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A quantum computation for the Rabi oscillation based on quantum dots in the subdynamic system is presented.The working states
of the original Rabi oscillation are transformed to the eigenvectors of subdynamic system. Then the dissipation and decoherence
of the system are only shown in the change of the eigenvalues as phase errors since the eigenvectors are fixed. This allows both
dissipation and decoherence controlling to be easier by only correcting relevant phase errors. This method can be extended to
general quantum computation systems.

1. Introduction

The Rabi oscillation based on the quantum dot system is
an efficient way to realize quantum logic operation [1]. The
projected formalism of control rotation gate (CROT) for two
qubits is expressed as negative CNOT operation [2]. The
physical observation of the Rabi oscillation with 10𝜋 period
has been reported, and the detail analysis of quantum com-
putation based on the Rabi oscillation and relevant mech-
anism of decoherence and dissipation have been discussed
by several works with various methods [3–12]. However,
the controlling dissipation and decoherence in the Rabi
oscillation system is still an important problem to challenge
application of the Rabi oscillation in quantum computation.

On the other hand, subdynamics theory rooted from the
old Brussels-Austin school [13–15] and followed by some up-
to-date works [16, 17] has been found that there is a potential
advantage to cancel both decoherence and dissipation in
quantum information systems.This is so because the relevant
subdynamic kinetic equation (SKE) intertwines with the
original Schrödinger equation or Liouville equation by a sim-
ilarity transformation, which allows to construct the relative
ideal subdynamic system in which the eigenvectors are fixed
when decoherence or dissipation happens. Therefore the
errors will only exist in the phase change of the evolution of
projected states whichmakes easier to cancel the decoherence
and dissipation.

Considering this background, in this work, we present a
subdynamic proposal [13–20] to realize quantum computing
based on the Rabi oscillation. This proposal can provide a
relative ideal Rabi oscillation used in quantum computing
by controlling both dissipation and decoherence. Below the
formalism is firstly introduced.

2. Subdynamic Formalism

Let us consider a two-level system described by a Hamilto-
nian:

�̂� (𝑡) = 𝜔
0
𝜎
00

+ 𝜔
1
𝜎
11

+

1

2

𝑔 (𝜎
10
𝑒
−𝑖𝜔𝐿𝑡

+ 𝜎
01
𝑒
+𝑖𝜔𝐿𝑡

) , (1)

where 𝜔
0
and 𝜔

1
is an eigen-frequency of states |0⟩ and

|1⟩, respectively; 𝜎
00

= |0⟩⟨0|, 𝜎
11

= |1⟩⟨1|, 𝜎
01

=

|0⟩⟨1|, and 𝜎
10

= |1⟩⟨0|; 𝜔
𝐿
is a frequency of exciting

optical field; 𝑔 = −𝜇𝐸(0) is a Rabi frequency between
states |0⟩ and |1⟩ jumping, 𝜇 is a dipole moment between
|0⟩ and |1⟩ jumping, and 𝐸(𝑡) is an envelope of exciting
optical field, 𝐸(𝑡) = 𝐸(0) cos𝜔

𝐿
𝑡 = (1/2)𝐸(0)(𝑒

−𝑖𝜔𝐿𝑡
+

𝑒
+𝑖𝜔𝐿𝑡

). Notice the so-called rotation wave approximation
has been used to produce above Hamiltonian. Then, for
simplicity, here the explicitly time-dependent Hamiltonian
can be transformed to the time-independent one by a time-
dependent unitary transformation 𝑈

00
(𝑡) = exp(−𝑖𝜔

𝐿
𝑡𝜎
00
),
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where 𝜎
00

= |0⟩⟨0| is a projector [21]. So we obtain a time-
independent Hamiltonian as

𝐻 = 𝑈
−1

00
(𝑡) �̂� (𝑡) 𝑈00 (

𝑡)

= 𝜔
0
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+ 𝜔
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𝜎
11

+

1

2

𝑔 (𝜎
01

+ 𝜎
10
) = 𝐻

0
+ 𝐻
1
,

(2)

where defining

𝐻
0
= 𝜔
0
𝜎
00

+ 𝜔
1
𝜎
11
,

𝐻
1
=

1

2

𝑔 (𝜎
01

+ 𝜎
10
) .

(3)

When the exciting optical field takes off, 𝑈
00
(𝑡) = 1, we have

�̂�(𝑡) = 𝐻. So, the corresponding Schrödinger equation for
the Hamiltonian in (2) is

𝑖

𝜕𝜓

𝜕𝑡

= 𝐻𝜓, (4)

which can reflect the same dynamics described by the
Hamiltonian in (1).

If considering the influence of environment, the total
Hamiltonian can be supposed as 𝐻 = 𝐻

0
+ 𝐻
1
+ Δ𝐻,

where Δ𝐻 comes from the interaction between the system
and environment, which may introduce dissipation and
decoherence in the system. Then a main frame to construct
the subdynamic systems is, firstly to establish a subdynamic
equation [13–19], as

𝑖

𝜕

𝜕𝑡

�̃� = Θ�̃�, (5)

where �̃� is a projected state, 𝐻 + Δ𝐻 = ΩΘΩ
−1, and Ω is

a similarity operator. These parameters and relations can be
constructed by the following several rules.

(1) Propose projectors as

𝑃
𝑛𝑘

=




𝑛 ⊗ 𝜑
𝑘
⟩ ⟨𝑛 ⊗ 𝜑

𝑘





,

for 𝑛 = 0, 1, 𝑘 = 0, 1, 2, . . . ,

(6)

and 𝑄
𝑛𝑘

= 1 − 𝑃
𝑛𝑘
, where 𝑛 corresponds to the index

of eigenvectors for Hamiltonian in system, 𝑘 denotes the
index to the Hamiltonian in environment, and 𝜑

𝑘
is the 𝑘th

eigenvector of diagonal part of the interaction Hamiltonian
between the system and environment.

(2) Introduce the creation (destruction) operator
expressed as

𝐶
𝑛𝑘

= 𝑃
𝑛𝑘
𝐻𝑃
𝑛𝑘

+ 𝑃
𝑛𝑘
Δ𝐻𝑄
𝑛𝑘

1

𝐸
𝑛𝑘

− 𝑄
𝑛𝑘 (

𝐻 + Δ𝐻)𝑄𝑛𝑘

𝑄
𝑛𝑘
Δ𝐻𝑃
𝑛𝑘
,

𝐶
†

𝑛𝑘
= 𝐷
𝑛𝑘
.

(7)

(3) Introduce the projected state in the subdynamic
system as

�̃� = Ω
−1
𝜓, (8)

where𝜓 is a solution of the original Schrödinger equation and
the similarity operatorΩ is defined by

Ω
𝑛𝑘

= (𝐶
𝑛𝑘

+ 𝑃
𝑛𝑘
) ,

Ω =
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Ω
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=
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∑

𝑘

Ω
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=
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)
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) .

(9)

(4)The ruling equation is subdynamic Liouville equation:

𝑖

𝜕

𝜕𝑡

𝜌 = [Θ, 𝜌] , (10)

where Θ operator is introduced by

Θ =

1

∑

𝑛=0

∑

𝑘

Θ
𝑛𝑘

=

1

∑

𝑛=0

∑

𝑘

(𝑃
𝑛𝑘
𝐻𝑃
𝑛𝑘

+ 𝑃
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Δ𝐻𝑄
𝑛𝑘
𝐶
𝑛𝑘
𝑃
𝑛𝑘
) ,

(11)

and the relationship of the aboveΘ operator with the original
𝐻+Δ𝐻 can be proven by a kind of similarity transformation:

Θ = Ω
−1

(𝐻 + Δ𝐻)Ω. (12)

So it is obvious to use (12) and consider (8); one can obtain
SKE (5) from the Schrödinger equation or the Liouville
equation.

3. Rabi Oscillation in Subdynamic Space

Using the Rabi oscillation between |1⟩ (or |1⟩⟨1|) and |0⟩

(or |0⟩⟨0|) as the working states of quantum computation
is a reasonable approach of quantum computing based on
quantum dot system [11, 22]. In the ideal situation, Δ𝐻 = 0,
the Liouville equation for this two-level system with the Rabi
oscillation is expressed by

𝑖𝑈
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𝜕𝜌

𝜕𝑡

𝑈
11 (

𝑡) = 𝑈
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−1

11
(𝑡) 𝜌𝐻𝑈

11
(𝑡)

= 𝑈
−1

11
(𝑡) 𝑈11 (
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− 𝑈
−1

11
(𝑡) 𝜌𝑈

11
(𝑡) �̂� (𝑡) 𝑈

−1

11
(𝑡) 𝑈
11
(𝑡)

= �̂� (𝑡) 𝑈
−1

11
(𝑡) 𝜌𝑈11 (

𝑡) − 𝑈
−1

11
(𝑡) 𝜌𝑈11 (
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Advances in Mathematical Physics 3

where one notices that using (13) one has

𝜕𝑈
−1

11
(𝑡)

𝜕𝑡

𝜌𝑈
11
(𝑡) + 𝑈

−1
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(𝑡) 𝜌

𝜕𝑈
11 (

𝑡)

𝜕𝑡

= 0,

𝜌 = 𝑈
11 (

𝑡) 𝜌 (𝑡) 𝑈
−1

11
(𝑡)

= 𝜌
11 |

1⟩ ⟨1| + 𝜌
00 |

0⟩ ⟨0| + 𝜌
10 |

1⟩ ⟨0|

+ 𝜌
01 |

0⟩ ⟨1| .

(14)

Then, from (13) one gets the time-independent equations of
⟨𝑛|𝜌|𝑚⟩ = 𝜌

𝑛𝑚
as

𝑖

𝑑

𝑑𝑡

𝜌
11

=

1

2

𝑔 (𝜌
01

− 𝜌
10
) ,

𝑖

𝑑

𝑑𝑡

𝜌
00

= −𝑖

𝑑

𝑑𝑡

𝜌
11

= −

1

2

𝑔 (𝜌
01

− 𝜌
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) ,

𝑖

𝑑

𝑑𝑡

𝜌
10

=

1

2

𝑔 (𝜌
00

− 𝜌
11
) .

(15)

Then by introducing 𝑈, 𝑉,𝑊 as a Bloch vector, that is,

�⃗� = 𝑈𝑒
1
+ 𝑉𝑒
2
+𝑊𝑒
3

(16)

with

𝑈 = 𝜌
10

+ 𝜌
01
,

𝑉 = 𝑖 (𝜌
10

− 𝜌
01
) ,

𝑊 = 𝜌
11

− 𝜌
00
,

(17)

where 𝑒
1
, 𝑒
2
, 𝑒
3
is an unit vector, respectively, and 𝑒

𝑖
⋅ 𝑒
𝑗
= 𝛿
𝑖𝑗
,

thus (15) can be changed as

𝑑

𝑑𝑡

(

𝑈

𝑉

𝑊

) = (

0 0 0

0 0 𝑔

0 −𝑔 0

)(

𝑈

𝑉

𝑊

). (18)

Then using the subdynamic similarity operatorΩ above, one
gets

Ω
−1(

(

(

𝑑𝑈

𝑑𝑡

𝑑𝑉

𝑑𝑡

𝑑𝑊

𝑑𝑡

)
)

)

= Ω
−1

(

0 0 0

0 −0 𝑔

0 −𝑔 0

)ΩΩ
−1

(

𝑈

𝑉

𝑊

), (19)

𝑑

𝑑𝑡

(

�̃�

�̃�

�̃�

) = (

Θ
1

0 0

0 Θ
2

0

0 0 Θ
3

)(

�̃�

�̃�

�̃�

) . (20)

The solution of (20) is given by

Ω(

�̃� (𝑡)

�̃� (𝑡)

�̃� (𝑡)

) = Ω(

−𝑖𝑔 0 0

0 𝑖𝑔 0

0 0 0

)Ω
−1
Ω(

�̃� (0)

�̃� (0)

�̃� (0)

) , (21)

where

(

𝑈

𝑉

𝑊

) = Ω(

�̃�

�̃�

�̃�

) = (

0 0 1

𝑖 −𝑖 0

1 1 0

)(

�̃�

�̃�

�̃�

) , (22)

so (20) can also give a solution based on the Bloch ball,

(

𝑈(𝑡)

𝑉 (𝑡)

𝑊 (𝑡)

) = (

1 0 0

0 cos 𝜃 − sin 𝜃

0 sin 𝜃 cos 𝜃
)(

𝑈(0)

𝑉 (0)

𝑊 (0)

) , (23)

where 𝜃 is defined as a radial rotation angle. In the initial
condition (by considering (17)which corresponds to an initial
pure state of the Rabi oscillation 𝜌

00
= 1 and else three states,

𝜌
11
, 𝜌
01
, and 𝜌

10
as zero), one gets

(

𝑈(0)

𝑉 (0)

𝑊 (0)

) = (

0

0

−1

) . (24)

This allows one, from (23), to get

(

𝑈(𝑡)

𝑉 (𝑡)

𝑊 (𝑡)

) = (

0

− sin 𝜃 (𝑡)

− cos 𝜃 (𝑡)
) , (25)

which reflects the Rabi oscillation in the ideal situation
without the interaction from environment.

4. Controlling Dissipation and Decoherence

Now let us consider there is an interaction between the system
and environment. This can introduce some dissipation and
decoherence. For example, an interaction of Liouvillian for
the Rabi oscillation system can be specified by

Δ𝐿 (𝜌) =

1

2

𝛾
10
(2𝜎
01
𝜌𝜎
10

− 𝜎
11
𝜌 − 𝜌𝜎

11
) , (26)

where 𝜎
10

or 𝜎
01

expressed the same meaning as in (1) and
𝛾
10

is a coupling number reflecting dissipation velocity. So
the corresponding master equation for the pseudovector 𝜌 =
(𝜌
00
, 𝜌
11
, 𝜌
01
, 𝜌
10
) is expressed as

𝑑

𝑑𝑡

𝜌
11

= −𝑖

1

2

𝑔 (𝜌
01

− 𝜌
10
) − 𝛾
10
𝜌
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,

𝑑

𝑑𝑡

𝜌
00

= −

𝑑

𝑑𝑡

𝜌
11

= 𝑖

1

2

𝑔 (𝜌
01

− 𝜌
10
) + 𝛾
10
𝜌
11
,

𝑑

𝑑𝑡

𝜌
10

= −𝑖𝛿𝜌
10

− 𝑖

1

2

𝑔 (𝜌
00

− 𝜌
11
) −

1

2

𝛾
10
𝜌
10
;

(27)



4 Advances in Mathematical Physics

then through the subdynamic similarity operator Ω one
obtains

𝑖

𝑑

𝑑𝑡

Ω
−1

(

𝑈

𝑉

𝑊

)

= Ω
−1

(

−

1

𝑇
2

−𝛿 0

𝛿 −

1

𝑇
2

𝑔

0 −𝑔 −

1

𝑇
1

)ΩΩ
−1

(

𝑈

𝑉

𝑊

)

+Ω
−1

(

0

0

−

1

𝑇
1

),

(28)

where we notice that 𝛿 = 𝜔
1
−𝜔
0
−𝜔
𝐿
; 𝑇
2
= 1/2𝑇

1
+𝛾ph, 𝑇1 =

1/𝛾
10
expresses the life time of state |1⟩, and 𝛾ph is a coupling

number reflecting pure phase decoherence.Then considering
(18) one can define

(L + ΔL)(
𝑈

𝑉

𝑊

) = (

−

1

𝑇
2

−𝛿 0

𝛿 −

1

𝑇
2

𝑔

0 −𝑔 −

1

𝑇
1

)(

𝑈

𝑉

𝑊

)

+(

0

0

−

1

𝑇
1

).

(29)

This allows us to introduce the subdynamics for (𝑈, 𝑉,𝑊) →

𝜌 = (𝜌
00
, 𝜌
11
, 𝜌
22
, 𝜌
01
, 𝜌
10
) or �̃� = (𝜌

00
, 𝜌
11
, 𝜌
22
, 𝜌
01
, 𝜌
10
) by the

above formalism:

𝑑

𝑑𝑡

Ω
−1
𝜌 (𝑡) = Ω

−1
(L + ΔL) ΩΩ

−1
𝜌 (𝑡) = Θ𝜌 (𝑡)

=

𝑑

𝑑𝑡

𝜌 (𝑡)

(30)

with

Θ = Ω
−1

(L + ΔL) Ω

= 𝑃 (L + ΔL) 𝑃 + 𝑃 (L + ΔL) 𝑄𝐶𝑃,

𝜌 (𝑡) = Ω𝜌 (𝑡) = (𝑃 + 𝐶) 𝜌 (𝑡) = ∑

𝑛𝑚

(𝑃
𝑛𝑚

+ 𝐶
𝑛𝑚

) 𝜌 (𝑡) ,

(31)

by defining the projector

𝑃 = ∑

𝑛𝑚

𝑃
𝑛𝑚

= ∑

𝑛𝑚





𝜌
𝑛𝑚

) (𝜌
𝑛𝑚





,

for 𝑛𝑚 = 00, 11, 01, 10,

(32)

with
𝑄 = 1 − 𝑃, (33)

so that 𝜌 = (𝜌
00
, 𝜌
11
, 𝜌
01
, 𝜌
10
) is expressed by the subdynamic

formalism:




𝜌
𝑛𝑚

) = (𝑃
𝑛𝑚

+ 𝐶
𝑛𝑚

)




𝜌
𝑛𝑚

) . (34)

This 𝜌
𝑛𝑚

can be measured in the practical system with
energy term 𝑙

𝑛𝑚
, and then using 𝜌

𝑛𝑚
, 𝑙
𝑛𝑚

we can construct
the projected states 𝜌

𝑛𝑚
in the subdynamic space by the

subdynamic formalism:




𝜌
𝑛𝑚

) =




𝜌
𝑛𝑚

) + 𝑄
𝑛𝑚

1

𝑀
𝑛𝑛

− 𝑄
𝑛𝑚

(L + ΔL) 𝑄
𝑛𝑚

⋅ 𝑄
𝑛𝑛 (

L + ΔL) 

𝜌
𝑛𝑛
) ,

(35)

where it is marvelous that whatever the system has L
or L + ΔL, the above formalism gives the same �̃� =

(𝜌
00
, 𝜌
11
, 𝜌
22
, 𝜌
01
, 𝜌
10
) → (�̃�, �̃�, �̃�) in the subdynamic space;

namely, if L of the computing system changes to L + ΔL then
the similarity operatorΩ in (22) changes to

Ω = (

−

1

𝛿

𝑔

𝛿

𝑔

𝛿

𝑔

0

1

𝑔

√−𝛿
2
− 𝑔
2

−

1

𝑔

√−𝛿
2
− 𝑔
2

1 1 1

), (36)

which, from the changed (𝑈, 𝑉,𝑊), still gives the same
(�̃�, �̃�, �̃�) as

(

�̃�

�̃�

�̃�

)

=

(
(
(
(

(

−𝛿

𝑔

𝛿
2
+ 𝑔
2

0

𝛿
2

𝛿
2
+ 𝑔
2

𝛿

𝑔

2𝛿
2
+ 2𝑔
2

1

2

𝑔

√−𝛿
2
− 𝑔
2

𝑔
2

2𝛿
2
+ 2𝑔
2

1

2

𝛿

𝑔

𝛿
2
+ 𝑔
2

−

1

2

𝑔

√−𝛿
2
− 𝑔
2

1

2

𝑔
2

𝛿
2
+ 𝑔
2

)
)
)
)

)

(

𝑈

𝑉

𝑊

).

(37)

Hence this equation group allows one, from the measure-
ment of states 𝜌 = (𝜌

00
, 𝜌
11
, 𝜌
01
, 𝜌
10
) and energy 𝑙

𝑛𝑚
, for

𝑛𝑚 = 00, 11, 01, 10, to determine the projected states �̃� =

(𝜌
00
, 𝜌
11
, 𝜌
01
, 𝜌
10
). These projected states are invariant in the

subdynamic space in the sense:

Θ




𝜌
𝑛𝑚

) = (𝜌
𝑛𝑚





𝐻





𝜌
𝑛𝑚

) + (𝜌
𝑛𝑚





𝐻𝑄
𝑛𝑚

𝐶
𝑛𝑚





𝜌
𝑛𝑚

)

= 𝜃
𝑛𝑚





𝜌
𝑛𝑚

) ,

Θ




𝜌
𝑛𝑚

) = (𝜌
𝑛𝑚





(𝐻 + Δ𝐻)





𝜌
𝑛𝑚

)

+ (𝜌
𝑛𝑚





(𝐻 + Δ𝐻)𝑄

𝑛𝑚
𝐶
𝑛𝑚





𝜌
𝑛𝑚

)

= 𝜃


𝑛𝑚





𝜌
𝑛𝑚

) ,

(38)

in which both cases have the same eigenvectors 𝜌
𝑛𝑚

→

(�̃�, �̃�, �̃�), although the eigenvalues are changed from 𝜃
𝑛𝑚

to
𝜃


𝑛𝑚
. So from (21) one can obtain
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(

−𝑖𝑔 0 0

0 𝑖𝑔 0

0 0 0

) → (

(

−

1

𝑇
2

− √−𝛿
2
− 𝑔
2

0 0

0 −

1

𝑇
2

+ √−𝛿
2
− 𝑔
2

0

0 0 −

1

2

𝑔
2

𝑇
2
(𝑔
2
+ 𝛿
2
)

(𝑒
−𝑖(𝑡/𝑇2)

− 1)

)

)

, (39)

where one notices that the evolution �̃� is given by

𝑖

𝑑

𝑑𝑡

�̃� = −

1

𝑇
2

�̃� −

1

2

𝑔
2

𝑇
2
(𝑔
2
+ 𝛿
2
)

,

�̃� (𝑡) = −𝑒
−∫(1/𝑇2)𝑑𝑡

[∫

1

2

𝑔
2

𝑇
2
(𝑔
2
+ 𝛿
2
)

𝑒
∫(1/𝑇2)𝑑𝑡

+ 𝐶]

= −𝑒
−𝑖(𝑡/𝑇2)

∫

𝑡

0

𝑖

2

𝑔
2

𝑇
2
(𝑔
2
+ 𝛿
2
)

𝑒
𝑖(1/𝑇2)𝑡

𝑑𝑡

=

1

2

𝑔
2

𝑇
2
(𝑔
2
+ 𝛿
2
)

(𝑒
−𝑖(𝑡/𝑇2)

− 1) .

(40)

Hence based on the above subdynamic formalism the phys-
ical realizing states in the subdynamic space are related to
(�̃�, �̃�, �̃�) which can be determined by the states (𝑈, 𝑉,𝑊).

The remaining change of the eigenvalue from 𝜃
𝑛𝑚

to 𝜃


𝑛𝑚
,

which includes two parts of influence of the dissipation and
decoherence, may introduce the relative phase error. How-
ever since the eigenvector in the subdynamic space is fixed,
the correction procedure only needs to consider phase error;
this makes the procedure easier; for instance, suppose the
working states in quantum computing process are designed
as (𝜌
00
, 𝜌
11
, 𝜌
01
, 𝜌
10
); then the phase error correction in the

evolution of (�̃�(𝑡), �̃�(𝑡), �̃�(𝑡)) is only necessarily considered.
This can be given by using (39):

(

�̃� (𝑡)

�̃� (𝑡)

�̃� (𝑡)

) = (

𝑒
𝑖(1/𝑇2+√−𝛿

2
−𝑔
2
)

0 0

0 𝑒
𝑖(1/𝑇2−√−𝛿

2
−𝑔
2
)

0

0 0 𝑒
−𝑖((1/2)(𝑔

2
/𝑇2(𝑔

2
+𝛿
2
))(𝑒
−𝑖(𝑡/𝑇2)−1))

)(

�̃�

�̃�

�̃�

) , (41)

so the correction is to replace (−1/𝑇
2
∓ √−𝛿

2
− 𝑔
2
) by ∓𝑔

2

and replace ((1/2)(𝑔2/𝑇
2
(𝑔
2
+ 𝛿
2
))(𝑒
−𝑖(𝑡/𝑇2)

− 1)) by 0, which
enables (41) to return (21). For example, using the quantum
three-editing-code method [23] if there are phase errors in
�̃��̃��̃� for a quantum computing tolerance time Δ𝑡 then one
can correct the errors by using

𝑥𝑦𝑧 𝑥 ⊕ 𝑧 𝑦 ⊕ 𝑧 error-qubit

�̃��̃��̃� �̃� �̃� 0

�̃�

�̃��̃� ? �̃� 1

�̃��̃�

�̃� �̃� ? 2

�̃��̃��̃�


? ? 3,

(42)

where ? means �̃�

⊕ �̃� ̸= �̃� because �̃�

 has a phase
error. Thus by means of ? one can conclude which qubit has
error. This process is described by an error point formula:
|𝑥𝑦𝑧�̃��̃�⟩ → |𝑥𝑦𝑧, 𝑥 ⊕ 𝑧, 𝑦 ⊕ 𝑧⟩. Then the correction is to
replace �̃� by �̃� through replacing the relevant eigenvalues
after considering change of the eigenvalues. This process can
keep the working states �̃� to be corrected by canceling the
time evolution phase error of the states during every error
tolerance time interval Δ𝑡 in the subdynamic spaces.

Although the above Rabi oscillation seems to deal with
one qubit system, it is not problem to generalize to multi-
qubits systems. For example, it can be applied into a two-qubit
system based on a quantum dot with two excitons in which
there are four degenerate energy levels, where |00⟩ is vacuum
state of excitons and |10⟩ and |01⟩ are 𝑥 or 𝑦 polarization of
exciton states, respectively, while |11⟩ is states of two excitons.
Thus using 𝑥 and 𝑦 polarization light, the CROT for two
qubits can be realized as

𝑈crot (| 00⟩ , | 01⟩ , | 10⟩ , | 11⟩ )

= (|00⟩ , | 01⟩ , − |11⟩ , | 10⟩ )

(43)

with

𝑈crot = (

1 0 0 0

0 1 0 0

0 0 0 −1

0 0 1 0

), (44)

which gives an operation on the states based on (17) as

𝑈crot (

𝑈𝑈

𝑉𝑉

𝑊𝑊

) = (

𝑈𝑈

𝑉𝑉

𝑊𝑊


), (45)
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so that 𝑊𝑊 changes to 𝑊𝑊
. Therefore in the subdynamic

space one can perform the CROT operation for two-qubit
system ideally; that is,

𝑈crot (

�̃��̃�

�̃��̃�

�̃��̃�

)

= 𝑈crot (

0 −

1

2

𝑖

1

2

0

1

2

𝑖

1

2

1 0 0

)(

𝑈

𝑉

𝑊

)(

0 −

1

2

𝑖

1

2

0

1

2

𝑖

1

2

1 0 0

)(

𝑈

𝑉

𝑊


)

= (

�̃��̃�

�̃��̃�

�̃��̃�


).

(46)

The relevant errors can be corrected using the same approach
as the previous subdynamic treatment, as in (41) and Table
(42).

5. Conclusions and Remarks

The subdynamic system for the quantum computation based
on the Rabi oscillation is introduced. The working states of
subdynamic system are the eigenvectors of Θ = Ω𝐻Ω

−1

which is similarity operator of the original Hamiltonian or
Liouvillian. These eigenvectors constructed are invariant in
the subdynamic space, so they are independent on the inter-
action part of Hamiltonian or Liouvillian between system
and environment. While the dissipation and decoherence
induced by the interaction part of Hamiltonian or Liouvillian
exist in the change of the eigenvalues, there are only phase
errors in the subdynamic space. This makes easier for one
to find a procedure to cancel the phase error since the
eigenvectors are fixed, such as the quantum three-editing-
code method listed in this work. Moreover, these corrections
of phase errors contain not only an error induced by decoher-
ence but also an error induced by dissipation; therefore this
method has an advantage compared with other approaches
which only deal with the decoherence. Furthermore, this
method principally can be extended to general quantum
computing system without restriction. For example, if the
system uses laser pulses instead of a continuous laser, it still
can find the subsystem dynamics where the eigenstates are
constant. This is generally true for subdynamics.
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[3] J. M. Villas-Bôas, E. Ulloa Sergio, and A. O. Govorov, “Deco-
herence of Rabi oscillations in a single quantum dot,” Physical
Review Letters, vol. 94, no. 5, Article ID 057404, 2005.

[4] P. Borri, W. Langbein, S. Schneider et al., “Ultralong dephasing
time in InGaAs quantum dots,” Physical Review Letters, vol. 87,
no. 15, Article ID 157401, 2001.

[5] H. Htoon, T. Takagahara, D. Kulik, O. Baklenov, A. L. Holmes
Jr., and C. K. Shih, “Interplay of rabi oscillations and quantum
interference in semiconductor quantum dots,” Physical Review
Letters, vol. 88, no. 8, Article ID 087401, 2002.

[6] A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G.
Abstreiter, “Coherent properties of a two-level system based on
a quantum-dot photodiode,”Nature, vol. 418, no. 6898, pp. 612–
614, 2002.

[7] H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, and H. Ando,
“Exciton Rabi oscillation in a single quantum dot,” Physical
Review Letters, vol. 87, no. 24, Article ID 246401, 2001.

[8] P. Borri, W. Langbein, S. Schneider et al., “Rabi oscillations in
the excitonic ground-state transition of InGaAs quantum dots,”
Physical Review B, vol. 66, no. 8, Article ID 081306, 2002.

[9] L. Besombes, J. J. Baumberg, and J. Motohisa, “Coherent
spectroscopy of optically gated charged single InGaAs quantum
dots,” Physical Review Letters, vol. 90, no. 25, Article ID 257402,
2003.

[10] H. J. Zhou, S. D. Liu, Q. Q. Wang, M. S. Zhan, and Q. K.
Xue, “Rabi flopping in a V-type three-level system with two
orthogonal eigenstates,” Acta Physica Sinica, vol. 54, no. 2, pp.
710–714, 2005.

[11] Q. Q. Wang, A. Muller, P. Bianucci et al., “Decoherence
processes during optical manipulation of excitonic qubits in
semiconductor quantum dots,” Physical Review B—Condensed
Matter and Materials Physics, vol. 72, no. 3, Article ID 035306,
2005.

[12] L. Allen and J. H. Eberly, Optical Resonance and Two-Level
Atoms, Dover Publications, New York, NY, USA, 1987.

[13] I. Antoniou and S. Tasaki, “Generalized spectral decomposi-
tions of mixing dynamical systems,” International Journal of
Quantum Chemistry, vol. 46, no. 3, pp. 425–474, 1993.

[14] T. Petrosky and I. Prigogine, “Alternative formulation of classi-
cal and quantum dynamics for nonintegrable systems,” Physica
A, vol. 175, no. 1, pp. 146–209, 1991.

[15] I. Antoniou, Y. Melnikov, and B. Qiao, “Master equation for
a quantum system driven by a strong periodic field in the
quasienergy representation,” Physica A: Statistical Mechanics
and its Applications, vol. 246, no. 1-2, pp. 97–114, 1997.

[16] B. Qiao, H. E. Ruda, M. S. Zhan, and X. H. Zeng, “Kinetic
equation, non-perturbative approach and decoherence free
subspace for quantum open system,” Physica A: Statistical
Mechanics and Its Applications, vol. 322, no. 1–4, pp. 345–358,
2003.

[17] B. Qiao, H. E. Ruda, and D. Z. Zhou, “Dynamical equations of
quantum information and Gaussian channel,” Physica A, vol.
363, no. 2, pp. 198–210, 2006.



Advances in Mathematical Physics 7

[18] Q. Bi, L. Guo, andH. E. Ruda, “Quantumcomputing in decoher-
ence-free subspace constructed by triangulation,” Advances in
Mathematical Physics, vol. 2010, Article ID 365653, 10 pages,
2010.

[19] B. Qiao and J. Fang, Network Science and Statistical Physics
Method, Beijing University Press, Beijing, China, 2011 (Chi-
nese).

[20] B. Qiao and H. E. Ruda, “Quantum computing using entangle-
ment states in a photonic band gap,” Journal of Applied Physics,
vol. 86, no. 9, pp. 5237–5244, 1999.

[21] G. Mahler and V. A. Weberruß, Quantum Networks, Springer,
Berlin, Germany, 1995.

[22] S. Trumm, M. Wesseli, H. J. Krenner et al., “Spin-preserving
ultrafast carrier capture and relaxation in InGaAs quantum
dots,” Applied Physics Letters, vol. 87, no. 15, Article ID 153113,
2005.

[23] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information, Cambridge University Press, Cam-
bridge, UK, 2000.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


