3]. The N-graded
module O∗[dA] is provided with the structure of a bigraded
A-algebra with respect to the graded exterior product

𝜙∧𝜙
󸀠

(𝑢1, . . . , 𝑢𝑟+𝑠)

= ∑

𝑖1<⋅⋅⋅<𝑖𝑟 ;𝑗1<⋅⋅⋅<𝑗𝑠

Sgn𝑖1 ⋅⋅⋅𝑖𝑟𝑗1 ⋅⋅⋅𝑗𝑠1⋅⋅⋅𝑟+𝑠 𝜙 (𝑢
𝑖1
, . . . , 𝑢

𝑖
𝑟

)

⋅ 𝜙
󸀠

(𝑢
𝑗1
, . . . , 𝑢

𝑗
𝑠

) ,

(14)

where𝜙 ∈ O𝑟[dA], 𝜙󸀠 ∈ O𝑠[dA], and 𝑢1, . . . , 𝑢𝑟+𝑠 are graded-
homogeneous elements of dA. The Chevalley–Eilenberg
coboundary operator 𝑑 (13) and the exterior product ∧ (14)
obey relations

𝜙∧𝜙
󸀠

= (−1)|𝜙||𝜙
󸀠

|+[𝜙][𝜙
󸀠

]

𝜙
󸀠

∧𝜙,

𝑑 (𝜙 ∧ 𝜙
󸀠

) = 𝑑𝜙∧𝜙
󸀠

+ (−1)|𝜙| 𝜙∧𝑑𝜙
󸀠

,

(15)

and thus they bring O∗[dA] into a differential bigraded
algebra (henceforthDBGA). It is called the gradeddifferential
calculus over a graded commutative ringA. In particular, we
have

O
1
[dA] = HomA (dA,A) = dA

∗

. (16)
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One can extend this duality relation to any element 𝜙 ∈

O∗[dA] by the rules

𝑢⌋ (𝑏𝑑𝑎) = (−1)[𝑢][𝑏] 𝑏𝑢 (𝑎) ,

𝑢⌋ (𝜙 ∧ 𝜙
󸀠

) = (𝑢⌋ 𝜙) ∧ 𝜙
󸀠

+ (−1)|𝜙|+[𝜙][𝑢] 𝜙

∧ (𝑢⌋ 𝜙
󸀠

) ,

𝑎, 𝑏 ∈ A.

(17)

As a consequence, every graded derivation 𝑢 ∈ dA of A
yields a derivation

L
𝑢
𝜙 = 𝑢⌋ 𝑑𝜙+𝑑 (𝑢⌋ 𝜙) ,

L
𝑢
(𝜙 ∧ 𝜙

󸀠

) = L
𝑢
(𝜙) ∧ 𝜙

󸀠

+ (−1)[𝑢][𝜙] 𝜙∧ L
𝑢
(𝜙
󸀠

) ,

(18)

called the graded Lie derivative, of the DBGA O∗[dA].
Theminimal graded differential calculusO∗A ⊂ O∗[dA]

over a graded commutative ringA consists of the monomials
𝑎0𝑑𝑎1 ∧ ⋅ ⋅ ⋅ ∧ 𝑑𝑎

𝑘
, 𝑎
𝑖
∈ A. The corresponding complex

0 󳨀→ R 󳨀→ A
𝑑

󳨀→ O
1
A

𝑑

󳨀→ ⋅ ⋅ ⋅O
𝑘

A
𝑑

󳨀→ ⋅ ⋅ ⋅ (19)

is called the de Rham complex of a graded commutative ring
A.

3. Graded Manifolds and Bundles

A graded manifold of dimension (𝑛,𝑚) is defined as a local-
ringed space (𝑍,A), where 𝑍 is an 𝑛-dimensional smooth
manifold𝑍 andA = A0⊕A1 is a sheaf of Grassmann algebras
Λ of rank𝑚 (Remark 2) such that [3, 13] (i) there is the exact
sequence of sheaves

0 󳨀→ R 󳨀→ A
𝜎

󳨀→ 𝐶
∞

𝑍
󳨀→ 0, R = A1 + (A1)

2
, (20)

where 𝜎 is a body epimorphism onto a sheaf 𝐶∞
𝑍

of smooth
real functions on 𝑍; (ii) R/R2 is a locally free sheaf of 𝐶∞

𝑍
-

modules of finite rank (with respect to pointwise operations),
and the sheafA is locally isomorphic to the exterior product
∧
𝐶
∞

𝑍

(R/R2
).

A sheaf A is called the structure sheaf of a graded
manifold (𝑍,A), and a manifold 𝑍 is said to be its body.
Sections of a sheafA are called graded functions on a graded
manifold (𝑍,A). They constitute a graded commutative
𝐶
∞

(𝑍)-ringA(𝑍) called the structure ring of (𝑍,A).
By virtue of Batchelor’s theorem [13, 22], graded mani-

folds possess the following structure.

Theorem 4. Let (𝑍,A) be a graded manifold. There exists a
vector bundle 𝐸 → 𝑍 with an 𝑚-dimensional typical fibre 𝑉

so that the structure sheaf of (𝑍,A) is isomorphic to a sheafA
𝐸

of sections of the exterior bundle ∧𝐸
∗ whose typical fibre is a

Grassmann algebra ∧𝑉
∗.

Combining Theorem 4 and the above-mentioned classi-
cal Serre–Swan theorem leads to the following Serre–Swan
theorem for graded manifolds [12].

Theorem 5. Let 𝑍 be a smooth manifold. A graded commuta-
tive 𝐶

∞

(𝑍)-algebra A is isomorphic to the structure ring of a
graded manifold with a body 𝑍 iff it is the exterior algebra of
some projective 𝐶∞(𝑍)-module of finite rank.

As was mentioned above Batchelor’s isomorphism in
Theorem 4 is not canonical, and we agree to call (𝑍,A

𝐸
)

in Theorem 4 the simple graded manifold modelled over
a characteristic vector bundle 𝐸 → 𝑍. Accordingly, the
structure ringA

𝐸
(𝑍) of (𝑍,A

𝐸
) is a structure module

A
𝐸
= A

𝐸
(𝑍) = ∧𝐸

∗

(𝑍) (21)

of sections of the exterior bundle ∧𝐸
∗.

Remark 6. One can treat a local-ringed space (𝑍,A0 = 𝐶
∞

𝑍
)

as a trivial graded manifold. It is a simple graded manifold
whose characteristic bundle is 𝐸 = 𝑍 × {0}. Its structure
module is a ring 𝐶

∞

(𝑍) of smooth real functions on 𝑍.

Given a simple graded manifold (𝑍,A
𝐸
), every trivi-

alization chart (𝑈; 𝑧
𝐴

, 𝑞
𝑎

) of a vector bundle 𝐸 → 𝑍

yields a splitting domain (𝑈; 𝑧
𝐴

, 𝑐
𝑎

) of (𝑍,A
𝐸
) where {𝑐

𝑎

} is
the corresponding local fibre basis for 𝐸

∗

→ 𝑋. Graded
functions on such a chart are Λ-valued functions

𝑓 =

𝑚

∑

𝑘=0

1
𝑘!

𝑓
𝑎1 ⋅⋅⋅𝑎𝑘

(𝑧) 𝑐
𝑎1 ⋅ ⋅ ⋅ 𝑐

𝑎
𝑘 , (22)

where𝑓
𝑎1 ⋅⋅⋅𝑎𝑘

(𝑧) are smooth functions on𝑈. One calls {𝑧𝐴, 𝑐𝑎}
the local generating basis for a graded manifold (𝑍,A

𝐸
).

Transition functions 𝑞
󸀠𝑎

= 𝜌
𝑎

𝑏
(𝑧
𝐴

)𝑞
𝑏 of bundle coordinates

on 𝐸 → 𝑍 induce the corresponding transformation law
𝑐
󸀠𝑎

= 𝜌
𝑎

𝑏
(𝑧
𝐴

)𝑐
𝑏 of the associated local generating basis for a

graded manifold (𝑍,A
𝐸
).

Let us consider the graded derivation module dA(𝑍) of
a graded commutative ring A(𝑍). It is a Lie superalgebra
relative to superbracket (12). Its elements are called the graded
vector fields on a graded manifold (𝑍,A). A key point is the
following [3, 23].

Lemma 7. Graded vector fields 𝑢 ∈ dA
𝐸
on a simple graded

manifold (𝑍,A
𝐸
) are represented by sections of some vector

bundleV
𝐸
which is locally isomorphic to ∧𝐸

∗

⊗
𝑍
(𝐸⊗

𝑍
𝑇𝑍).

Graded vector fields on a splitting domain (𝑈; 𝑧
𝐴

, 𝑐
𝑎

) of
(𝑍,A

𝐸
) read

𝑢 = 𝑢
𝐴

𝜕
𝐴
+𝑢

𝑎

𝜕
𝑎
,

𝜕
𝑎
∘ 𝜕
𝑏
= − 𝜕

𝑏
∘ 𝜕
𝑎
,

𝜕
𝐴
∘ 𝜕
𝑎
= 𝜕

𝑎
∘ 𝜕
𝐴
,

(23)

where 𝑢
𝐴

, 𝑢
𝑎 are local graded functions on 𝑈 possessing a

coordinate transformation law

𝑢
󸀠𝐴

= 𝑢
𝐴

,

𝑢
󸀠𝑎

= 𝜌
𝑎

𝑗
𝑢
𝑗

+𝑢
𝐴

𝜕
𝐴
(𝜌
𝑎

𝑗
) 𝑐
𝑗

.

(24)
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Graded vector fields act on graded functions 𝑓 ∈ A
𝐸
(𝑈) (22)

by the rule

𝑢 (𝑓
𝑎⋅⋅⋅𝑏

𝑐
𝑎

⋅ ⋅ ⋅ 𝑐
𝑏

) = 𝑢
𝐴

𝜕
𝐴
(𝑓
𝑎⋅⋅⋅𝑏

) 𝑐
𝑎

⋅ ⋅ ⋅ 𝑐
𝑏

+𝑢
𝑘

𝑓
𝑎⋅⋅⋅𝑏

𝜕
𝑘
⌋ (𝑐

𝑎

⋅ ⋅ ⋅ 𝑐
𝑏

) .

(25)

Given a structure ringA
𝐸
of graded functions on a simple

graded manifold (𝑍,A
𝐸
) and the Lie superalgebra dA

𝐸
of

its graded derivations, let us consider the graded differential
calculus

S
∗

[𝐸; 𝑍] = O
∗

[dA
𝐸
] (26)

over A
𝐸
where S0

[𝐸; 𝑍] = A
𝐸
. Since the graded derivation

module dA
𝐸

is isomorphic to the structure module of
sections of a vector bundle V

𝐸
→ 𝑍 in Lemma 7, elements

ofS∗[𝐸; 𝑍] are represented by sections of the exterior bundle
∧V

𝐸
of the A

𝐸
-dual V

𝐸
→ 𝑍 of V

𝐸
. With respect to the

dual fibre bases {𝑑𝑧
𝐴

} for 𝑇
∗

𝑍 and {𝑑𝑐
𝑏

} for 𝐸
∗, sections of

V
𝐸
take a coordinate form

𝜙 = 𝜙
𝐴
𝑑𝑧
𝐴

+𝜙
𝑎
𝑑𝑐
𝑎

,

𝜙
󸀠

𝑎
= 𝜌

−1𝑏
𝑎
𝜙
𝑏
,

𝜙
󸀠

𝐴
= 𝜙

𝐴
+𝜌

−1𝑏
𝑎
𝜕
𝐴
(𝜌
𝑎

𝑗
) 𝜙

𝑏
𝑐
𝑗

.

(27)

The duality isomorphismS1
[𝐸; 𝑍] = dA∗

𝐸
(16) is given by the

graded interior product

𝑢⌋ 𝜙 = 𝑢
𝐴

𝜙
𝐴
+ (−1)[𝜙𝑎] 𝑢𝑎𝜙

𝑎
. (28)

Elements of S∗[𝐸; 𝑍] are called graded exterior forms on a
graded manifold (𝑍,A

𝐸
). In particular, elements of S0

[𝐸; 𝑍]

are graded functions on (𝑍,A
𝐸
).

Seen as an A
𝐸
-algebra, the DBGA S∗[𝐸; 𝑍] (26) on a

splitting domain (𝑈; 𝑧
𝐴

, 𝑐
𝑎

) is locally generated by graded
one-forms 𝑑𝑧𝐴, 𝑑𝑐𝑖 such that

𝑑𝑧
𝐴

∧𝑑𝑐
𝑖

= −𝑑𝑐
𝑖

∧𝑑𝑧
𝐴

,

𝑑𝑐
𝑖

∧𝑑𝑐
𝑗

= 𝑑𝑐
𝑗

∧𝑑𝑐
𝑖

.

(29)

Accordingly, the graded Chevalley–Eilenberg coboundary
operator 𝑑 (13), called the graded exterior differential, reads

𝑑𝜙 = 𝑑𝑧
𝐴

∧ 𝜕
𝐴
𝜙+𝑑𝑐

𝑎

∧ 𝜕
𝑎
𝜙, (30)

where derivations 𝜕
𝜆
, 𝜕
𝑎
act on coefficients of graded exterior

forms by formula (25), and they are graded commutative with
graded forms 𝑑𝑧𝐴 and 𝑑𝑐

𝑎. Formulas (15)–(18) hold.

Lemma 8. The DBGAS∗[𝐸; 𝑍] (26) is a minimal differential
calculus overA

𝐸
; that is, it is generated by elements𝑑𝑓,𝑓 ∈ A

𝐸

[3, 23].

The de Rham complex (19) of the minimal graded
differential calculus S∗[𝐸; 𝑍] reads

0 󳨀→ R 󳨀→ A
𝐸

𝑑

󳨀→ S
1
[𝐸; 𝑍]

𝑑

󳨀→ ⋅ ⋅ ⋅S
𝑘

[𝐸; 𝑍]

𝑑

󳨀→ ⋅ ⋅ ⋅ .

(31)

Given the differential graded algebraO∗(𝑍) of exterior forms
on 𝑍, there exists a canonical cochain monomorphism
O∗(𝑍) → S∗[𝐸; 𝑍] of the de Rham complex O∗(𝑍) to
complex (31).

A morphism of graded manifolds (𝑍,A) → (𝑍
󸀠

,A󸀠) is
defined as that of local-ringed spaces

𝜙 : 𝑍 󳨀→ 𝑍
󸀠

,

Φ̂ : A
󸀠

󳨀→ 𝜙
∗
A,

(32)

where 𝜙 is a manifold morphism and Φ̂ is a sheaf morphism
of A󸀠 to the direct image 𝜙

∗
A of A onto 𝑍

󸀠. Morphism (32)
of graded manifolds is called (i) a monomorphism if 𝜙 is an
injection and Φ̂ is an epimorphism and (ii) an epimorphism
if 𝜙 is a surjection and Φ̂ is a monomorphism.

An epimorphism of graded manifolds (𝑍,A) →

(𝑍
󸀠

,A󸀠), where 𝑍 → 𝑍
󸀠 is a fibre bundle, is called the

graded bundle [24, 25]. In this case, a sheaf monomorphism
Φ̂ induces a monomorphism of canonical presheaves A

󸀠

→

A, which associates with each open subset 𝑈 ⊂ 𝑍 the ring
of sections ofA󸀠 over 𝜙(𝑈). Accordingly, there is a pull-back
monomorphism of the structure rings A󸀠(𝑍󸀠) → A(𝑍) of
graded functions on graded manifolds (𝑍󸀠,A󸀠) and (𝑍,A).

In particular, let (𝑌,A) be a graded manifold whose body
𝑍 = 𝑌 is a fibre bundle 𝜋 : 𝑌 → 𝑋. Let us consider a trivial
gradedmanifold (𝑋, 𝐶

∞

𝑋
) (Remark 6).Thenwe have a graded

bundle

(𝑌,A) 󳨀→ (𝑋, 𝐶
∞

𝑋
) . (33)

We agree to call the graded bundle (33) over a trivial graded
manifold (𝑋, 𝐶

∞

𝑋
) the graded bundle over a smoothmanifold.

Let us denote it by (𝑋, 𝑌,A). Given a graded bundle (𝑋, 𝑌,A),
the local generating basis for a graded manifold (𝑌,A) can
be brought into a form (𝑥

𝜆

, 𝑦
𝑖

, 𝑐
𝑎

) where (𝑥
𝜆

, 𝑦
𝑖

) are bundle
coordinates of 𝑌 → 𝑋.

Remark 9. Let 𝑌 → 𝑋 be a fibre bundle. Then a trivial
graded manifold (𝑌, 𝐶

∞

𝑌
) together with a ring monomor-

phism 𝐶
∞

(𝑋) → 𝐶
∞

(𝑌) is the graded bundle (𝑋, 𝑌, 𝐶
∞

𝑌
)

(33).

Remark 10. A graded manifold (𝑋,A) itself can be treated as
the graded bundle (𝑋,𝑋,A) (33) associated with the identity
smooth bundle𝑋 → 𝑋.

Let𝐸 → 𝑍 and𝐸
󸀠

→ 𝑍
󸀠 be vector bundles andΦ : 𝐸 →

𝐸
󸀠 their bundle morphism over a morphism 𝜙 : 𝑍 → 𝑍

󸀠.
Then every section 𝑠

∗ of the dual bundle 𝐸
󸀠∗

→ 𝑍
󸀠 defines

the pull-back section Φ
∗

𝑠
∗ of the dual bundle 𝐸

∗

→ 𝑍 by
the law

V
𝑧
⌋Φ

∗

𝑠
∗

(𝑧) = Φ (V
𝑧
)⌋ 𝑠

∗

(𝜑 (𝑧)) , V
𝑧
∈ 𝐸

𝑧
. (34)

It follows that a bundle morphism (Φ, 𝜙) yields a morphism
of simple graded manifolds

(𝑍,A
𝐸
) 󳨀→ (𝑍

󸀠

,A
𝐸
󸀠) . (35)
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This is a pair (𝜙, Φ̂ = 𝜙
∗
∘ Φ

∗

) of a morphism 𝜙 of body
manifolds and the composition𝜙

∗
∘Φ

∗ of the pull-backA
𝐸
󸀠 ∋

𝑓 → Φ
∗

𝑓 ∈ A
𝐸
of graded functions and the direct image

𝜙
∗
of a sheaf A

𝐸
onto 𝑍

󸀠. Relative to local bases (𝑧𝐴, 𝑐𝑎) and
(𝑧
󸀠𝐴

, 𝑐
󸀠𝑎

) for (𝑍,A
𝐸
) and (𝑍

󸀠

,A
𝐸
󸀠), morphism (35) of simple

graded manifolds reads 𝑧󸀠 = 𝜙(𝑧), Φ̂(𝑐
󸀠𝑎

) = Φ
𝑎

𝑏
(𝑧)𝑐

𝑏.
The gradedmanifoldmorphism (35) is a monomorphism

(resp., epimorphism) if Φ is a bundle injection (resp., sur-
jection). In particular, the graded manifold morphism (35)
is a graded bundle if Φ is a fibre bundle. Let A

𝐸
󸀠 → A

𝐸
be

the corresponding pull-backmonomorphismof the structure
rings. By virtue of Lemma 8 it yields a monomorphism of the
DBGAs

S
∗

[𝐸
󸀠

; 𝑍
󸀠

] 󳨀→ S
∗

[𝐸; 𝑍] . (36)

Let (𝑌,A
𝐹
) be a simple graded manifold modelled over

a vector bundle 𝐹 → 𝑌. This is a graded bundle (𝑋, 𝑌,A
𝐹
)

modelled over a composite bundle

𝐹 󳨀→ 𝑌 󳨀→ 𝑋. (37)

If 𝑌 → 𝑋 is a vector bundle, this is a particular case
of graded vector bundles in [11, 24] whose base is a trivial
graded manifold. The structure ring of graded functions on
a simple graded manifold (𝑌,A

𝐹
) is the graded commutative

𝐶
∞

(𝑋)-ring A
𝐹

= ∧𝐹
∗

(𝑌) (21). Let the composite bundle
(37) be provided with adapted bundle coordinates (𝑥𝜆, 𝑦𝑖, 𝑞𝑎)
possessing transition functions 𝑥󸀠𝜆(𝑥𝜇), 𝑦󸀠𝑖(𝑥𝜇, 𝑦𝑗), and 𝑞

󸀠𝑎

=

𝜌
𝑎

𝑏
(𝑥
𝜇

, 𝑦
𝑗

)𝑞
𝑏. Then the corresponding local generating basis

for a simple graded manifold (𝑌,A
𝐹
) is (𝑥

𝜆

, 𝑦
𝑖

, 𝑐
𝑎

) together
with transition functions 𝑐

󸀠𝑎

= 𝜌
𝑎

𝑏
(𝑥
𝜇

, 𝑗
𝑗

)𝑐
𝑏. We call it the

local generating basis for a graded bundle (𝑋, 𝑌,A
𝐹
).

4. Graded Jet Manifolds

As was mentioned above, Lagrangian theory on a smooth
fibre bundle𝑌 → 𝑋 is formulated in terms of the variational
bicomplex on jet manifolds 𝐽∗𝑌 of 𝑌. These are fibre bundles
over 𝑋 and, therefore, they can be regarded as trivial graded
bundles (𝑋, 𝐽

𝑘

𝑌, 𝐶
∞

𝐽
𝑘
𝑌
). Then let us describe their partners in

the case of graded bundles (𝑌,A
𝐹
) → (𝑋, 𝐶

∞

𝑋
) as follows.

Note that, given a graded manifold (𝑋,A) and its struc-
ture ringA, one can define the jet module 𝐽

1A of a 𝐶
∞

(𝑋)-
ring A [3]. If (𝑋,A

𝐸
) is a simple graded manifold modelled

over a vector bundle 𝐸 → 𝑋, the jet module 𝐽
1A

𝐸
is a

module of global sections of a jet bundle 𝐽1(∧𝐸∗). A problem
is that 𝐽

1A
𝐸
fails to be a structure ring of some graded

manifold. For this reason, we have suggested a different
construction of jets of graded manifolds, though it is applied
only to simple graded manifolds [12, 23].

Let (𝑋,A
𝐸
) be a simple graded manifold modelled over

a vector bundle 𝐸 → 𝑋. Let us consider a 𝑘-order jet
manifold 𝐽

𝑘

𝐸 of 𝐸. It is a vector bundle over 𝑋. Then
let (𝑋,A

𝐽
𝑘
𝐸
) be a simple graded manifold modelled over

𝐽
𝑘

𝐸 → 𝑋. We agree to call (𝑋,A
𝐽
𝑘
𝐸
) the graded 𝑘-order

jet manifold of a simple graded manifold (𝑋,A
𝐸
). Given a

splitting domain (𝑈; 𝑥
𝜆

, 𝑐
𝑎

) of a graded manifold (𝑍,A
𝐸
),

we have a splitting domain (𝑈; 𝑥
𝜆

, 𝑐
𝑎

, 𝑐
𝑎

𝜆
, 𝑐
𝑎

𝜆1𝜆2
, . . . , 𝑐

𝑎

𝜆1 ⋅⋅⋅𝜆𝑘
) of

a graded jet manifold (𝑋,A
𝐽
𝑘
𝐸
).

As was mentioned above, a graded manifold is a par-
ticular graded bundle over its body (Remark 10). Then the
definition of graded jet manifolds is generalized to graded
bundles over smooth manifolds as follows. Let (𝑋, 𝑌,A

𝐹
) be

a graded bundle modelled over the composite bundle (37).
It is readily observed that a jet manifold 𝐽

𝑟

𝐹 of 𝐹 → 𝑋

is a vector bundle 𝐽
𝑟

𝐹 → 𝐽
𝑟

𝑌 coordinated by (𝑥
𝜆

, 𝑦
𝑖

Λ
, 𝑞
𝑎

Λ
),

0 ≤ |Λ| ≤ 𝑟. Let (𝐽𝑟𝑌,A
𝑟
= A

𝐽
𝑟
𝐹
) be a simple gradedmanifold

modelled over this vector bundle. Its local generating basis is
(𝑥
𝜆

, 𝑦
𝑖

Λ
, 𝑐
𝑎

Λ
), 0 ≤ |Λ| ≤ 𝑟. We call (𝐽𝑟𝑌,A

𝑟
) the graded 𝑟-order

jet manifold of a graded bundle (𝑋, 𝑌,A
𝐹
).

In particular, let 𝑌 → 𝑋 be a smooth bundle seen as a
trivial graded bundle (𝑋, 𝑌, 𝐶

∞

𝑌
) modelled over a composite

bundle 𝑌 × {0} → 𝑌 → 𝑋. Then its graded jet manifold is
a trivial graded bundle (𝑋, 𝐽

𝑟

𝑌, 𝐶
∞

𝐽
𝑟
𝑌
), that is, a jet manifold

𝐽
𝑟

𝑌 of 𝑌. Thus, the above definition of jets of graded bundles
is compatible with the conventional definition of jets of fibre
bundles.

Jet manifolds 𝐽
∗

𝑌 of a fibre bundle 𝑌 → 𝑋 form the
inverse sequence

𝑌
𝜋

←󳨀 𝐽
1
𝑌 ←󳨀 ⋅ ⋅ ⋅ 𝐽

𝑟−1
𝑌
𝜋
𝑟

𝑟−1
←󳨀 𝐽

𝑟

𝑌 ←󳨀 ⋅ ⋅ ⋅ , (38)

of affine bundles 𝜋
𝑟

𝑟−1. One can think of elements of its
projective limit 𝐽∞𝑌 as being infinite order jets of sections
of 𝑌 → 𝑋 identified by their Taylor series at points of
𝑋. A set 𝐽∞𝑌 is endowed with the projective limit topology
which makes 𝐽∞𝑌 a paracompact Fréchet manifold [3, 5]. It
is called the infinite order jet manifold. A bundle coordinate
atlas (𝑥

𝜆

, 𝑦
𝑖

) of 𝑌 provides 𝐽
∞

𝑌 with the adapted manifold
coordinate atlas

(𝑥
𝜆

, 𝑦
𝑖

Λ
) ,

𝑦
󸀠𝑖

𝜆+Λ
=

𝜕𝑥
𝜇

𝜕𝑥󸀠
𝜆

𝑑
𝜇
𝑦
󸀠𝑖

Λ
,

𝑑
𝜆
= 𝜕

𝜆
+𝑦

𝑖

𝜆
𝜕
𝑖
+ ∑

0<|Λ|
𝑦
𝑖

𝜆+Λ
𝜕
Λ

𝑖
.

(39)

The inverse sequence (38) of jet manifolds yields the
direct sequence of graded differential algebras O∗

𝑟
of exterior

forms on finite order jet manifolds

O
∗

(𝑋)
𝜋
∗

󳨀→ O
∗

(𝑌)
𝜋
1
0
∗

󳨀→ O
∗

1 󳨀→ ⋅ ⋅ ⋅O
∗

𝑟−1
𝜋
𝑟

𝑟−1
∗

󳨀→ O
∗

𝑟

󳨀→ ⋅ ⋅ ⋅ ,

(40)

where 𝜋
𝑟

𝑟−1
∗ are the pull-back monomorphisms. Its direct

limit

O
∗

∞
=

󳨀󳨀→
limO

∗

𝑟

(41)

consists of all exterior forms on finite order jet manifolds
modulo the pull-back identification. The O∗

∞
(41) is a differ-

ential graded algebrawhich inherits operations of the exterior
differential 𝑑 and exterior product ∧ of exterior algebras O∗

𝑟
.
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Fibre bundles 𝐽𝑟+1𝑌 → 𝐽
𝑟

𝑌 (38) and the corresponding
bundles 𝐽𝑟+1𝐹 → 𝐽

𝑟

𝐹 yield graded bundles (𝐽𝑟+1𝑌,A
𝑟+1) →

(𝐽
𝑟

𝑌,A
𝑟
) including pull-back monomorphisms of structure

rings

S
0
𝑟
[𝐹; 𝑌] 󳨀→ S

0
𝑟+1 [𝐹; 𝑌] (42)

of graded functions on graded manifolds (𝐽
𝑟

𝑌,A
𝑟
) and

(𝐽
𝑟+1

𝑌,A
𝑟+1). As a consequence, we have the inverse sequence

of graded manifolds

(𝑌,A
𝐹
) ←󳨀 (𝐽

1
𝑌,A

𝐽
1
𝐹
) ←󳨀 ⋅ ⋅ ⋅ (𝐽

𝑟−1
𝑌,A

𝐽
𝑟−1
𝐹
)

←󳨀 (𝐽
𝑟

𝑌,A
𝐽
𝑟
𝐹
) ←󳨀 ⋅ ⋅ ⋅ .

(43)

One can think of its inverse limit (𝐽∞𝑌,A
𝐽
∞
𝐹
) as the graded

Fréchet manifold whose body is an infinite order jet manifold
𝐽
∞

𝑌 and whose structure sheaf A
𝐽
∞
𝐹
is a sheaf of germs of

graded functions on graded manifolds (𝐽∗𝑌,A
𝐽
∗
𝐹
) [12, 23].

By virtue of Lemma 8, the differential calculusS∗
𝑟
[𝐹; 𝑌] is

minimal. Therefore, the monomorphisms of structure rings
(42) yield the pull-back monomorphisms (36) of DBGAs

𝜋
𝑟+1∗
𝑟

: S
∗

𝑟
[𝐹; 𝑌] 󳨀→ S

∗

𝑟+1 [𝐹; 𝑌] . (44)

As a consequence, we have a direct system of DBGAs

S
∗

[𝐹; 𝑌]
𝜋
∗

󳨀→ S
∗

1 [𝐹; 𝑌] 󳨀→ ⋅ ⋅ ⋅S
∗

𝑟−1 [𝐹; 𝑌]

𝜋
𝑟∗

𝑟−1
󳨀→ S

∗

𝑟
[𝐹; 𝑌] 󳨀→ ⋅ ⋅ ⋅ .

(45)

The DBGA S∗
∞
[𝐹; 𝑌] that we associate with a graded bundle

(𝑌,A
𝐹
) is defined as the direct limit

S
∗

∞
[𝐹; 𝑌] =

󳨀󳨀→
limS

∗

𝑟
[𝐹; 𝑌] (46)

of the direct system (45). It consists of all graded exterior
forms𝜙 ∈ S∗[𝐹

𝑟
; 𝐽
𝑟

𝑌] on gradedmanifolds (𝐽𝑟𝑌,A
𝑟
)modulo

monomorphisms (44). Its elements obey relations (15).
The cochain monomorphismsO∗

𝑟
→ S∗

𝑟
[𝐹; 𝑌] provide a

monomorphism of the direct system (40) to the direct system
(45) and, consequently, a cochain monomorphism O∗

∞
→

S∗
∞
[𝐹; 𝑌].
One can think of elements of S∗

∞
[𝐹; 𝑌] as being graded

differential forms on an infinite order jetmanifold 𝐽
∞

𝑌 in the
sense that S∗

∞
[𝐹; 𝑌] is a submodule of the structure module

of sections of some sheaf on 𝐽
∞

𝑌 [12, 23]. In particular, one
can restrict S∗

∞
[𝐹; 𝑌] to the coordinate chart (39) of 𝐽∞𝑌 so

that S∗
∞
[𝐹; 𝑌] as an O0

∞
-algebra is locally generated by the

elements

(𝑐
𝑎

Λ
, 𝑑𝑥

𝜆

, 𝜃
𝑎

Λ
=𝑑𝑐

𝑎

Λ
− 𝑐

𝑎

𝜆+Λ
𝑑𝑥
𝜆

, 𝜃
𝑖

Λ
=𝑑𝑦

𝑖

Λ
−𝑦

𝑖

𝜆+Λ
𝑑𝑥
𝜆

) ,

0 ≤ |Λ| ,

(47)

where 𝑐
𝑎

Λ
, 𝜃

𝑎

Λ
are odd and 𝑑𝑥

𝜆, 𝜃
𝑖

Λ
are even. We agree to

call (𝑦𝑖, 𝑐𝑎) the local generating basis for S∗
∞
[𝐹; 𝑌]. Let the

collective symbol 𝑠𝐴 stand for its elements.We further denote
[𝐴] = [𝑠

𝐴

].

Remark 11. Let (𝑋, 𝑌,A
𝐹
) and (𝑋, 𝑌

󸀠

,A
𝐹
󸀠) be graded bundles

modelled over composite bundles 𝐹 → 𝑌 → 𝑋 and 𝐹
󸀠

→

𝑌
󸀠

→ 𝑋, respectively. Let 𝐹 → 𝐹
󸀠 be a fibre bundle over

a fibre bundle 𝑌 → 𝑌
󸀠 over 𝑋. Then we have a graded

bundle (𝑋, 𝑌,A
𝐹
) → (𝑋, 𝑌

󸀠

,A
𝐹
󸀠) together with the pull-

back monomorphism (36) of DBGAs

S
∗

[𝐹
󸀠

; 𝑌
󸀠

] 󳨀→ S
∗

[𝐹; 𝑌] . (48)

Let (𝑋, 𝐽
𝑟

𝑌,A
𝐽
𝑟
𝐹
) and (𝑋, 𝐽

𝑟

𝑌
󸀠

,A
𝐽
𝑟
𝐹
󸀠) be graded bundles

modelled over composite bundles 𝐽
𝑟

𝐹 → 𝐽
𝑟

𝑌 → 𝑋 and
𝐽
𝑟

𝐹
󸀠

→ 𝐽
𝑟

𝑌
󸀠

→ 𝑋, respectively. Since 𝐽𝑟𝐹 → 𝐽
𝑟

𝐹
󸀠 is a fibre

bundle over a fibre bundle 𝐽
𝑟

𝑌 → 𝐽
𝑟

𝑌
󸀠 over𝑋, we also get a

graded bundle

(𝑋, 𝐽
𝑟

𝑌,A
𝐽
𝑟
𝐹
) 󳨀→ (𝑋, 𝐽

𝑟

𝑌
󸀠

,A
𝐽
𝑟
𝐹
󸀠) (49)

together with the pull-back monomorphism of DBGAs

S
∗

𝑟
[𝐹
󸀠

; 𝑌
󸀠

] 󳨀→ S
∗

𝑟
[𝐹; 𝑌] . (50)

Monomorphisms (48)–(50), 𝑟 = 1, 2, . . ., provide a
monomorphism of the direct limits

S
∗

∞
[𝐹
󸀠

; 𝑌
󸀠

] 󳨀→ S
∗

∞
[𝐹; 𝑌] (51)

of DBGAs S∗
𝑟
[𝐹
󸀠

; 𝑌
󸀠

] and S∗
𝑟
[𝐹; 𝑌], 𝑟 = 0, 1, 2, . . ..

Remark 12. Let (𝑋, 𝑌,A
𝐹
) and (𝑋, 𝑌

󸀠

,A
𝐹
󸀠) be graded bundles

modelled over composite bundles 𝐹 → 𝑌 → 𝑋 and 𝐹
󸀠

→

𝑌
󸀠

→ 𝑋, respectively. We define their product

(𝑋, 𝑌,A
𝐹
) ×
𝑋

(𝑋, 𝑌
󸀠

,A
𝐹
󸀠) = (𝑋, 𝑌 ×

𝑋

𝑌
󸀠

,A
𝐹×

𝑋

𝐹
󸀠) (52)

as a graded bundle modelled over a composite bundle

𝐹 ×
𝑋

𝐹
󸀠

= 𝐹 ×
𝑌×𝑌
󸀠

𝐹
󸀠

󳨀→ 𝑌 ×
𝑋

𝑌
󸀠

󳨀→ 𝑋. (53)

Let us consider the corresponding DBGA

S
∗

∞
[𝐹 ×

𝑋

𝐹
󸀠

; 𝑌 ×
𝑋

𝑌
󸀠

] . (54)

Then, in accordance with Remark 11, there are monomor-
phisms (51) of BGDAs

S
∗

∞
[𝐹; 𝑌] 󳨀→ S

∗

∞
[𝐹 ×

𝑋

𝐹; 𝑌 ×
𝑋

𝑌
󸀠

] ,

S
∗

∞
[𝐹
󸀠

; 𝑌
󸀠

] 󳨀→ S
∗

∞
[𝐹 ×

𝑋

𝐹; 𝑌 ×
𝑋

𝑌
󸀠

] .

(55)

5. Graded Lagrangian Formalism

Let (𝑋, 𝑌,A
𝐹
) be a graded bundle modelled over a composite

bundle (37) over an 𝑛-dimensional smooth manifold 𝑋,
and let S∗

∞
[𝐹; 𝑌] be the associated DBGA (46) of graded

exterior forms on graded jet manifolds of (𝑋, 𝑌,A
𝐹
). As was

mentioned above, Grassmann-graded Lagrangian theory of
even and odd variables on a graded bundle is formulated
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in terms of the variational bicomplex in which the DBGA
S∗
∞
[𝐹; 𝑌] is split in [2, 16, 23].
A DBGA S∗

∞
[𝐹; 𝑌] is decomposed into S0

∞
[𝐹; 𝑌]-

modules S𝑘,𝑟
∞

[𝐹; 𝑌] of 𝑘-contact and 𝑟-horizontal graded
forms together with the corresponding projections

ℎ
𝑘
: S

∗

∞
[𝐹; 𝑌] 󳨀→ S

𝑘,∗

∞
[𝐹; 𝑌] ,

ℎ
𝑚

: S
∗

∞
[𝐹; 𝑌] 󳨀→ S

∗,𝑚

∞
[𝐹; 𝑌] .

(56)

Accordingly, the graded exterior differential 𝑑 on S∗
∞
[𝐹; 𝑌]

falls into a sum 𝑑 = 𝑑
𝑉
+ 𝑑

𝐻
of the vertical and total graded

differentials

𝑑V ∘ ℎ
𝑚

= ℎ
𝑚

∘ 𝑑 ∘ ℎ
𝑚

,

𝑑
𝑉
(𝜙) = 𝜃

𝐴

Λ
∧ 𝜕

Λ

𝐴
𝜙, 𝜙 ∈ S

∗

∞
[𝐹; 𝑌] ,

𝑑
𝐻
∘ ℎ
𝑘
= ℎ

𝑘
∘ 𝑑 ∘ ℎ

𝑘
,

𝑑
𝐻
∘ ℎ0 = ℎ0 ∘ 𝑑,

𝑑
𝐻
(𝜙) = 𝑑𝑥

𝜆

∧𝑑
𝜆
(𝜙) ,

𝑑
𝜆
= 𝜕

𝜆
+∑𝑠

𝐴

𝜆+Λ
𝜕
Λ

𝐴
,

(57)

where 𝑑
𝜆
are graded total derivatives.These differentials obey

the nilpotent relations

𝑑
𝐻
∘ 𝑑
𝐻

= 0,

𝑑
𝑉
∘ 𝑑
𝑉

= 0,

𝑑
𝐻
∘ 𝑑
𝑉
+𝑑

𝑉
∘ 𝑑
𝐻

= 0.

(58)

A DBGA S∗
∞
[𝐹; 𝑌] also is provided with the graded projec-

tion endomorphism

󰜚 = ∑

𝑘>0

1
𝑘
󰜚 ∘ ℎ

𝑘
∘ ℎ
𝑛

: S
∗>0,𝑛
∞

[𝐹; 𝑌]

󳨀→ S
∗>0,𝑛
∞

[𝐹; 𝑌] ,

󰜚 (𝜙) = ∑ (−1)|Λ| 𝜃𝐴 ∧ [𝑑
Λ
(𝜕
Λ

𝐴
⌋ 𝜙)] ,

𝜙 ∈ S
∗>0,𝑛
∞

[𝐹; 𝑌] ,

(59)

such that 󰜚∘𝑑
𝐻

= 0, andwith the nilpotent graded variational
operator

𝛿 = 󰜚 ∘ 𝑑 : S
∗,𝑛

∞
[𝐹; 𝑌] 󳨀→ S

∗+1,𝑛
∞

[𝐹; 𝑌] . (60)

With these operators a DBGA S∗
∞
[𝐹; 𝑌] is decomposed into

the Grassmann-graded variational bicomplex [12, 23]. We
restrict our consideration to the short variational subcomplex

0 󳨀→ R 󳨀→ S
0
∞

[𝐹; 𝑌]
𝑑
𝐻

󳨀→ S
0,1
∞

[𝐹; 𝑌] ⋅ ⋅ ⋅

𝑑
𝐻

󳨀→ S
0,𝑛
∞

[𝐹; 𝑌]
𝛿

󳨀→ 󰜚 (S
1,𝑛
∞

[𝐹; 𝑌])

(61)

of this bicomplex and its subcomplex of one-contact graded
forms

0 󳨀→ S
1,0
∞

[𝐹; 𝑌]
𝑑
𝐻

󳨀→ S
1,1
∞

[𝐹; 𝑌] ⋅ ⋅ ⋅
𝑑
𝐻

󳨀→ S
1,𝑛
∞

[𝐹; 𝑌]

󰜚

󳨀→ 󰜚 (S
1,𝑛
∞

[𝐹; 𝑌]) 󳨀→ 0.
(62)

They possess the following cohomology [12, 16].

Theorem 13. Cohomology of complex (61) equals the de Rham
cohomology of 𝑌. Complex (62) is exact.

Decomposed into a variational bicomplex, the DBGA
S∗
∞
[𝐹; 𝑌] describes graded Lagrangian theory on a graded

bundle (𝑋, 𝑌,A
𝐹
). Its graded Lagrangian is defined as an

element

𝐿 = L𝜔 ∈ S
0,𝑛
∞

[𝐹; 𝑌] , 𝜔 = 𝑑𝑥
1
∧ ⋅ ⋅ ⋅ ∧ 𝑑𝑥

𝑛

, (63)

of the graded variational complex (61). Accordingly, a graded
exterior form

𝛿𝐿 = 𝜃
𝐴

∧E
𝐴
𝜔 = ∑(−1)|Λ| 𝜃𝐴 ∧𝑑

Λ
(𝜕
Λ

𝐴
𝐿)𝜔

∈ 󰜚 (S
1,𝑛
∞

[𝐹; 𝑌])

(64)

is said to be its graded Euler–Lagrange operator. Its kernel
yields an Euler–Lagrange equation

𝛿𝐿 = 0,

E
𝐴

= ∑(−1)|Λ| 𝜃𝐴 ∧𝑑
Λ
(𝜕
Λ

𝐴
𝐿) = 0.

(65)

We call a pair (S0,𝑛
∞

[𝐹; 𝑌], 𝐿) the graded Lagrangian system
and S∗

∞
[𝐹; 𝑌] its structure algebra.

The following are corollaries of Theorem 13 [12, 16, 23].

Corollary 14. Any variationally trivial odd Lagrangian is 𝑑
𝐻
-

exact.

Corollary 15. Given a graded Lagrangian 𝐿, there is the global
variational formula

𝑑𝐿 = 𝛿𝐿−𝑑
𝐻
Ξ
𝐿
, Ξ ∈ S

𝑛−1
∞

[𝐹; 𝑌] , (66)

Ξ
𝐿
= 𝐿+∑

𝑠=0
𝜃
𝐴

]
𝑠
⋅⋅⋅]1 ∧𝐹

𝜆]
𝑠
⋅⋅⋅]1

𝐴
𝜔
𝜆
,

𝐹
]
𝑘
⋅⋅⋅]1

𝐴
= 𝜕

]
𝑘
⋅⋅⋅]1

𝐴
L−𝑑

𝜆
𝐹
𝜆]
𝑘
⋅⋅⋅]1

𝐴
+𝜎

]
𝑘
⋅⋅⋅]1

𝐴
,

𝑘 = 1, 2, . . . ,

(67)

where local graded functions 𝜎 obey relations 𝜎
]
𝐴

= 0,
𝜎
(]
𝑘
]
𝑘−1)⋅⋅⋅]1

𝐴
= 0.

The form Ξ
𝐿
(67) provides a global Lepage equivalent of

a graded Lagrangian 𝐿.
Given a graded Lagrangian system (S∗

∞
[𝐹; 𝑌], 𝐿), by its

infinitesimal transformations are meant graded derivations
of a graded commutative ring S0

∞
[𝐹; 𝑌]. These derivations

constitute a S0
∞
[𝐹; 𝑌]-module dS0

∞
[𝐹; 𝑌] which is a real Lie

superalgebra with respect to the Lie superbracket (12). The
following holds [16].
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Theorem 16. A derivation module dS0
∞
[𝐹; 𝑌] is isomorphic

to theS0
∞
[𝐹; 𝑌]-dualS1

∞
[𝐹; 𝑌]

∗ of the module of graded one-
forms S1

∞
[𝐹; 𝑌].

In particular, it follows that the DBGA S∗
∞
[𝐹; 𝑌] is

minimal differential calculus over a graded commutative ring
S0
∞
[𝐹; 𝑌]. Restricted to the coordinate chart (39) of 𝐽

∞

𝑌,
an algebraS∗

∞
[𝐹; 𝑌] is a freeS0

∞
[𝐹; 𝑌]-module generated by

one-forms 𝑑𝑥𝜆, 𝜃𝐴
Λ
.

Due to the isomorphism in Theorem 16, any graded
derivation 𝜗 ∈ dS0

∞
[𝐹; 𝑌] takes a form

𝜗 = 𝜗
𝜆

𝜕
𝜆
+ 𝜗

𝐴

𝜕
𝐴
+ ∑

0<|Λ|
𝜗
𝐴

Λ
𝜕
Λ

𝐴
. (68)

Given 𝜗 ∈ dS0
∞
[𝐹; 𝑌] and 𝜙 ∈ S1

∞
[𝐹; 𝑌], let 𝜗⌋𝜙 denote

the corresponding interior product. Extended to the DBGA
S∗
∞
[𝐹; 𝑌], it obeys a rule

𝜗⌋ (𝜙 ∧ 𝜎) = (𝜗⌋ 𝜙) ∧ 𝜎+ (−1)|𝜙|+[𝜙][𝜗] 𝜙∧ (𝜗⌋ 𝜎) ,

𝜙, 𝜎 ∈ S
∗

∞
[𝐹; 𝑌] .

(69)

Every graded derivation 𝜗 (68) of a ring S0
∞
[𝐹; 𝑌] yields

a Lie derivative
L
𝜗
𝜙 = 𝜗⌋ 𝑑𝜙+𝑑 (𝜗⌋ 𝜙) ,

L
𝜗
(𝜙 ∧ 𝜎) = L

𝜗
(𝜙) ∧ 𝜎+ (−1)[𝜗][𝜙] 𝜙∧ L

𝜗
(𝜎) ,

(70)

of a DBGA S∗
∞
[𝐹; 𝑌]. The graded derivation 𝜗 (68) is called

contact if a Lie derivative L
𝜗
preserves the ideal of contact

graded forms of S∗
∞
[𝐹; 𝑌] generated by contact one-forms.

Lemma 17. With respect to the local generating basis (𝑠𝐴) for
the DBGA S∗

∞
[𝐹; 𝑌], any of its contact graded derivations

takes a form

𝜗 = 𝜗
𝐻
+ 𝜗

𝑉

= 𝜐
𝜆

𝑑
𝜆
+[𝜐

𝐴

𝜕
𝐴
+ ∑

|Λ|>0
𝑑
Λ
(𝜐
𝐴

− 𝑠
𝐴

𝜇
𝜐
𝜇

) 𝜕
Λ

𝐴
] ,

(71)

where 𝜗
𝐻
and 𝜗

𝑉
denote the horizontal and vertical parts of 𝜗

[16].

A glance at expression (71) shows that a contact graded
derivation 𝜗 is the infinite order jet prolongation 𝜗 = 𝐽

∞

𝜐 of
its restriction

𝜐 = 𝜐
𝜆

𝜕
𝜆
+ 𝜐

𝐴

𝜕
𝐴

= 𝜐
𝐻
+ 𝜐

𝑉
= 𝜐

𝜆

𝑑
𝜆
+ (𝑢

𝐴

𝜕
𝐴
− 𝑠

𝐴

𝜆
𝜕
𝜆

𝐴
) (72)

to a graded commutative ring 𝑆
0
[𝐹; 𝑌]. We call 𝜐 (72) the

generalized graded vector field on a gradedmanifold (𝑌,A
𝐹
).

This fails to be a graded vector field on (𝑌,A
𝐹
) in general

because its component may depend on jets of elements of the
local generating basis for (𝑌,A

𝐹
).

In particular, the vertical contact graded derivation (71)
reads

𝜗 = 𝜐
𝐴

𝜕
𝐴
+ ∑

|Λ|>0
𝑑
Λ
𝜐
𝐴

𝜕
Λ

𝐴
. (73)

It is said to be nilpotent if

L
𝜗
(L
𝜗
𝜙)

= ∑(𝜐
𝐵

Σ
𝜕
Σ

𝐵
(𝜐
𝐴

Λ
) 𝜕
Λ

𝐴
+ (−1)[𝑠

𝐵

][𝜐
𝐴

]

𝜐
𝐵

Σ
𝜐
𝐴

Λ
𝜕
Σ

𝐵
𝜕
Λ

𝐴
) 𝜙

= 0

(74)

for any horizontal graded form 𝜙 ∈ 𝑆
0,∗
∞
. It is nilpotent only if

it is odd and iff the equality

L
𝜗
(𝜐
𝐴

) = ∑𝜐
𝐵

Σ
𝜕
Σ

𝐵
(𝜐
𝐴

) = 0 (75)

holds for all 𝜐𝐴 [16].

Remark 18. If there is no danger of confusion, the common
symbol 𝜐 further stands for a generalized graded vector field
𝜐 (72), the contact graded derivation 𝜗 determined by 𝜐, and
the Lie derivative L

𝜗
. We agree to call all these operators,

simply, a graded derivation of the structure algebra of a
graded Lagrangian system.

Remark 19. For the sake of convenience, right graded deriva-
tions ⃖𝜐 = 𝜕⃖

𝐴
𝜐
𝐴 also are considered. They act on graded

functions and differential forms 𝜙 on the right by the rules

⃖𝜐 (𝜙) = 𝑑𝜙 ⌊ ⃖𝜐 + 𝑑 (𝜙 ⌊ ⃖𝜐 ) ,

⃖𝜐 (𝜙 ∧ 𝜙
󸀠

) = (−1)[𝜙
󸀠

]

⃖𝜐 (𝜙) ∧ 𝜙
󸀠

+𝜙∧ ⃖𝜐 (𝜙
󸀠

) .

(76)

Given a Lagrangian system (S∗
∞
[𝐹; 𝑌], 𝐿), the contact

graded derivation 𝜗 (71) is called the variational symmetry
of a Lagrangian 𝐿 if a Lie derivative L

𝜗
𝐿 of 𝐿 along 𝜗 is 𝑑

𝐻
-

exact; that is, L
𝜗
𝐿 = 𝑑

𝐻
𝜎. Then the following is a corollary of

the variational formula (66) [16].

Theorem 20. The Lie derivative of a graded Lagrangian along
any contact graded derivation (71) admits the decomposition

L
𝜗
𝐿 = 𝜐

𝑉
⌋ 𝛿𝐿 + 𝑑

𝐻
(ℎ0 (𝜗⌋ Ξ𝐿)) + 𝑑

𝑉
(𝜐
𝐻
⌋ 𝜔)L, (77)

where Ξ
𝐿
is the Lepage equivalent (67) of a Lagrangian 𝐿.

A glance at expression (77) shows the following.

Lemma 21. (i) A contact graded derivation 𝜗 is a variational
symmetry only if it is projected onto 𝑋. (ii) It is a variational
symmetry iff its vertical part 𝜗

𝑉
(71) is well.

6. Gauge Symmetries

Treating gauge symmetries of Lagrangian theory, one usu-
ally follows Yang–Mills gauge theory on principal bundles.
This notion of gauge symmetries has been generalized to
Lagrangian theory on an arbitrary fibre bundle [18]. Here, we
extend it to Lagrangian theory on graded bundles.

Let (S∗
∞
[𝐹; 𝑌], 𝐿) be a graded Lagrangian system on a

graded bundle (𝑋, 𝑌,A
𝐹
)with the local generating basis (𝑠𝐴).

Let 𝐸 = 𝐸
0
⊕ 𝐸

1 be a graded vector bundle over𝑋 possessing
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an even part 𝐸0
→ 𝑋 and the odd one 𝐸

1
→ 𝑋. We regard

it as a composite bundle

𝐸 󳨀→ 𝐸
0
󳨀→ 𝑋 (78)

and consider a graded bundle (𝑋, 𝐸
0
,A

𝐸
) modelled over it.

Thenwe define product (52) of graded bundles (𝑋, 𝑌,A
𝐹
) and

(𝑋, 𝐸
0
,A

𝐸
) over product (53) of the composite bundles𝐸 (78)

and 𝐹 (37). It reads (𝑋, 𝐸
0
×
𝑋

𝑌,A
𝐸×

𝑋

𝐹
). Let us consider the

corresponding DBGA

S
∗

∞
[𝐸 ×

𝑋

𝐹; 𝐸
0
×
𝑋

𝑌] (79)

together with monomorphisms (55) of DBGAs

S
∗

∞
[𝐹; 𝑌] 󳨀→ S

∗

∞
[𝐸 ×

𝑋

𝐹; 𝐸
0
×
𝑋

𝑌] ,

S
∗

∞
[𝐸; 𝐸

0
] 󳨀→ S

∗

∞
[𝐸 ×

𝑋

𝐹; 𝐸
0
×
𝑋

𝑌] .

(80)

Given a Lagrangian 𝐿 ∈ S0,𝑛
∞

[𝐹; 𝑌], let us define its pull-
back

𝐿 ∈ S
0,𝑛
∞

[𝐹; 𝑌] ⊂ S
∗

∞
[𝐸 ×

𝑋

𝐹; 𝐸
0
×
𝑋

𝑌] (81)

and consider an extended Lagrangian system

(S
∗

∞
[𝐸 ×

𝑋

𝐹; 𝐸
0
×
𝑋

𝑌] , 𝐿) (82)

provided with the local generating basis (𝑠𝐴, 𝑐𝑟).

Definition 22. A gauge transformation of the Lagrangian 𝐿

(81) is defined to be a contact graded derivation 𝜗 of the
ring S0

∞
[𝐸 ×

𝑋

𝐹; 𝐸
0
×
𝑋

𝑌] (79) such that a derivation 𝜗 equals

zero on a subring S0
∞
[𝐸; 𝐸

0
] ⊂ S0

∞
[𝐸 ×

𝑋

𝐹; 𝐸
0
×
𝑋

𝑌]. A
gauge transformation 𝜗 is called the gauge symmetry if it is
a variational symmetry of the Lagrangian 𝐿 (81).

In view of the first condition in Definition 22, the vari-
ables 𝑐𝑟 of the extended Lagrangian system (82) can be treated
as gauge parameters of a gauge symmetry 𝜗. Furthermore,
we additionally assume that a gauge symmetry 𝜗 is linear in
gauge parameters 𝑐

𝑟 and their jets 𝑐
𝑟

Λ
(see Remark 35). Then

the generalized graded vector field 𝜐 (72) reads

𝜐 = ( ∑

0≤|Λ|≤𝑚
𝜐
𝜆Λ

𝑟
(𝑥
𝜇

) 𝑐
𝑟

Λ
)𝜕

𝜆

+( ∑

0≤|Λ|≤𝑚
𝜐
𝐴Λ

𝑟
(𝑥
𝜇

, 𝑠
𝐵

Σ
) 𝑐
𝑟

Λ
)𝜕

𝐴
.

(83)

In accordance with Remark 18, we also call it the gauge
symmetry.

By virtue of item (ii) of Lemma 21, the generalized vector
field 𝜐 (83) is a gauge symmetry iff its vertical part is so.
Therefore, we can restrict our consideration to vertical gauge
symmetries.

7. Noether and Higher-Stage
Noether Identities

Without loss of generality, let a Lagrangian 𝐿 be even and its
Euler–Lagrange operator 𝛿𝐿 (64) at least of first order. This
operator takes its values into a graded vector bundle

𝑉𝐹 = 𝑉
∗

𝐹⨁

𝐹

𝑛

⋀ 𝑇
∗

𝑋 󳨀→ 𝐹, (84)

where 𝑉
∗

𝐹 is the vertical cotangent bundle of 𝐹 → 𝑋. It
however is not a vector bundle over 𝑌. Therefore, we restrict
our consideration to a case of the pull-back composite bundle
𝐹 (37):

𝐹 = 𝑌 ×
𝑋

𝐹
1
󳨀→ 𝑌 󳨀→ 𝑋, (85)

where 𝐹
1

→ 𝑋 is a vector bundle.

Remark 23. Let us introduce the following notation. Given
the vertical tangent bundle 𝑉𝐸 of a fibre bundle 𝐸 → 𝑋, by
its density-dual bundle is meant a fibre bundle

𝑉𝐸 = 𝑉
∗

𝐸⨁

𝐸

𝑛

⋀ 𝑇
∗

𝑋. (86)

If 𝐸 → 𝑋 is a vector bundle, we have

𝑉𝐸 = 𝐸 ×
𝑋

𝐸, 𝐸 = 𝐸
∗

⨁

𝑋

𝑛

⋀ 𝑇
∗

𝑋, (87)

where 𝐸 is called the density-dual of 𝐸. Let

𝐸 = 𝐸
0
⨁

𝑋

𝐸
1

(88)

be a graded vector bundle over 𝑋. Its graded density-dual is
defined to be 𝐸 = 𝐸

1
⊕𝐸

0 with an even part 𝐸1
→ 𝑋 and the

odd one 𝐸1
→ 𝑋. Given the graded vector bundle 𝐸 (88), we

consider a product (𝑋, 𝐸
0
×
𝑋

𝑌,A
𝐸×

𝑋

𝐹
) of graded bundles over

product (53) of the composite bundles 𝐸 → 𝐸
0

→ 𝑋 and 𝐹

(37) and the corresponding DBGA which we denote:

𝑃
∗

∞
[𝐹 ×

𝑋

𝐸; 𝑌] = S
∗

∞
[𝐹 ×

𝑋

𝐸; 𝑌 ×
𝑋

𝐸
0
] . (89)

In particular, we treat the composite bundle 𝐹 (37) as a
graded vector bundle over𝑌 possessing only an odd part.The
density-dual (86) of the vertical tangent bundle𝑉𝐹of𝐹 → 𝑋

is 𝑉𝐹 (84). If 𝐹 is the pull-back bundle (85), then

𝑉𝐹 = 𝐹
1
⨁

𝑌

((𝑉
∗

𝑌⨁

𝑌

𝑛

⋀ 𝑇
∗

𝑋)⨁

𝑌

𝐹
1
) (90)

is a graded vector bundle over 𝑌. It can be seen as product
(53) of composite bundles

𝑉𝐹1 = 𝐹
1
⨁

𝑋

𝐹
1
󳨀→ 𝐹

1
󳨀→ X, 𝑉𝑌 󳨀→ 𝑌 󳨀→ 𝑋, (91)
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and we consider the corresponding graded bundle (52) and
the DBGA (54) which we denote

P
∗

∞
[𝑉𝐹; 𝑌] = S

∗

∞
[𝑉𝐹; 𝑌 ×

𝑋

𝐹
1
]

= S
∗

∞
[𝑉𝐹

1
×
𝑋

𝑉𝑌; 𝑌 ×
𝑋

𝐹
1
] .

(92)

Lemma 24. One can associate with any graded Lagrangian
system (S∗

∞
[𝐹; 𝑌], 𝐿) the chain complex (93) whose one-

boundaries vanish on-shell.

Proof. Let us consider the density-dual𝑉𝐹 (90) of the vertical
tangent bundle 𝑉𝐹 → 𝐹, and let us enlarge an original
DBGA S∗

∞
[𝐹; 𝑌] to the DBGA P∗

∞
[𝑉𝐹; 𝑌] (92) with the

local generating basis (𝑠
𝐴

, 𝑠
𝐴
), [𝑠

𝐴
] = [𝐴] + 1. Following

the terminology of Lagrangian BRST theory [15, 19], we
agree to call its elements 𝑠

𝐴
the antifields of antifield number

Ant[𝑠
𝐴
] = 1. A DBGA P∗

∞
[𝑉𝐹; 𝑌] is endowed with the

nilpotent right graded derivation 𝛿 = 𝜕⃖
𝐴E

𝐴
, where E

𝐴

are the variational derivatives (64). Then we have a chain
complex

0 ←󳨀 Im 𝛿
𝛿

←󳨀 P
0,𝑛
∞

[𝑉𝐹; 𝑌]1
𝛿

←󳨀 P
0,𝑛
∞

[𝑉𝐹; 𝑌]2
(93)

of graded densities of antifield number ≤ 2. Its one-
boundaries 𝛿Φ, Φ ∈ P0,𝑛

∞
[𝑉𝐹; 𝑌]2, by the very definition,

vanish on-shell.

Any one-cycle

Φ = ∑Φ
𝐴,Λ

𝑠
Λ𝐴

𝜔 ∈ P
0,𝑛
∞

[𝑉𝐹; 𝑌]1 (94)

of complex (93) is a differential operator on a bundle𝑉𝐹 such
that it is linear on fibres of 𝑉𝐹 → 𝐹 and its kernel contains
the graded Euler–Lagrange operator 𝛿𝐿 (64); that is,

𝛿Φ = 0,

∑Φ
𝐴,Λ

𝑑
Λ
E
𝐴
𝜔 = 0.

(95)

Then one can say that one-cycles (94) define the NI (95) of an
Euler–Lagrange operator 𝛿𝐿, which we agree to call the NI of
a graded Lagrangian system (S∗

∞
[𝐹; 𝑌], 𝐿) [2].

In particular, one-chainsΦ (94) are necessarily NI if they
are boundaries.Therefore, these NI are called trivial.They are
of the form

Φ = ∑𝑇
(𝐴Λ)(𝐵Σ)

𝑑
Σ
E
𝐵
𝑠
Λ𝐴

𝜔,

𝑇
(𝐴Λ)(𝐵Σ)

= − (−1)[𝐴][𝐵] 𝑇(𝐵Σ)(𝐴Λ).
(96)

Accordingly, nontrivial NI modulo trivial ones are associated
with elements of the first homology𝐻1(𝛿) of complex (93). A
Lagrangian 𝐿 is called degenerate if there are nontrivial NI.

Nontrivial NI can obey first-stage NI. In order to describe
them, let us assume that a module𝐻1(𝛿) is finitely generated.

Namely, there exists a graded projective 𝐶
∞

(𝑋)-module
C
(0) ⊂ 𝐻1(𝛿) of finite rank possessing a local basis {Δ 𝑟𝜔}:

Δ
𝑟
𝜔 = ∑Δ

𝐴,Λ

𝑟
𝑠
Λ𝐴

𝜔, Δ
𝐴,Λ

𝑟
∈ S

0
∞

[𝐹; 𝑌] , (97)

such that any element Φ ∈ 𝐻1(𝛿) factorizes as

Φ = ∑Φ
𝑟,Ξ

𝑑
Ξ
Δ
𝑟
𝜔, Φ

𝑟,Ξ

∈ S
0
∞

[𝐹; 𝑌] , (98)

through elements (97) of C
(0). Thus, all nontrivial NI (95)

result from the NI

𝛿Δ
𝑟
= ∑Δ

𝐴,Λ

𝑟
𝑑
Λ
E
𝐴

= 0, (99)

called the complete NI. Note that factorization (98) is inde-
pendent of specification of a local basis {Δ

𝑟
𝜔} and, being

representatives of 𝐻1(𝛿), graded densities Δ
𝑟
𝜔 (97) are not

𝛿-exact.
A Lagrangian system whose nontrivial NI are finitely

generated is called finitely degenerate. Hereafter, degenerate
Lagrangian systems only of this type are considered.

Lemma 25. If the homology 𝐻1(𝛿) of complex (93) is finitely
generated in the above-mentioned sense, this complex can be
extended to the one-exact chain complex (102) with a boundary
operator whose nilpotency conditions are equivalent to the
complete NI (99).

Proof. By virtue of Theorem 5, a graded module C
(0) is

isomorphic to that of sections of the density-dual 𝐸0 of some
graded vector bundle 𝐸0 → 𝑋. Let us enlargeP∗

∞
[𝑉𝐹; 𝑌] to

a DBGA

P
∗

∞
{0} = P

∗

∞
[𝑉𝐹 ×

𝑋

𝐸0; 𝑌]

= S
∗

∞
[𝑉𝐹 ×

𝑋

𝐸0; 𝐸
1
0 ×
𝑋

𝐹
1
×
𝑋

𝑌]

(100)

with a local generating basis (𝑠𝐴, 𝑠
𝐴
, 𝑐
𝑟
)where 𝑐

𝑟
are antifields

of Grassmann parity [𝑐
𝑟
] = [Δ

𝑟
] + 1 and antifield number

Ant[𝑐
𝑟
] = 2. DBGA (100) admits an odd right graded

derivation

𝛿0 = 𝛿+ 𝜕⃖
𝑟

Δ
𝑟

(101)

which is nilpotent iff the complete NI (99) hold.Then 𝛿0 (101)
is a boundary operator of a chain complex

0 ←󳨀 Im 𝛿
𝛿

←󳨀 P
0,𝑛
∞

[𝑉𝐹; 𝑌]1

𝛿0
←󳨀 P

0,𝑛
∞

{0}2

𝛿0
←󳨀 P

0,𝑛
∞

{0}3

(102)

of graded densities of antifield number≤ 3. Let𝐻
∗
(𝛿0)denote

its homology. We have 𝐻0(𝛿0) = 𝐻0(𝛿) = 0. Furthermore,
any one-cycle Φ up to a boundary takes the form (98) and,
therefore, it is a 𝛿0-boundary

Φ = ∑Φ
𝑟,Ξ

𝑑
Ξ
Δ
𝑟
𝜔 = 𝛿0 (∑Φ

𝑟,Ξ

𝑐
Ξ𝑟
𝜔) . (103)

Hence, 𝐻1(𝛿0) = 0; that is, complex (102) is one-exact.
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Let us consider the second homology 𝐻2(𝛿0) of complex
(102). Its two-chains read

Φ = 𝐺+𝐻 = ∑𝐺
𝑟,Λ

𝑐
Λ𝑟

𝜔+∑𝐻
(𝐴,Λ)(𝐵,Σ)

𝑠
Λ𝐴

𝑠
Σ𝐵

𝜔. (104)

Its two-cycles define the first-stage NI

𝛿0Φ = 0,

∑𝐺
𝑟,Λ

𝑑
Λ
Δ
𝑟
𝜔 = −𝛿𝐻.

(105)

Conversely, let equality (105) hold.Then it is a cycle condition
of the two-chain (104).

Note that this definition of first-stage NI is independent
of specification of a generating module C

(0) up to chain
isomorphisms between complexes (102).

The first-stage NI (105) are trivial either if the two-cycleΦ
(104) is a 𝛿0-boundary or its summand 𝐺 vanishes on-shell.
Therefore, nontrivial first-stage NI fails to exhaust the second
homology𝐻2(𝛿0) of complex (102) in general.

Lemma 26. Nontrivial first-stage NI modulo trivial ones are
identified with elements of the homology𝐻2(𝛿0) iff any 𝛿-cycle
𝜙 ∈ P

0,𝑛
∞

{0}2 is a 𝛿0-boundary.

Proof. It suffices to show that if a summand 𝐺 of a two-cycle
Φ (104) is 𝛿-exact, then Φ is a boundary. If 𝐺 = 𝛿Ψ, let us
write

Φ = 𝛿0Ψ+ (𝛿− 𝛿0)Ψ+𝐻. (106)

Hence, cycle condition (105) reads

𝛿0Φ = 𝛿 ((𝛿 − 𝛿0)Ψ+𝐻) = 0. (107)

Since any 𝛿-cycle 𝜙 ∈ P
0,𝑛
∞

{0}2, by assumption, is 𝛿0-exact,
then (𝛿 − 𝛿0)Ψ + 𝐻 is a 𝛿0-boundary. Consequently, Φ (106)
is 𝛿0-exact. Conversely, let Φ ∈ P

0,𝑛
∞

{0}2 be a 𝛿-cycle; that is,

𝛿Φ = 2Φ(𝐴,Λ)(𝐵,Σ)𝑠
Λ𝐴

𝛿𝑠
Σ𝐵

𝜔

= 2Φ(𝐴,Λ)(𝐵,Σ)𝑠
Λ𝐴

𝑑
Σ
E
𝐵
𝜔 = 0.

(108)

It follows that Φ
(𝐴,Λ)(𝐵,Σ)

𝛿𝑠
Σ𝐵

= 0 for all indices (𝐴, Λ).
Omitting a 𝛿-boundary term, we obtain

Φ
(𝐴,Λ)(𝐵,Σ)

𝑠
Σ𝐵

= 𝐺
(𝐴,Λ)(𝑟,Ξ)

𝑑
Ξ
Δ
𝑟
. (109)

Hence, Φ takes a form

Φ = 𝐺
󸀠(𝐴,Λ)(𝑟,Ξ)

𝑑
Ξ
Δ
𝑟
𝑠
Λ𝐴

𝜔. (110)

Then there exists a three-chain Ψ = 𝐺
󸀠(𝐴,Λ)(𝑟,Ξ)

𝑐
Ξ𝑟
𝑠
Λ𝐴

𝜔 such
that

𝛿0Ψ = Φ+𝜎 = Φ+𝐺
󸀠󸀠(𝐴,Λ)(𝑟,Ξ)

𝑑
Λ
E
𝐴
𝑐
Ξ𝑟
𝜔. (111)

Owing to the equality 𝛿Φ = 0, we have 𝛿0𝜎 = 0. Thus, 𝜎 in
expression (111) is a 𝛿-exact 𝛿0-cycle. By assumption, it is 𝛿0-
exact; that is,𝜎 = 𝛿0𝜓.Thus, a𝛿-cycleΦ is a𝛿0-boundary.

A degenerate Lagrangian system is called reducible if it
admits nontrivial first-stage NI.

If the condition of Lemma 26 is satisfied, let us assume
that nontrivial first-stage NI are finitely generated as follows.
There exists a graded projective 𝐶

∞

(𝑋)-module C
(1) ⊂

𝐻2(𝛿0) of finite rank possessing a local basis {Δ 𝑟1𝜔}:

Δ
𝑟1
𝜔 = ∑Δ

𝑟,Λ

𝑟1
𝑐
Λ𝑟

𝜔+ℎ
𝑟1
𝜔, (112)

such that any element Φ ∈ 𝐻2(𝛿0) factorizes as

Φ = ∑Φ
𝑟1,Ξ𝑑

Ξ
Δ
𝑟1
𝜔, Φ

𝑟1,Ξ ∈ S
0
∞

[𝐹; 𝑌] , (113)

through elements (112) ofC
(1). Thus, all nontrivial first-stage

NI (105) result from the equalities

∑Δ
𝑟,Λ

𝑟1
𝑑
Λ
Δ
𝑟
+ 𝛿ℎ

𝑟1
= 0, (114)

called the complete first-stage NI. Note that, by virtue of the
condition of Lemma 26, the first summands of the graded
densitiesΔ

𝑟1
𝜔 (112) are not 𝛿-exact. A degenerate Lagrangian

system is called finitely reducible if it admits finitely generated
nontrivial first-stage NI.

Lemma 27. The one-exact complex (102) of a finitely reducible
Lagrangian system is extended to the two-exact one (117) with a
boundary operator whose nilpotency conditions are equivalent
to the complete NI (99) and the complete first-stage NI (114).

Proof. By virtue of Theorem 5, a graded module C
(1) is

isomorphic to that of sections of the density-dual 𝐸1 of some
graded vector bundle 𝐸1 → 𝑋. Let us enlarge the DBGA
P
∗

∞
{0} (100) to a DBGA

P
∗

∞
{1} = P

∗

∞
[𝑉𝐹 ×

𝑋

𝐸0 ×
𝑋

𝐸1; 𝑌] (115)

with a local basis {𝑠
𝐴

, 𝑠
𝐴
, 𝑐
𝑟
, 𝑐
𝑟1
} where 𝑐

𝑟1
are first-stage

antifields of Grassmann parity [𝑐
𝑟1
] = [Δ

𝑟1
] + 1 and antifield

number 3. This DBGA is provided with the odd right graded
derivation

𝛿1 = 𝛿0 + 𝜕⃖
𝑟1Δ

𝑟1
(116)

which is nilpotent iff the complete NI (99) and the complete
first-stage NI (114) hold.Then 𝛿1 (116) is a boundary operator
of a chain complex

0 ←󳨀 Im 𝛿
𝛿

←󳨀 P
0,𝑛
∞

[𝑉𝐹; 𝑌]1

𝛿0
←󳨀 P

0,𝑛
∞

{0}2

𝛿1
←󳨀 P

0,𝑛
∞

{1}3
𝛿1
←󳨀 P

0,𝑛
∞

{1}4

(117)

of graded densities of antifield number≤ 4. Let𝐻
∗
(𝛿1)denote

its homology. We have

𝐻0 (𝛿1) = 𝐻0 (𝛿) ,

𝐻1 (𝛿1) = 𝐻1 (𝛿0) = 0.
(118)
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By virtue of expression (113), any two-cycle of the complex
(117) is a boundary

Φ = ∑Φ
𝑟1 ,Ξ𝑑

Ξ
Δ
𝑟1
𝜔 = 𝛿1 (∑Φ

𝑟1,Ξ𝑐
Ξ𝑟1

𝜔) . (119)

It follows that 𝐻2(𝛿1) = 0; that is, complex (117) is two-exact.

If the third homology 𝐻3(𝛿1) of complex (117) is not
trivial, its elements correspond to second-stage NI which
the complete first-stage ones satisfy, and so on. Iterating
the arguments, we say that a degenerate graded Lagrangian
system (S∗

∞
[𝐹; 𝑌], 𝐿) is𝑁-stage reducible if it admits finitely

generated nontrivial 𝑁-stage NI, but no nontrivial (𝑁 + 1)-
stage ones. It is characterized as follows [2]:

(i) There are graded vector bundles 𝐸0, . . . , 𝐸𝑁 over 𝑋,
and a DBGAP∗

∞
[𝑉𝐹; 𝑌] is enlarged to a DBGA

P
∗

∞
{𝑁} = P

∗

∞
[𝑉𝐹 ×

𝑋

𝐸0 ×
𝑋

⋅ ⋅ ⋅ ×
𝑋

𝐸
𝑁
; 𝑌] (120)

with a local generating basis (𝑠
𝐴

, 𝑠
𝐴
, 𝑐
𝑟
, 𝑐
𝑟1
, . . . , 𝑐

𝑟
𝑁

)

where 𝑐
𝑟
𝑘

are 𝑘-stage antifields of antifield number
Ant[𝑐

𝑟
𝑘

] = 𝑘 + 2.
(ii) DBGA (120) is provided with a nilpotent right graded

derivation

𝛿KT = 𝛿
𝑁

= 𝛿+∑ 𝜕⃖
𝑟

Δ
𝐴,Λ

𝑟
𝑠
Λ𝐴

+ ∑

1≤𝑘≤𝑁
𝜕⃖
𝑟
𝑘Δ
𝑟
𝑘

, (121)

Δ
𝑟
𝑘

𝜔 = ∑Δ
𝑟
𝑘−1,Λ
𝑟
𝑘

𝑐
Λ𝑟
𝑘−1

𝜔

+∑(ℎ
(𝑟
𝑘−2 ,Σ)(𝐴,Ξ)
𝑟
𝑘

𝑐
Σ𝑟
𝑘−2

𝑠
Ξ𝐴

+ ⋅ ⋅ ⋅) 𝜔

∈ P
0,𝑛
∞

{𝑘 − 1}
𝑘+1 ,

(122)

of antifield number −1. The index 𝑘 = −1 here stands
for 𝑠

𝐴
. The nilpotent derivation 𝛿KT (121) is called the

KT operator.

(iii) With this graded derivation, a module P
0,𝑛
∞

{𝑁}
≤𝑁+3

of densities of antifield number ≤ (𝑁 + 3) is decom-
posed into the exact KT chain complex

0 ←󳨀 Im 𝛿
𝛿

←󳨀 P
0,𝑛
∞

[𝑉𝐹; 𝑌]1

𝛿0
←󳨀 P

0,𝑛
∞

{0}2

𝛿1
←󳨀 P

0,𝑛
∞

{1}3 ⋅ ⋅ ⋅
𝛿
𝑁−1
←󳨀 P

0,𝑛
∞

{𝑁− 1}
𝑁+1

𝛿KT
←󳨀 P

0,𝑛
∞

{𝑁}
𝑁+2

𝛿KT
←󳨀 P

0,𝑛
∞

{𝑁}
𝑁+3

(123)

which satisfies the following homology regularity
condition.

Condition 1. Any 𝛿
𝑘<𝑁

-cycle 𝜙 ∈ P
0,𝑛
∞

{𝑘}
𝑘+3 ⊂ P

0,𝑛
∞

{𝑘 + 1}
𝑘+3

is a 𝛿
𝑘+1-boundary.

(iv) The nilpotentness 𝛿2KT = 0 of the KT operator (121) is
equivalent to the complete nontrivial NI (99) and the
complete nontrivial (𝑘 ≤ 𝑁)-stage NI

∑Δ
𝑟
𝑘−1,Λ
𝑟
𝑘

𝑑
Λ
(∑Δ

𝑟
𝑘−2,Σ
𝑟
𝑘−1

𝑐
Σ𝑟
𝑘−2

)

= − 𝛿 (∑ℎ
(𝑟
𝑘−2 ,Σ)(𝐴,Ξ)
𝑟
𝑘

𝑐
Σ𝑟
𝑘−2

𝑠
Ξ𝐴

) .

(124)

This item means the following.

Lemma 28. The 𝛿
𝑘
-cocycles Φ ∈ P0,𝑛

∞
{𝑘}

𝑘+2 are 𝑘-stage NI,
and vice versa.

Proof. Any (𝑘 + 2)-chain Φ ∈ P0,𝑛
∞

{𝑘}
𝑘+2 takes a form

Φ = 𝐺+𝐻

= ∑𝐺
𝑟
𝑘
,Λ

𝑐
Λ𝑟
𝑘

𝜔

+∑(𝐻
(𝐴,Ξ)(𝑟

𝑘−1 ,Σ)𝑠
Ξ𝐴

𝑐
Σ𝑟
𝑘−1

+ ⋅ ⋅ ⋅) 𝜔.

(125)

If it is a 𝛿
𝑘
-cycle, then

∑𝐺
𝑟
𝑘
,Λ

𝑑
Λ
(∑Δ

𝑟
𝑘−1,Σ
𝑟
𝑘

𝑐
Σ𝑟
𝑘−1

)

+ 𝛿 (∑𝐻
(𝐴,Ξ)(𝑟

𝑘−1 ,Σ)𝑠
Ξ𝐴

𝑐
Σ𝑟
𝑘−1

) = 0
(126)

are the 𝑘-stage NI. Conversely, let condition (126) hold. It can
be extended to a cycle condition as follows. It is brought into
the form

𝛿
𝑘
(∑𝐺

𝑟
𝑘
,Λ

𝑐
Λ𝑟
𝑘

+∑𝐻
(𝐴,Ξ)(𝑟

𝑘−1 ,Σ)𝑠
Ξ𝐴

𝑐
Σ𝑟
𝑘−1

)

= −∑𝐺
𝑟
𝑘
,Λ

𝑑
Λ
ℎ
𝑟
𝑘

+∑𝐻
(𝐴,Ξ)(𝑟

𝑘−1 ,Σ)𝑠
Ξ𝐴

𝑑
Σ
Δ
𝑟
𝑘−1

.

(127)

A glance at expression (122) shows that the term in its right-
hand side belongs to P0,𝑛

∞
{𝑘 − 2}

𝑘+1. It is a 𝛿
𝑘−2-cycle and,

consequently, a 𝛿
𝑘−1-boundary 𝛿

𝑘−1Ψ in accordance with
Condition 1. Then equality (126) is a c

Σ𝑟
𝑘−1
-dependent part of

a cycle condition

𝛿
𝑘
(∑𝐺

𝑟
𝑘
,Λ

𝑐
Λ𝑟
𝑘

+∑𝐻
(𝐴,Ξ)(𝑟

𝑘−1 ,Σ)𝑠
Ξ𝐴

𝑐
Σ𝑟
𝑘−1

−Ψ) = 0, (128)

but 𝛿
𝑘
Ψ does not make a contribution to this condition.

Lemma 29. Trivial 𝑘-stage NI are 𝛿
𝑘
-boundaries Φ ∈

P0,𝑛
∞

{𝑘}
𝑘+2.

Proof. The 𝑘-stage NI (126) are trivial either if a 𝛿
𝑘
-cycle Φ

(125) is a 𝛿
𝑘
-boundary or its summand 𝐺 vanishes on-shell.

Let us show that if the summand𝐺 ofΦ (125) is 𝛿-exact, then
Φ is a 𝛿

𝑘
-boundary. If 𝐺 = 𝛿Ψ, one can write

Φ = 𝛿
𝑘
Ψ+ (𝛿− 𝛿

𝑘
)Ψ+𝐻. (129)

Hence, the 𝛿
𝑘
-cycle condition reads

𝛿
𝑘
Φ = 𝛿

𝑘−1 ((𝛿 − 𝛿
𝑘
)Ψ+𝐻) = 0. (130)

By virtue of Condition 1, any 𝛿
𝑘−1-cycle 𝜙 ∈ P

0,𝑛
∞

{𝑘 − 1}
𝑘+2 is

𝛿
𝑘
-exact.Then (𝛿−𝛿

𝑘
)Ψ+𝐻 is a 𝛿

𝑘
-boundary. Consequently,

Φ (125) is 𝛿
𝑘
-exact.
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Lemma 30. All nontrivial 𝑘-stage NI (126), by assumption,
factorize as

Φ = ∑Φ
𝑟
𝑘
,Ξ

𝑑
Ξ
Δ
𝑟
𝑘

𝜔,

Φ
𝑟1,Ξ ∈ S

0
∞

[𝐹; 𝑌] ,

(131)

through the complete ones (124).

It may happen that a graded Lagrangian system possesses
nontrivial NI of any stage. However, we restrict our consid-
eration to 𝑁-reducible Lagrangians for a finite integer 𝑁. In
this case, the KT operator (121) and the gauge operator (139)
contain finite terms.

8. Second Noether Theorems

Different variants of the second Noether theorem have
been suggested in order to relate reducible NI and gauge
symmetries [2, 15, 26]. The inverse second Noether theorem
(Theorem 33), which we formulate in homology terms, asso-
ciates with the KT complex (123) of nontrivial NI the cochain
sequence (138) with the ascent operator u (139) whose
components are gauge and higher-stage gauge symmetries of
a Lagrangian system. Let us start with the following notation.

Remark 31. Given the DBGA P
∗

∞
{𝑁} (120), we consider a

DBGA

𝑃
∗

∞
{𝑁} = 𝑃

∗

∞
[𝐹 ×

𝑋

𝐸0 ×
𝑋

⋅ ⋅ ⋅ ×
𝑋

𝐸
𝑁
; 𝑌] , (132)

possessing the local generating basis (𝑠
𝐴

, 𝑐
𝑟

, 𝑐
𝑟1 , . . . , 𝑐

𝑟
𝑁),

[𝑐
𝑟
𝑘] = [𝑐

𝑟
𝑘

] + 1, and a DBGA

P
∗

∞
{𝑁}

= P
∗

∞
[𝑉𝐹 ×

𝑋

𝐸0 ×
𝑋

⋅ ⋅ ⋅ ×
𝑋

𝐸
𝑁

×
𝑋

𝐸0 ×
𝑋

⋅ ⋅ ⋅ ×
𝑋

𝐸
𝑁
; 𝑌]

(133)

with a local generating basis (𝑠𝐴, 𝑠
𝐴
, 𝑐
𝑟

, 𝑐
𝑟1 , . . . , 𝑐

𝑟
𝑁 , 𝑐

𝑟
, 𝑐
𝑟1
, . . .,

c
𝑟
𝑁

). Their elements 𝑐
𝑟
𝑘 are called 𝑘-stage ghosts of ghost

number gh[𝑐𝑟𝑘] = 𝑘 + 1 and antifield number Ant[𝑐𝑟𝑘] =

−(𝑘 + 1). A 𝐶
∞

(𝑋)-module C(𝑘) of 𝑘-stage ghosts is the
density-dual of a module C

(𝑘+1) of (𝑘 + 1)-stage antifields.
In accordance with Remark 11, the DBGAsP

∗

∞
{𝑁} (120) and

the BGDA 𝑃
∗

(𝑁) (132) are subalgebras of the DBGAP∗

∞
{𝑁}

(133). The KT operator 𝛿KT (121) naturally is extended to a
graded derivation of a DBGAP∗

∞
{𝑁}.

Remark 32. Any graded differential form 𝜙 ∈ S∗
∞
[𝐹; 𝑌] and

any finite tuple (𝑓
Λ

), 0 ≤ |Λ| ≤ 𝑘, of local graded functions
𝑓
Λ

∈ S0
∞
[𝐹; 𝑌] obey the following relations:

∑

0≤|Λ|≤𝑘
𝑓
Λ

𝑑
Λ
𝜙∧𝜔

= ∑(−1)|Λ| 𝑑
Λ
(𝑓
Λ

) 𝜙 ∧𝜔+𝑑
𝐻
𝜎,

(134)

∑

0≤|Λ|≤𝑘
(−1)|Λ| 𝑑

Λ
(𝑓
Λ

𝜙) = ∑

0≤|Λ|≤𝑘
𝜂 (𝑓)

Λ

𝑑
Λ
𝜙, (135)

𝜂 (𝑓)
Λ

= ∑

0≤|Σ|≤𝑘−|Λ|
(−1)|Σ+Λ| (|Σ + Λ|)!

|Σ|! |Λ|!
𝑑
Σ
𝑓
Σ+Λ

, (136)

𝜂 (𝜂 (𝑓))
Λ

= 𝑓
Λ

. (137)

Theorem 33. Given the KT complex (123), a module of graded
densities 𝑃0,𝑛

∞
{𝑁} is decomposed into a cochain sequence

0 󳨀→ S
0,𝑛
∞

[𝐹; 𝑌]
u

󳨀→ 𝑃
0,𝑛
∞

{𝑁}
1 u
󳨀→ 𝑃

0,𝑛
∞

{𝑁}
2

u
󳨀→ ⋅ ⋅ ⋅ ,

(138)

u = 𝑢+𝑢
(1)

+ ⋅ ⋅ ⋅ + 𝑢
(𝑁)

= 𝑢
𝐴

𝜕

𝜕𝑠𝐴
+𝑢

𝑟
𝜕

𝜕𝑐𝑟
+ ⋅ ⋅ ⋅ + 𝑢

𝑟
𝑁−1 𝜕

𝜕𝑐𝑟𝑁−1
,

(139)

graded in ghost number. Its ascent operator u (139) is an
odd graded derivation of ghost number 1 where 𝑢 (144) is a
variational symmetry of a graded Lagrangian 𝐿 and the graded
derivations 𝑢

(𝑘)
(149), 𝑘 = 1, . . . , 𝑁, obey relations (148).

Proof. Given the KT operator (121), let us extend an original
Lagrangian 𝐿 to a Lagrangian

𝐿
𝑒
= 𝐿+𝐿1 = 𝐿+ ∑

0≤𝑘≤𝑁
𝑐
𝑟
𝑘Δ
𝑟
𝑘

𝜔

= 𝐿+ 𝛿KT ( ∑

0≤𝑘≤𝑁
𝑐
𝑟
𝑘𝑐
𝑟
𝑘

𝜔)

(140)

of zero antifield number. It is readily observed that the
KT operator 𝛿KT is an exact symmetry of the extended
Lagrangian 𝐿

𝑒
∈ P0,𝑛

∞
{𝑁} (140). Since the graded derivation

𝛿KT is vertical, it follows from decomposition (77) that

[

⃖𝛿L
𝑒

𝛿𝑠
𝐴

E
𝐴
+ ∑

0≤𝑘≤𝑁

⃖𝛿L
𝑒

𝛿𝑐
𝑟
𝑘

Δ
𝑟
𝑘

]𝜔

= [𝜐
𝐴

E
𝐴
+ ∑

0≤𝑘≤𝑁
𝜐
𝑟
𝑘

𝛿L
𝑒

𝛿𝑐𝑟𝑘
]𝜔 = 𝑑

𝐻
𝜎,

𝜐
𝐴

=

⃖𝛿L
𝑒

𝛿𝑠
𝐴

= 𝑢
𝐴

+𝑤
𝐴

= ∑𝑐
𝑟

Λ
𝜂 (Δ

𝐴

𝑟
)
Λ

+ ∑

1≤𝑖≤𝑁
∑𝑐

𝑟
𝑖

Λ
𝜂 (𝜕⃖

𝐴

(ℎ
𝑟
𝑖

))
Λ

,

𝜐
𝑟
𝑘 =

⃖𝛿L
𝑒

𝛿𝑐
𝑟
𝑘

= 𝑢
𝑟
𝑘 +𝑤

𝑟
𝑘

= ∑𝑐
𝑟
𝑘+1
Λ

𝜂 (Δ
𝑟
𝑘

𝑟
𝑘+1

)
Λ

+ ∑

𝑘+1<𝑖≤𝑁
∑𝑐

𝑟
𝑖

Λ
𝜂 (𝜕⃖

𝑟
𝑘 (ℎ

𝑟
𝑖

))
Λ

.

(141)
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Equality (141) is split into a set of equalities

⃖𝛿 (𝑐
𝑟

Δ
𝑟
)

𝛿𝑠
𝐴

E
𝐴
𝜔 = 𝑢

𝐴

E
𝐴
𝜔 = 𝑑

𝐻
𝜎0, (142)

[

[

⃖𝛿 (𝑐
𝑟
𝑘Δ
𝑟
𝑘

)

𝛿𝑠
𝐴

E
𝐴
+ ∑

0≤𝑖<𝑘

⃖𝛿 (𝑐
𝑟
𝑘Δ
𝑟
𝑘

)

𝛿𝑐
𝑟
𝑖

Δ
𝑟
𝑖

]

]

𝜔 = 𝑑
𝐻
𝜎
𝑘
, (143)

where 𝑘 = 1, . . . , 𝑁. A glance at equality (142) shows that, by
virtue of decomposition (77), the odd graded derivation

𝑢 = 𝑢
𝐴

𝜕
𝐴
, 𝑢

𝐴

= ∑𝑐
𝑟

Λ
𝜂 (Δ

𝐴

𝑟
)
Λ

, (144)

of 𝑃0
∞
{0} is a variational symmetry of a graded Lagrangian 𝐿.

Every equality (143) falls into a set of equalities graded by the
polynomial degree in antifields. Let us consider the equalities
which are linear in antifields 𝑐

𝑟
𝑘−2
. We have

⃖𝛿

𝛿𝑠
𝐴

(𝑐
𝑟
𝑘∑ℎ

(𝑟
𝑘−2 ,Σ)(𝐴,Ξ)
𝑟
𝑘

𝑐
Σ𝑟
𝑘−2

𝑠
Ξ𝐴

)E
𝐴
𝜔

+

⃖𝛿

𝛿𝑐
𝑟
𝑘−1

(𝑐
𝑟
𝑘∑Δ

𝑟
󸀠

𝑘−1,Σ
𝑟
𝑘

𝑐
Σ𝑟
󸀠

𝑘−1
)∑Δ

𝑟
𝑘−2 ,Ξ
𝑟
𝑘−1

𝑐
Ξ𝑟
𝑘−2

𝜔

= 𝑑
𝐻
𝜎
𝑘
.

(145)

This equality is brought into the form

∑(−1)|Ξ| 𝑑
Ξ
(𝑐
𝑟
𝑘∑ℎ

(𝑟
𝑘−2 ,Σ)(𝐴,Ξ)
𝑟
𝑘

𝑐
Σ𝑟
𝑘−2

)E
𝐴
𝜔

+𝑢
𝑟
𝑘−1 ∑Δ

𝑟
𝑘−2,Ξ
𝑟
𝑘−1

𝑐
Ξ𝑟
𝑘−2

𝜔 = 𝑑
𝐻
𝜎
𝑘
.

(146)

Using relation (134), we obtain the equality

∑𝑐
𝑟
𝑘ℎ
(𝑟
𝑘−2 ,Σ)(𝐴,Ξ)
𝑟
𝑘

𝑐
Σ𝑟
𝑘−2

𝑑
Ξ
E
𝐴
𝜔

+𝑢
𝑟
𝑘−1 ∑Δ

𝑟
𝑘−2,Ξ
𝑟
𝑘−1

𝑐
Ξ𝑟
𝑘−2

𝜔 = 𝑑
𝐻
𝜎
󸀠

𝑘
.

(147)

The variational derivative of both of its sides with respect to
𝑐
𝑟
𝑘−2

leads to the relation

∑𝑑
Σ
𝑢
𝑟
𝑘−1 𝜕

𝜕𝑐
𝑟
𝑘−1
Σ

𝑢
𝑟
𝑘−2 = 𝛿 (𝛼

𝑟
𝑘−2) ,

𝛼
𝑟
𝑘−2 = −∑𝜂 (ℎ

(𝑟
𝑘−2)(𝐴,Ξ)
𝑟
𝑘

)
Σ

𝑑
Σ
(𝑐
𝑟
𝑘𝑠
Ξ𝐴

) ,

(148)

which the odd graded derivation

𝑢
(𝑘)

= 𝑢
𝑟
𝑘−1 𝜕

𝜕𝑐𝑟𝑘−1
= ∑𝑐

𝑟
𝑘

Λ
𝜂 (Δ

𝑟
𝑘−1
𝑟
𝑘

)
Λ 𝜕

𝜕𝑐𝑟𝑘−1
,

𝑘 = 1, . . . , 𝑁,

(149)

satisfies. Graded derivations 𝑢 (144) and 𝑢
(𝑘) (149) constitute

the ascent operator (139).

A glance at the variational symmetry 𝑢 (144) shows that it
is a derivation of a ring 𝑃

0
∞
[0] which satisfies Definition 22.

Consequently, 𝑢 (144) is a gauge symmetry of a graded

Lagrangian 𝐿 associatedwith the complete nontrivial NI (99).
Therefore, it is a nontrivial gauge symmetry.

Turn now to relation (148). For 𝑘 = 1, it takes a form

∑𝑑
Σ
𝑢
𝑟

𝜕
Σ

𝑟
𝑢
𝐴

= 𝛿 (𝛼
𝐴

) (150)

of a first-stage gauge symmetry condition on-shell which the
nontrivial gauge symmetry 𝑢 (144) satisfies. Therefore, one
can treat the odd graded derivation

𝑢
(1)

= 𝑢
𝑟

𝜕
𝑟
, 𝑢

𝑟

= ∑𝑐
𝑟1
Λ
𝜂 (Δ

𝑟

𝑟1
)
Λ

, (151)

as a first-stage gauge symmetry associated with the complete
first-stage NI

∑Δ
𝑟,Λ

𝑟1
𝑑
Λ
(∑Δ

𝐴,Σ

𝑟
𝑠
Σ𝐴

) = − 𝛿 (∑ℎ
(𝐵,Σ)(𝐴,Ξ)

𝑟1
𝑠
Σ𝐵

𝑠
Ξ𝐴

) . (152)

Iterating the arguments, one comes to relation (148)
which provides a 𝑘-stage gauge symmetry condition which is
associated with the complete nontrivial 𝑘-stage NI (124). The
odd graded derivation 𝑢

(𝑘)
(149) is called the 𝑘-stage gauge

symmetry.
Thus, components of the ascent operator u (139) in

Theorem 33 are nontrivial gauge and higher-stage gauge
symmetries. Therefore, we agree to call this operator the
gauge one.

With the gauge operator (139), the extended Lagrangian
𝐿
𝑒
(140) takes a form

𝐿
𝑒
= 𝐿+ u( ∑

0≤𝑘≤𝑁
𝑐
𝑟
𝑘−1𝑐

𝑟
𝑘−1

)𝜔+𝐿
∗

1 +𝑑
𝐻
𝜎, (153)

where 𝐿
∗

1 is a term of polynomial degree in antifields
exceeding 1.

The correspondence of gauge and higher-stage gauge
symmetries to NI and higher-stage NI in Theorem 33 is
unique due to the following direct second Noether theorem.

Theorem34. (i) If 𝑢 (144) is a gauge symmetry, the variational
derivative of the 𝑑

𝐻
-exact density 𝑢

𝐴E
𝐴
𝜔 (142) with respect to

ghosts 𝑐𝑟 leads to the equality

𝛿
𝑟
(𝑢
𝐴

E
𝐴
𝜔) = ∑(−1)|Λ| 𝑑

Λ
[𝑢
𝐴Λ

𝑟
E
𝐴
]

= ∑ (−1)|Λ| 𝑑
Λ
(𝜂 (Δ

𝐴

𝑟
)
Λ

E
𝐴
)

= ∑(−1)|Λ| 𝜂 (𝜂 (Δ
𝐴

𝑟
))
Λ

𝑑
Λ
E
𝐴

= 0,

(154)

which reproduces the complete NI (99) by means of relation
(137).

(ii) Given the 𝑘-stage gauge symmetry condition (148), the
variational derivative of equality (147) with respect to ghosts 𝑐𝑟𝑘
leads to the equality, reproducing the 𝑘-stage NI (124) by means
of relations (135)–(137).

Remark 35. One can consider gauge symmetries which need
not be linear in ghosts. However, direct second Noether
Theorem 34 is not relevant to these gauge symmetries
because, in this case, an Euler–Lagrange operator satisfies the
identities depending on ghosts.
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9. Lagrangian BRST Theory

In contrast with the KT operator (121), the gauge operator u
(138) need not be nilpotent. Let us study its extension to a
nilpotent graded derivation

b = u+ 𝛾 = u+ ∑

1≤𝑘≤𝑁+1
𝛾
(𝑘)

= u+ ∑

1≤𝑘≤𝑁+1
𝛾
𝑟
𝑘−1 𝜕

𝜕𝑐𝑟𝑘−1

= (𝑢
𝐴

𝜕

𝜕𝑠𝐴
+ 𝛾

𝑟
𝜕

𝜕𝑐𝑟
)

+ ∑

0≤𝑘≤𝑁−1
(𝑢

𝑟
𝑘

𝜕

𝜕𝑐𝑟𝑘
+ 𝛾

𝑟
𝑘+1 𝜕

𝜕𝑐𝑟𝑘+1
)

(155)

of ghost number 1 by means of antifield-free terms 𝛾
(𝑘) of

higher polynomial degree in ghosts 𝑐𝑟𝑖 and their jets 𝑐𝑟𝑖
Λ
, 0 ≤

𝑖 < 𝑘. We call b (155) the BRST operator, where 𝑘-stage gauge
symmetries are extended to 𝑘-stage BRST transformations
acting both on (𝑘 − 1)-stage and 𝑘-stage ghosts [18]. If a
BRST operator exists, sequence (138) is brought into a BRST
complex

0 󳨀→ S
0,𝑛
∞

[𝐹; 𝑌]
b

󳨀→ 𝑃
0,𝑛
∞

{𝑁}
1 b
󳨀→ 𝑃

0,𝑛
∞

{𝑁}
2

b
󳨀→ ⋅ ⋅ ⋅ .

(156)

There is the following necessary condition of the existence
of such a BRST extension.

Theorem 36. The gauge operator (138) admits the nilpotent
extension (155) only if the gauge symmetry conditions (148) and
the higher-stage NI (124) are satisfied off-shell.

Proof. It is easily justified that if the graded derivation b (155)
is nilpotent, then the right-hand sides of equalities (148) equal
zero; that is,

𝑢
(𝑘+1)

(𝑢
(𝑘)

) = 0, 0 ≤ 𝑘 ≤ 𝑁 − 1, 𝑢
(0)

= 𝑢. (157)

Using relations (134)–(137), one can show that, in this case,
the right-hand sides of the higher-stage NI (124) also equal
zero [2]. It follows that the summand 𝐺

𝑟
𝑘

of each cocycle
Δ
𝑟
𝑘

(122) is 𝛿
𝑘−1-closed. Then its summand ℎ

𝑟
𝑘

also is 𝛿
𝑘−1-

closed and, consequently, 𝛿
𝑘−2-closed. Hence it is 𝛿𝑘−1-exact

by virtue ofCondition 1.Therefore,Δ
𝑟
𝑘

contains only the term
𝐺
𝑟
𝑘

linear in antifields.

It follows at once from equalities (157) that the higher-
stage gauge operator

𝑢HS = u−𝑢 = 𝑢
(1)

+ ⋅ ⋅ ⋅ + 𝑢
(𝑁) (158)

is nilpotent, and u(u) = 𝑢(u). Therefore, the nilpotency
condition for the BRST operator b (155) takes a form

b (b) = (𝑢 + 𝛾) (u) + (𝑢 + 𝑢HS + 𝛾) (𝛾) = 0. (159)

Let us denote

𝛾
(0)

= 0,

𝛾
(𝑘)

= 𝛾
(𝑘)

(2) + ⋅ ⋅ ⋅ + 𝛾
(𝑘)

(𝑘+1), 𝑘 = 1, . . . , 𝑁 + 1,

𝛾
𝑟
𝑘−1
(𝑖)

= ∑

𝑘1+⋅⋅⋅+𝑘𝑖=𝑘+1−𝑖
( ∑

0≤|Λ
𝑘
𝑗

|

𝛾
𝑟
𝑘−1,Λ 𝑘1 ,...,Λ 𝑘𝑖
(𝑖)𝑟
𝑘1 ,...,𝑟𝑘𝑖

𝑐
𝑟
𝑘1
Λ
𝑘1
⋅ ⋅ ⋅ 𝑐

𝑟
𝑘
𝑖

Λ
𝑘
𝑖

) ,

𝛾
(𝑁+2)

= 0,

(160)

where 𝛾
(𝑘)

(𝑖)
are terms of polynomial degree 2 ≤ 𝑖 ≤ 𝑘 + 1 in

ghosts. Then the nilpotent property (159) of b falls into a set
of equalities

𝑢
(𝑘+1)

(𝑢
(𝑘)

) = 0, 0 ≤ 𝑘 ≤ 𝑁 − 1, (161)

(𝑢 + 𝛾
(𝑘+1)
(2) ) (𝑢

(𝑘)

) + 𝑢HS (𝛾
(𝑘)

(2)) = 0,

0 ≤ 𝑘 ≤ 𝑁 + 1,
(162)

𝛾
(𝑘+1)
(𝑖)

(𝑢
(𝑘)

) + 𝑢 (𝛾
(𝑘)

(𝑖−1)) + 𝑢HS (𝛾
𝑘

(𝑖)
)

+ ∑

2≤𝑚≤𝑖−1
𝛾
(𝑚)

(𝛾
(𝑘)

(𝑖−𝑚+1)) = 0, 𝑖 − 2 ≤ 𝑘 ≤ 𝑁 + 1,
(163)

of ghost polynomial degrees 1, 2, and 3 ≤ 𝑖 ≤ 𝑁 + 3,
respectively.

Equalities (161) are exactly the gauge symmetry condi-
tions (157) in Theorem 36.

Equality (162) for 𝑘 = 0 reads

(𝑢 + 𝛾
(1)

) (𝑢) = 0,

∑ (𝑑
Λ
(𝑢
𝐴

) 𝜕
Λ

𝐴
𝑢
𝐵

+𝑑
Λ
(𝛾
𝑟

) 𝑢
𝐵,Λ

𝑟
) = 0.

(164)

It takes a form of the Lie antibracket

[𝑢, 𝑢] = − 2𝛾(1) (𝑢) = − 2∑𝑑
Λ
(𝛾
𝑟

) 𝑢
𝐵,Λ

𝑟
𝜕
𝐵

(165)

of an odd gauge symmetry 𝑢. Its right-hand side factorizes
through 𝑢, but it is nonlinear in ghosts.

Equalities (162)-(163) for 𝑘 = 1 take a form

(𝑢 + 𝛾
(2)
(2)) (𝑢

(1)
) + 𝑢

(1)
(𝛾
(1)

) = 0,

𝛾
(2)
(3) (𝑢

(1)
) + (𝑢 + 𝛾

(1)
) (𝛾

(1)
) = 0.

(166)

In particular, if a Lagrangian system is irreducible, that is,
𝑢
(𝑘)

= 0, the BRST operator reads

b = 𝑢+ 𝛾
(1)

= 𝑢
𝐴

𝜕
𝐴
+ 𝛾

𝑟

𝜕
𝑟

= ∑𝑢
𝐴,Λ

𝑟
𝑐
𝑟

Λ
𝜕
𝐴
+∑𝛾

𝑟,Λ,Ξ

𝑝𝑞
𝑐
𝑝

Λ
𝑐
𝑞

Ξ
𝜕
𝑟
.

(167)

In this case, the nilpotency conditions (166) are reduced to
the equality

(𝑢 + 𝛾
(1)

) (𝛾
(1)

) = 0. (168)
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Furthermore, let a gauge symmetry 𝑢 be affine in fields 𝑠𝐴 and
their jets. It follows from the nilpotency condition (164) that
the BRST term 𝛾

(1) is independent of original fields and their
jets. Then relation (168) takes a form of the Jacobi identity

𝛾
(1)

(𝛾
(1)

) = 0 (169)

for coefficient functions 𝛾𝑟,Λ,Ξ
𝑝𝑞

(𝑥) in the Lie antibracket (165).
Relations (165) and (169)motivate us to think of equalities

(162)-(163) in a general case of reducible gauge symme-
tries as being sui generis generalized commutation relations
and Jacobi identities of gauge symmetries, respectively [18].
Therefore, one can say that gauge symmetries are algebraically
closed (in the terminology of [19]) if the gauge operator u
(139) admits the nilpotent BRST extension b (155).

The DBGA P∗

∞
{𝑁} (133) is a particular field-antifield

theory of the following type [2, 15, 19].
Let us consider a pull-back composite bundle

𝑊 = 𝑍 ×
𝑋

𝑍
󸀠

󳨀→ 𝑍 󳨀→ 𝑋, (170)

where 𝑍
󸀠

→ 𝑋 is a vector bundle. Let us regard it as an odd
graded vector bundle over 𝑍. The density-dual 𝑉𝑊 of the
vertical tangent bundle 𝑉𝑊 of 𝑊 → 𝑋 is a graded vector
bundle

𝑉𝑊 = ((𝑍󸀠⨁

𝑍

𝑉
∗

𝑍)⨁

𝑍

𝑛

⋀ 𝑇
∗

𝑋)⨁

𝑌

𝑍
󸀠 (171)

over𝑍 (cf. (90)). Let us consider theDBGAP∗

∞
[𝑉𝑊;𝑍] (92)

with the local generating basis (𝑧
𝑎

, 𝑧
𝑎
), [𝑧

𝑎
] = [𝑧

𝑎

] + 1. Its
elements 𝑧𝑎 and 𝑧

𝑎
are called fields and antifields, respectively.

Graded densities of this DBGA are endowed with the
antibracket

{L𝜔,L
󸀠

𝜔} = [

⃖𝛿L

𝛿𝑧
𝑎

𝛿L󸀠

𝛿𝑧𝑎
+ (−1)[L

󸀠

]([L󸀠]+1) ⃖𝛿L󸀠

𝛿𝑧
𝑎

𝛿L

𝛿𝑧𝑎
]𝜔. (172)

Then one associates with any (even) Lagrangian L𝜔 the odd
vertical graded derivations

𝜐L = E⃖
𝑎

𝜕
𝑎
=

⃖𝛿L

𝛿𝑧
𝑎

𝜕

𝜕𝑧𝑎
,

𝜐L = 𝜕⃖
𝑎

E
𝑎
=

𝜕⃖

𝜕𝑧
𝑎

𝛿L

𝛿𝑧𝑎
,

(173)

𝜗L = 𝜐L + 𝜐
𝑙

L = (−1)[𝑎]+1 ( 𝛿L

𝛿𝑧
𝑎

𝜕

𝜕𝑧
𝑎

+
𝛿L

𝛿𝑧𝑎

𝜕

𝜕𝑧
𝑎

) , (174)

such that 𝜗L(L
󸀠

𝜔) = {L𝜔,L󸀠𝜔}.

Theorem 37. The following conditions are equivalent [2, 12].

(i) The antibracket of a Lagrangian L𝜔 is 𝑑
𝐻
-exact; that

is,

{L𝜔,L𝜔} = 2
⃖𝛿L

𝛿𝑧
𝑎

𝛿L

𝛿𝑧𝑎
𝜔 = 𝑑

𝐻
𝜎. (175)

(ii) The graded derivation 𝜗L (174) is nilpotent.

Equality (175) is called the classical master equation. A
solution of the master equation (175) is called nontrivial if
both derivations (173) do not vanish.

Being an element of the DBGAP∗

∞
{𝑁} (133), an original

Lagrangian 𝐿 obeys the master equation (175) and yields the
graded derivations 𝜐

𝐿
= 0, 𝜐

𝐿
= 𝛿 (173); that is, it is a trivial

solution of the master equation. However, its extension 𝐿
𝑒

(153) need not satisfy the master equation. Therefore, let us
consider its extension

𝐿
𝐸
= 𝐿

𝑒
+𝐿

󸀠

= 𝐿+𝐿1 +𝐿2 + ⋅ ⋅ ⋅ (176)

by means of even densities 𝐿
𝑖
, 𝑖 ≥ 2, of zero antifield number

and polynomial degree 𝑖 in ghosts. Then the following is a
corollary of Theorem 37.

Corollary 38. ALagrangian 𝐿 is extended to a proper solution
𝐿
𝐸
(176) of the master equation iff the gauge operator u (138)

admits a nilpotent extension 𝜗
𝐸
(174).

However, one can say something more [2, 12].

Theorem 39. If the gauge operator u (138) can be extended
to the BRST operator b (155), then the master equation has a
nontrivial proper solution

𝐿
𝐸
= 𝐿

𝑒
+ ∑

1≤𝑘≤𝑁
𝛾
𝑟
𝑘−1𝑐

𝑟
𝑘−1

𝜔

= 𝐿+ b( ∑

0≤𝑘≤𝑁
𝑐
𝑟
𝑘−1𝑐

𝑟
𝑘−1

)𝜔+𝑑
𝐻
𝜎,

(177)

such that b = 𝜐
𝐸
is the graded derivation defined by the

Lagrangian 𝐿
𝐸
(177).

The Lagrangian 𝐿
𝐸
(177) is said to be the BRST extension

of an original Lagrangian 𝐿.

10. Example: Topological BF Theory

We address the topological BF theory of two exterior forms𝐴
and 𝐵 of form degree |𝐴|+ |𝐵| = dim𝑋−1 on a smoothman-
ifold𝑋 [20, 27]. It is reducible degenerate Lagrangian theory
which satisfies homology regularity condition (Condition 1).
Its dynamic variables 𝐴 and 𝐵 are sections of a fibre bundle

𝑌 =

𝑝

⋀ 𝑇
∗

𝑋⊕

𝑞

⋀ 𝑇
∗

𝑋,

𝑝+ 𝑞 = 𝑛− 1 > 1,
(178)

coordinated by (𝑥
𝜆

, 𝐴
𝜇1 ⋅⋅⋅𝜇𝑝

, 𝐵]1 ⋅⋅⋅]𝑞). Without loss of general-
ity, let 𝑞 be even and 𝑞 ≥ 𝑝. The corresponding differential
graded algebra is O∗

∞
(41).

There are canonical 𝑝- and 𝑞-forms

𝐴 = 𝐴
𝜇1 ⋅⋅⋅𝜇𝑝

𝑑𝑥
𝜇1 ∧ ⋅ ⋅ ⋅ ∧ 𝑑𝑥

𝜇
𝑝 ,

𝐵 = 𝐵]1 ⋅⋅⋅]𝑞𝑑𝑥
]1 ∧ ⋅ ⋅ ⋅ ∧ 𝑑𝑥

]
𝑞

(179)
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on 𝑌. A Lagrangian of topological BF theory reads

𝐿BF = 𝐴∧𝑑
𝐻
𝐵 = 𝜖

𝜇1⋅⋅⋅𝜇𝑛𝐴
𝜇1⋅⋅⋅𝜇𝑝

𝑑
𝜇
𝑝+1

𝐵
𝜇
𝑝+2 ⋅⋅⋅𝜇𝑛

𝜔, (180)

where 𝜖 is the Levi–Civita symbol. It is a reduced first order
Lagrangian. Its first order Euler–Lagrange operator

𝛿𝐿 = E
𝜇1 ⋅⋅⋅𝜇𝑝
𝐴

𝑑𝐴
𝜇1 ⋅⋅⋅𝜇𝑝

∧𝜔+E
]
𝑝+2⋅⋅⋅]𝑛
𝐵

𝑑𝐵]
𝑝+2 ⋅⋅⋅]𝑛

∧𝜔,

E
𝜇1 ⋅⋅⋅𝜇𝑝
𝐴

= 𝜖
𝜇1 ⋅⋅⋅𝜇𝑛𝑑

𝜇
𝑝+1

𝐵
𝜇
𝑝+2 ⋅⋅⋅𝜇𝑛

,

E
𝜇
𝑝+2 ⋅⋅⋅𝜇𝑛
𝐵

= − 𝜖
𝜇1 ⋅⋅⋅𝜇𝑛𝑑

𝜇
𝑝+1

𝐴
𝜇1 ⋅⋅⋅𝜇𝑝

(181)

satisfies the Noether identities

𝑑
𝜇1
E
𝜇1 ⋅⋅⋅𝜇𝑝
𝐴

= 0,

𝑑]1E
]1⋅⋅⋅]𝑞
𝐵

= 0.
(182)

Given a family of vector bundles

𝐸
𝑘
=

𝑝−𝑘−1

⋀ 𝑇
∗

𝑋×
𝑋

𝑞−𝑘−1

⋀ 𝑇
∗

𝑋, 0 ≤ 𝑘 < 𝑝 − 1,

𝐸
𝑘
= R×

𝑋

𝑞−𝑝

⋀ 𝑇
∗

𝑋, 𝑘 = 𝑝 − 1,

𝐸
𝑘
=

𝑞−𝑘−1

⋀ 𝑇
∗

𝑋, 𝑝 − 1 < 𝑘 < 𝑞 − 1,

𝐸
𝑞−1 = 𝑋×R,

(183)

let us enlarge an original differential graded algebraO∗
∞
to the

BGDAP∗

∞
{𝑞 − 1} (133) which is

P
∗

∞
{𝑞 − 1} = P

∗

∞
[𝑉𝑌⨁

𝑌

𝐸0

⊕ ⋅ ⋅ ⋅⨁

𝑌

𝐸
𝑞−1⨁

𝑌

𝐸0⨁
𝑌

⋅ ⋅ ⋅⨁

𝑌

𝐸
𝑞−1; 𝑌] .

(184)

It possesses a local generating basis

{𝐴
𝜇1 ⋅⋅⋅𝜇𝑝

, 𝐵]1 ⋅⋅⋅]𝑞 , 𝜀𝜇2⋅⋅⋅𝜇𝑝 , . . . , 𝜀𝜇𝑝 , 𝜀, 𝜉]2 ⋅⋅⋅]𝑞 , . . . , 𝜉]𝑞 , 𝜉,

𝐴
𝜇1⋅⋅⋅𝜇𝑝

, 𝐵
]1 ⋅⋅⋅]𝑞

, 𝜀
𝜇2 ⋅⋅⋅𝜇𝑝 , . . . , 𝜀

𝜇
𝑝 , 𝜀, 𝜉

]2⋅⋅⋅]𝑞
, . . . , 𝜉

]
𝑞

, 𝜉}

(185)

of Grassmann parity

[𝜀
𝜇
𝑘
⋅⋅⋅𝜇
𝑝

] = [𝜉]
𝑘
⋅⋅⋅]
𝑞

] = (𝑘 + 1) mod 2,

[𝜀] = 𝑝 mod 2, [𝜉] = 0,

[𝜀
𝜇
𝑘
⋅⋅⋅𝜇
𝑝] = [𝜉

]
𝑘
⋅⋅⋅]
𝑞

] = 𝑘 mod 2,

[𝜀] = (𝑝 + 1) mod 2, [𝜉] = 1,

(186)

of ghost number

gh [𝜀
𝜇
𝑘
⋅⋅⋅𝜇
𝑝

] = gh [𝜉]
𝑘
⋅⋅⋅]
𝑞

] = 𝑘,

gh [𝜀] = 𝑝 + 1, gh [𝜉] = 𝑞 + 1,
(187)

and of antifield number

Ant [𝐴𝜇1 ⋅⋅⋅𝜇𝑝] = Ant [𝐵]
𝑝+1⋅⋅⋅]𝑞

] = 1,

Ant [𝜀𝜇𝑘⋅⋅⋅𝜇𝑝] = Ant [𝜉
]
𝑘
⋅⋅⋅]
𝑞

] = 𝑘 + 1,

Ant [𝜀] = 𝑝,

Ant [𝜀] = 𝑞.

(188)

One can show that homology regularity condition (Con-
dition 1) holds ([20, Lemma 4.5.5]), and theDBGAP∗

∞
{𝑞−1}

(184) is endowed with the Koszul–Tate operator

𝛿KT =
𝜕⃖

𝜕𝐴
𝜇1 ⋅⋅⋅𝜇𝑝

E
𝜇1 ⋅⋅⋅𝜇𝑝
𝐴

+
𝜕⃖

𝜕𝐵
]1⋅⋅⋅]𝑞E

]1 ⋅⋅⋅]𝑞
𝐵

+ ∑

2≤𝑘≤𝑝

𝜕⃖

𝜕𝜀
𝜇
𝑘
⋅⋅⋅𝜇
𝑝

Δ
𝜇
𝑘
⋅⋅⋅𝜇
𝑝

𝐴
+

𝜕⃖

𝜕𝜀
𝑑
𝜇
𝑝

𝜀
𝜇
𝑝

+ ∑

2≤𝑘≤𝑞

𝜕⃖

𝜕𝜉
]
𝑘
⋅⋅⋅]
𝑞

Δ
]
𝑘
⋅⋅⋅]
𝑞

𝐵
+

𝜕⃖

𝜕𝜉

𝑑]
𝑞

𝜉
]
𝑞

,

Δ
𝜇2⋅⋅⋅𝜇𝑝
𝐴

= 𝑑
𝜇1
𝐴
𝜇1 ⋅⋅⋅𝜇𝑝

,

Δ
𝜇
𝑘+1⋅⋅⋅𝜇𝑝
𝐴

= 𝑑
𝜇
𝑘

𝜀
𝜇
𝑘
𝜇
𝑘+1⋅⋅⋅𝜇𝑝 ,

2 ≤ 𝑘 < 𝑝,

Δ
]2 ⋅⋅⋅]𝑞
𝐵

= 𝑑]1𝐵
]1⋅⋅⋅]𝑞

,

Δ
]
𝑘+1⋅⋅⋅]𝑞
𝐵

= 𝑑]
𝑘

𝜉
]
𝑘
]
𝑘+1⋅⋅⋅]𝑞

,

2 ≤ 𝑘 < 𝑞.

(189)

Its nilpotentness provides the complete Noether identities
(182) and the (𝑘 − 1)-stage ones

𝑑
𝜇
𝑘

Δ
𝜇
𝑘
⋅⋅⋅𝜇
𝑝

𝐴
= 0, 𝑘 = 2, . . . , 𝑝,

𝑑]
𝑘

Δ
]
𝑘
⋅⋅⋅]
𝑞

𝐵
= 0, 𝑘 = 2, . . . , 𝑞.

(190)

It follows that the topological BF theory is (𝑞 − 1)-reducible.
Applying inverse second Noether Theorem 33, one

obtains the gauge operator (139) which reads

u = 𝑑
𝜇1
𝜀
𝜇2⋅⋅⋅𝜇𝑝

𝜕

𝜕𝐴
𝜇1𝜇2⋅⋅⋅𝜇𝑝

+𝑑]1𝜉]2 ⋅⋅⋅]𝑞
𝜕

𝜕𝐵]1]2 ⋅⋅⋅]𝑞

+[𝑑
𝜇2
𝜀
𝜇3 ⋅⋅⋅𝜇𝑝

𝜕

𝜕𝜀
𝜇2𝜇3⋅⋅⋅𝜇𝑝

+ ⋅ ⋅ ⋅ + 𝑑
𝜇
𝑝

𝜀
𝜕

𝜕𝜀
𝜇
𝑝

]

+[𝑑]2𝜉]3⋅⋅⋅]𝑞
𝜕

𝜕𝜉]2]3 ⋅⋅⋅]𝑞
+ ⋅ ⋅ ⋅ + 𝑑]

𝑞

𝜉
𝜕

𝜕𝜉]
𝑞

] .

(191)



Advances in Mathematical Physics 19

In particular, a gauge symmetry of the Lagrangian 𝐿BF (180)
is

𝑢 = 𝑑
𝜇1
𝜀
𝜇2 ⋅⋅⋅𝜇𝑝

𝜕

𝜕𝐴
𝜇1𝜇2 ⋅⋅⋅𝜇𝑝

+𝑑]1𝜉]2 ⋅⋅⋅]𝑞
𝜕

𝜕𝐵]1]2 ⋅⋅⋅]𝑞
. (192)

It also is readily observed that the gauge operator u (191)
is nilpotent. Thus, it is the BRST operator b = u. As a result,
the Lagrangian 𝐿BF is extended to the proper solution of the
master equation 𝐿

𝐸
= 𝐿

𝑒
(177) which reads

𝐿
𝑒
= 𝐿BF + 𝜀

𝜇2 ⋅⋅⋅𝜇𝑝
𝑑
𝜇1
𝐴
𝜇1 ⋅⋅⋅𝜇𝑝

+ ∑

1<𝑘<𝑝
𝜀
𝜇
𝑘+1⋅⋅⋅𝜇𝑝

𝑑
𝜇
𝑘

𝜀
𝜇
𝑘
⋅⋅⋅𝜇
𝑝

+ 𝜀𝑑
𝜇
𝑝

𝜀
𝜇
𝑝 + 𝜉]2 ⋅⋅⋅]𝑞𝑑]1𝐵

]1 ⋅⋅⋅]𝑞

+ ∑

1<𝑘<𝑞
𝜉]
𝑘+1 ⋅⋅⋅]𝑞𝑑]

𝑘

𝜉
]
𝑘
⋅⋅⋅𝜇
𝑞

+ 𝜉𝑑]
𝑞

𝜉
]
𝑞

.

(193)
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