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This paper is concerned with the problem of robust 𝐻
∞

filter design for switched linear discrete-time systems with polytopic
uncertainties.The condition of being robustly asymptotically stable for uncertain switched system and less conservative𝐻

∞
noise-

attenuation level bounds are obtained by homogeneous parameter-dependent quadratic Lyapunov function. Moreover, a more
feasible and effective method against the variations of uncertain parameter robust switched linear filter is designed under the given
arbitrary switching signal. Lastly, simulation results are used to illustrate the effectiveness of our method.

1. Introduction

Switched systems are a class of hybrid systems that consist of
a finite number of subsystems and a logical rule orchestrating
switching between the subsystems. Since this class of systems
has numerous applications in the control of mechanical
systems, the automotive industry, aircraft and air traffic
control, switching power converters, and many other fields,
the problems of stability analysis and control design for
switched systems have receivedwide attention during the past
two decades [1–15]. Reference [2] proposed the 𝐻

∞
weight

learning law for switched Hopfield neural networks with
time-delay under parametric uncertainty. Reference [8] dealt
with the delay-dependent exponentially convergent state esti-
mation problem for delayed switched neural networks. Some
criteria for exponential stability and asymptotic stability of
a class of nonlinear hybrid impulsive and switching systems
have been established using switched Lyapunov functions in
[9]. Reference [14] investigated the problem of designing a
switching compensator for a plant switching amongst a family
of given configurations.

On the other hand, within robust control theory scheme,
the 𝐻

∞
noise-attenuation level is an important index for

the influence of external disturbance on system stability [16–
19]. However, the uncertainties which generally exist in many
practical plants and environments may result in significant
changes in robust 𝐻

∞
noise-attenuation level. In order to

suppress the conservativeness, many newmethods have been
considered. Among these methods, homogeneous polyno-
mial parameter-dependent quadratic Lyapunov function is
one of the most effective methods. The main feature of
these functions is that they are quadratic Lyapunov functions
whose dependence on the uncertain parameters is expressed
as a polynomial homogeneous form. It is firstly introduced
to study robust stability of polynomial systems in [20]. Most
results have been presented in [21–25]. In [19], homogeneous
parameter-dependent quadratic Lyapunov functions were
used to establish tightness in robust 𝐻

∞
analysis. Reference

[21] presented some general results concerning the exis-
tence of homogeneous polynomial solutions to parameter-
dependent linear matrix inequalities whose coefficients are
continuous functions of parameters lying in the unit simplex.
Reference [23] investigated the problems of checking robust
stability and evaluating robust 𝐻

2
performance of uncertain

continuous-time linear systems with time-invariant parame-
ters lying in polytropic domains. Reference [25] introduced
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Gram-tight forms, that is, forms whose minimum coincides
with the lower bound provided by LMI optimizations based
on SOS (sum of squares of polynomials) relaxations.

Thus, in order to suppress the influence of uncertain-
ties on the system’s robust 𝐻

∞
control, the homogeneous

parameter-dependent quadratic Lyapunov functions are used
to design robust𝐻

∞
filter in this paper. We first consider the

system’s anti-interference of external disturbance. Along this
direction, the robust 𝐻

∞
filters for switched linear discrete-

time systems are designed. Lastly, through the comparison,
we have the fact that homogeneous parameter-dependent
quadratic Lyapunov functions can suppress conservativeness
which the uncertainties bring.

The rest of this paper is organised as follows. We state
the problem formulation in Section 2. The main results are
presented in Section 3. Section 4 illustrates the obtained
result by numerical examples, which is followed by the
conclusion in Section 5.

Notation. R𝑛 denotes the 𝑛-dimension Euclidean space and
R𝑛×𝑚 is the real matrices with dimension 𝑛 × 𝑚; R𝑛

0
means

R𝑛/{0}; the notation𝑋 ≥ 𝑌 (resp.,𝑋 > 𝑌), where𝑋 and𝑌 are
symmetric matrices, represents the fact that the matrix𝑋−𝑌
is positive semidefinite (resp., positive definite); 𝐴𝑇 denotes
the transposedmatrix of𝐴; 𝑠𝑞(𝑥) represents (𝑥2

1
, . . . , 𝑥

2

𝑛
)with

𝑥 ∈ R𝑛; ℎ𝑒(𝑋)means𝑋+𝑋𝑇 with𝑋 ∈ R𝑛×𝑛; 𝑥⊗𝑦 denotes the
Kronecker product of vectors 𝑥 and 𝑦. ‖ ⋅ ‖ denotes Euclidean
norm for vector or the spectral norm of matrices.

2. Problem Statement

Consider a class of uncertain switched linear discrete-time
systems which were given in [1]:

𝑥 (𝑘 + 1) = 𝐴
𝑖
(𝜆) 𝑥 (𝑘) + 𝐵

𝑖
(𝜆) 𝜔 (𝑘) ,

𝑦 (𝑘) = 𝐶
𝑖
(𝜆) 𝑥 (𝑘) + 𝐷

𝑖
(𝜆) 𝜔 (𝑘) ,

𝑧 (𝑘) = 𝐻
𝑖
(𝜆) 𝑥 (𝑘) + 𝐿

𝑖
(𝜆) 𝜔 (𝑘) ,

(1)

where 𝑥(𝑘) ∈ R𝑛 is state vector,𝜔(𝑘) ∈ R𝑙 is disturbance input
which belongs to 𝑙

2
[0, +∞), 𝑦(𝑘) is the measurement output,

𝑧(𝑘) is objective signal to be attenuated, and 𝑖 is switching
rule, which takes its value in the finite set Π := {1, . . . , 𝑁}.
As in [1], the switching signal 𝑖 is unknown a priori, but its
instantaneous value is available in real time. As an arbitrary
discrete time 𝑘, the switching signal 𝑖 is dependent on 𝑘
or 𝑥(𝑘) or both or other switching rules. 𝜆 is an uncertain
parameter vector supposed to satisfy 𝜆 ∈ Λ = {𝜆

𝑗
≥ 0,∑

𝑠

𝑗=1
=

1}. The vector 𝜆 represents the time-invariant parametric
uncertainty which affects linearly the system dynamics. The
vector 𝜆 can take any value inΛ, but it is known to be constant
in time.

The matrices of each subsystem have appropriate dimen-
sions and are assumed to belong to a given convex-bounded
polyhedral domain described by 𝑠 vertices in the 𝑖th subsys-
tem, that is,

(𝐴
𝑖
(𝜆) 𝐵

𝑖
(𝜆) 𝐶

𝑖
(𝜆) 𝐷

𝑖
(𝜆) 𝐻

𝑖
(𝜆) 𝐿

𝑖
(𝜆)) ∈ Γ

𝑖
, (2)

where

Γ
𝑖
:=

{

{

{

𝐴
𝑖
(𝜆) 𝐵

𝑖
(𝜆) 𝐶

𝑖
(𝜆) 𝐷

𝑖
(𝜆) 𝐻

𝑖
(𝜆) 𝐿

𝑖
(𝜆)

=

𝑠

∑

𝑗=1

𝜆
𝑗
(𝐴
𝑖𝑗
𝐵
𝑖𝑗
𝐶
𝑖𝑗
𝐷
𝑖𝑗
𝐻
𝑖𝑗
𝐿
𝑖𝑗
) ;

𝜆
𝑗
≥ 0

𝑠

∑

𝑗=1

𝜆
𝑗
= 1

}

}

}

.

(3)

Hence, we are interested in designing an estimator or filter
of the form

𝑥
𝑓
(𝑘 + 1) = 𝐴

𝑓𝑖
𝑥
𝑓
(𝑘) + 𝐵

𝑓𝑖
𝑦 (𝑘) ,

𝑧
𝑓
(𝑘) = 𝐶

𝑓𝑖
𝑥
𝑓
(𝑘) + 𝐷

𝑓𝑖
𝑦 (𝑘) ,

(4)

where 𝑥
𝑓
(𝑘) ∈ R𝑛, 𝑧

𝑓
(𝑘) ∈ R𝑞; 𝐴

𝑖𝑗
, 𝐵
𝑖𝑗
, 𝐶
𝑖𝑗
and 𝐷

𝑖𝑗
are

the parameterized filter matrices to be determined. The filter
with the above structure may be called switched linear filter,
in which the switching signal 𝑖 is also assumed unknown a
priori but available in real-time and homogeneous with the
switching signal in system (1).

Augmenting the model of (1) to include the state of filter
(4), we obtain the filtering error system:

𝑥
𝑒
(𝑘 + 1) = 𝐴

𝑒𝑖
(𝜆) 𝑥
𝑒
(𝑘) + 𝐵

𝑒𝑖
(𝜆) 𝜔 (𝑘) ,

𝑒 (𝑘) = 𝐶
𝑒𝑖
(𝜆) 𝑥
𝑒
(𝑘) + 𝐷

𝑒𝑖
(𝜆) 𝜔 (𝑘) ,

(5)

where

𝑥
𝑒
(𝑘) = (𝑥 (𝑘) 𝑥𝑓 (

𝑘))

𝑇

, 𝑒 (𝑘) = 𝑧 (𝑘) − 𝑧
𝑓
(𝑘) ,

𝐴
𝑒𝑖
(𝜆) = (

𝐴
𝑖
(𝜆) 0

𝐵
𝑓𝑖
𝐶
𝑖
(𝜆) 𝐴

𝑓𝑖

) ,

𝐵
𝑒𝑖
(𝜆) = (𝐵𝑖

(𝜆) 𝐵
𝑓𝑖
𝐷
𝑖
(𝜆))

𝑇

,

𝐶
𝑒𝑖
(𝜆) = (𝐻𝑖 (

𝜆) − 𝐷
𝑓𝑖
𝐶
𝑖
(𝜆) −𝐶

𝑓𝑖
) ,

𝐷
𝑒𝑖
(𝜆) = 𝐿

𝑖
(𝜆) − 𝐷

𝑓𝑖
𝐷
𝑖
(𝜆) .

(6)

Based on [1], the robust 𝐻
∞

filtering problem addressed
in this paper can be formulated as follows: finding a pre-
scribed level of noise attention 𝛾 > 0 and determining a
robust switched linear filter (4) such that the filtering error
system is robustly asymptotically stable and

‖𝑒‖
2
< 𝛾
2

‖𝜔‖
2
. (7)

This problem has received a great deal of attention. In
order to get a better level of noise attention 𝛾 > 0, we
will use homogeneous polynomial functions which have
demonstrated nonconservative result for serval problems.
In this paper, we extend these methods to design robust
switched linear filter.

The following preliminaries are given, which are essential
for later developments. We firstly recall the homogeneous
polynomial function from Chesi et al. [26].
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Definition 1. The function ℎ : R𝑛 → R is a form of degree 𝑑
in 𝑛 scalar variables if

ℎ (𝑥) = ∑

𝑞∈𝐿
𝑛,𝑠

𝑎
𝑞
𝑥
𝑞

, (8)

where 𝐿
𝑛,𝑠
= {𝑞 ∈ 𝑁

𝑛

: ∑
𝑛

𝑖=1
𝑞
𝑖
= 𝑠} and 𝑥 ∈ R𝑛 and 𝑎

𝑞
∈ R is

coefficient of the monomial 𝑥𝑞.

The set of forms of degree 𝑠 in 𝑛 scalar variables is defined
as

Ξ
𝑛,𝑠
= {ℎ : R𝑛 󳨀→ R : (8) holds} . (9)

Definition 2. The function 𝑓 : R𝑛 → R is a polynomial of
degree less than or equal to 𝑠, in 𝑛 scalar variables, if

𝑓 (𝑥) =

𝑠

∑

𝑖=0

ℎ
𝑖
(𝑥) , (10)

where 𝑥 ∈ R𝑛 and ℎ
𝑖
∈ Ξ
𝑛,𝑖
, 𝑖 = 1, . . . , 𝑠.

Definition 3. Consider the vector 𝑥 ∈ R𝑛, 𝑥 = [𝑥
1
, . . . , 𝑥

𝑛
]
𝑇.

The power transformation of degree𝑚 is a nonlinear change
of coordinates that forms a new vector 𝑥𝑚 of all integer
powered monomials of degree 𝑚 that can be made from the
original 𝑥 vector:

𝑥
𝑚

𝑗
= 𝑐
𝑗
𝑥

𝑚
𝑗1

1
𝑥

𝑚
𝑗2

2
⋅ ⋅ ⋅ 𝑥

𝑚
𝑗𝑛

𝑛
, 𝑚
𝑗𝑖
∈ 1, . . . , 𝑛,

𝑛

∑

𝑖=1

𝑚
𝑗𝑖
= 𝑚, 𝑗 = 1, . . . , 𝑑

(𝑛,𝑚)
, 𝑑
(𝑛,𝑚)

=

(𝑛 + 𝑚 − 1)!

(𝑛 − 1)!𝑚!

.

(11)

Usually we take 𝑐
𝑗
= 1; then, with𝑚 > 0,

(

𝑥
1

𝑥
2

.

.

.

𝑥
𝑛

)

𝑚

=

(

(

(

(

𝑥
1
(𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
)
𝑚−1
𝑇

𝑥
2
(𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
)
𝑚−1
𝑇

.

.

.

𝑥
𝑛
(𝑥
𝑛
)
𝑚−1
𝑇

)

)

)

)

; (12)

otherwise

(

𝑥
1

𝑥
2

.

.

.

𝑥
𝑛

)

𝑚

= 1. (13)

For example, 𝑛 = 2,𝑚 = 2,⇒ 𝑑
(𝑛,𝑚)

= 3, and

𝑥 = (

𝑥
1

𝑥
2

) 󳨐⇒ 𝑥
2

= (

𝑥
2

1

𝑥
1
𝑥
2

𝑥
2

2

). (14)

Definition 4. The function𝑀 : R𝑛 → R𝑟×𝑟 is a homogeneous
parameter-dependentmatrix of degree𝑚 in 𝑛 scalar variables
if

𝑀
𝑖,𝑗
∈ Ξ
𝑛,𝑚
, ∀𝑖, 𝑗 = 1, . . . , 𝑟. (15)

We denote the set of 𝑟 × 𝑟 homogeneous parameter-
dependent matrices of degree𝑚 in 𝑛 scalar variables as

Ξ
#
𝑛,𝑚,𝑟

= {𝑀 : R𝑛 󳨀→ R𝑟×𝑟 : (15) holds} (16)

and the set of symmetric matrix forms as

Ξ
𝑛,𝑚,𝑟

= {𝑀 ∈ Ξ
#
𝑛,𝑚,𝑟

: 𝑀 (𝑥) = 𝑀
𝑇

(𝑥) ∀𝑥 ∈ R𝑛} . (17)

Definition 5. Let𝑀 ∈ Ξ
𝑛,2𝑚,𝑟

and𝐻 ∈ S𝑟𝑑(𝑛,𝑚) such that

𝑀(𝑥) = Φ (𝐻, 𝑥
𝑚

, 𝑟) , (18)

whereΦ(𝐻, 𝑥𝑚, 𝑟) = (𝑥𝑚⊗𝐼
𝑟
)
𝑇

𝐻(𝑥
𝑚

⊗𝐼
𝑟
).Then (18) is called

a squarematricial representation (SMR) of𝑀(𝑥)with respect
to 𝑥𝑚 ⊗ 𝐼

𝑟
. Moreover,𝐻 is called a SMR matrix of𝑀(𝑥) with

respect to 𝑥𝑚 ⊗ 𝐼
𝑟
.

Lemma 6 (Chesi et al. [26]). Let𝑀 ∈ Ξ
𝑛,2𝑚,𝑟

. ThenH = {𝐻 ∈

S𝑟𝑑(𝑛,𝑚) : (18) ℎ𝑜𝑙𝑑𝑠} is an affine space. Moreover,

𝐻(𝑀) = {𝐻 + 𝐿 : 𝐻 ∈ S𝑟𝑑(𝑛,𝑚) 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 (18) , 𝐿 ∈ L
𝑛,𝑚,𝑟

} ,

(19)

where L
𝑛,𝑚,𝑟

is linear space:

L
𝑛,𝑚,𝑟

= {𝐿 ∈ S𝑟𝑑(𝑛,𝑚) : Φ (𝐿, 𝑥𝑚, 𝑟) = 0
𝑟×𝑟

∀𝑥 ∈ R𝑛} (20)

whose dimension is given by

𝜔 (𝑛,𝑚, 𝑟) =

𝑟

2

((𝑑
(𝑛,𝑚)

(𝑟𝑑
(𝑛,𝑚)

+ 1)) − (𝑟 + 1) 𝑑
(𝑛,2𝑚)

) .

(21)

Lemma 7 (Chesi et al. [26]). Let𝑀 ∈ Ξ
𝑛,𝑠,𝑟

. Then

𝑀(𝑥) > 0, ∀𝑥 ∈ 𝛾
𝑞
= {𝑥 ∈ R𝑞 : 𝑥

𝑖
≥ 0,

𝑞

∑

𝑖=1

𝑥
𝑖
= 1}

(22)

holds if and only if

𝑀(𝑠𝑞 (𝑥)) > 0, ∀𝑥 ∈ R𝑛
0
. (23)

Lemma 8 (Boyd et al. [27]). The linear matrix inequality

𝑆 = (

𝑆
11
𝑆
12

𝑆
𝑇

12
𝑆
22

) < 0, (24)

where 𝑆
11
= 𝑆
𝑇

11
and 𝑆
22
= 𝑆
𝑇

22
, is equivalent to

𝑆
11
< 0, 𝑆

22
− 𝑆
𝑇

12
𝑆
−1

11
𝑆
12
< 0. (25)
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3. Main Result

In this section, the sufficient condition for existence of robust
𝐻
∞

filter for uncertain switched systems is formulated. For
this purpose, we firstly consider the anti-interference of
system (1) for disturbance.

Theorem 9. For a given scalar 𝛾 > 0. Consider system (1); if
there exist matrices 𝑃

𝑖𝑗
> 0 and matrices 𝑅

𝑖𝑗
such that

(

Ψ
11
(P
𝑖𝑗
, 𝑅
𝑖𝑗
) 0 Ψ

13
(𝑅
𝑖𝑗
, 𝐴
𝑖𝑗
) Ψ
14
(𝑅
𝑖𝑗
, 𝐵
𝑖𝑗
)

∗ −𝐼
𝑐

Ψ
23
(𝐶
𝑖𝑗
) Ψ

24
(𝐷
𝑖𝑗
)

∗ ∗ Ψ
33
(𝑃
𝑖𝑗
) 0

∗ ∗ ∗ −𝛾
2

𝐼
𝑐

)

+(

L
11

L
12

L
13

L
14

∗ L
22

L
23

L
24

∗ ∗ L
33

L
34

∗ ∗ ∗ L
44

) < 0 𝑖, 𝑖 ∈ ∏, 𝑗 ∈ [1, 𝑠]

(26)

with

Φ
𝑃
𝑖
𝑅
𝑖

(𝜆
𝑚+1

) =

𝑠

∑

𝑗=1

𝜆
𝑗
(𝑃
𝑖
(𝜆
𝑚

) − R
𝑖
(𝜆
𝑚

) − 𝑅
𝑇

𝑖
(𝜆
𝑚

)) ;

Φ
𝑅
𝑖
𝐴
𝑖

(𝜆
𝑚+1

) = 𝑅
𝑖
(𝜆
𝑚

) 𝐴
𝑖
(𝜆) ;

Φ
𝑅
𝑖
𝐵
𝑖

(𝜆
𝑚+1

) = 𝑅
𝑖
(𝜆
𝑚

) 𝐵
𝑖
(𝜆) ;

Φ
𝐶
𝑖

(𝜆
𝑚+1

) = (

𝑠

∑

𝑗=1

𝜆
𝑗
)

𝑚

𝐶
𝑖
(𝜆) ;

Φ
𝐷
𝑖

(𝜆
𝑚+1

) = (

𝑠

∑

𝑗=1

𝜆
𝑗
)

𝑚

𝐷
𝑖
(𝜆) ;

Φ
𝐼
(𝜆
𝑚+1

) = (

𝑠

∑

𝑗=1

𝜆
𝑗
)

𝑚+1

𝐼;

Φ
𝑃
𝑖

(𝜆
𝑚+1

) =

𝑠

∑

𝑗=1

𝜆
𝑗
𝑃
𝑖
(𝜆
𝑚

) ;

Φ
𝑃
𝑖
𝑅
𝑖

(𝑠𝑞 (𝜆
𝑚+1

)) = 𝜛
𝑇

(𝜆
𝑚+1

)Ψ
11
(𝑃
𝑖𝑗
, 𝑅
𝑖𝑗
) 𝜛 (𝜆

𝑚+1

) ;

Φ
𝑅
𝑖
𝐴
𝑖

(𝑠𝑞 (𝜆
𝑚+1

)) = 𝜛
𝑇

(𝜆
𝑚+1

)Ψ
13
(𝑅
𝑖𝑗
, 𝐴
𝑖𝑗
) 𝜛 (𝜆

𝑚+1

) ;

Φ
𝑅
𝑖
𝐵
𝑖

(𝑠𝑞 (𝜆
𝑚+1

)) = 𝜛
𝑇

(𝜆
𝑚+1

)Ψ
14
(𝑅
𝑖𝑗
, 𝐵
𝑖𝑗
) 𝜛 (𝜆

𝑚+1

) ;

Φ
𝐶
𝑖

(𝑠𝑞 (𝜆
𝑚+1

)) = 𝜛
𝑇

(𝜆
𝑚+1

)Ψ
23
(𝐶
𝑖𝑗
) 𝜛 (𝜆

𝑚+1

) ;

Φ
𝐷
𝑖

(𝑠𝑞 (𝜆
𝑚+1

)) = 𝜛
𝑇

(𝜆
𝑚+1

)Ψ
24
(𝐷
𝑖𝑗
) 𝜛 (𝜆

𝑚+1

) ;

Φ
𝑃
𝑖

(𝑠𝑞 (𝜆
𝑚+1

)) = 𝜛
𝑇

(𝜆
𝑚+1

)Ψ
33
(𝑃
𝑖𝑗
) 𝜛 (𝜆

𝑚+1

) ;

Φ
𝐼
(𝑠𝑞 (𝜆

𝑚+1

)) = 𝜛
𝑇

(𝜆
𝑚+1

) 𝐼
𝑐
𝜛 (𝜆
𝑚+1

) ;

𝜛 (𝜆
𝑚+1

) = 𝜆
𝑚+1

⊗ 𝐼;

L
11
⋅ ⋅ ⋅L
44
∈ L
𝑠,𝑚,𝑛

,

(27)

whereΨ(⋅) is a matrix which is made up of𝐴
𝑖𝑗
, 𝐵
𝑖𝑗
,𝐶
𝑖𝑗
,𝐷
𝑖𝑗
,𝑃
𝑖𝑗
,

𝑅
𝑖𝑗
and the set L

𝑠,𝑚,𝑛
is defined in Lemma 6, then system (1) is

robustly asymptotically stable with𝐻
∞

performance 𝛾 for any
switching signal.

Proof. Consider the following homogeneous parameter-depend-
ent quadratic Lyapunov function:

𝑉 (𝑘, 𝑥 (𝑘)) = 𝑥
𝑇

(𝑘) 𝑃
𝑖
(𝜆
𝑚

) 𝑥 (𝑘) . (28)

Then, along the trajectory of system (1), we have

Δ𝑉 = 𝑉 (𝑘 + 1, 𝑥 (𝑘 + 1)) − 𝑉 (𝑘, 𝑥 (𝑘))

= 𝑥
𝑇

(𝑘) [𝐴
𝑇

𝑖
(𝜆) 𝑃
𝑖
(𝜆
𝑚

) 𝐴
𝑖
(𝜆) − 𝑃

𝑖
(𝜆
𝑚

)] 𝑥 (𝑘)

+ 2𝑥
𝑇

(𝑘) [𝐴
𝑇

𝑖
(𝜆) 𝑃
𝑖
(𝜆
𝑚

) 𝐵
𝑖
(𝜆)] 𝜔 (𝑘)

+ 𝜔
𝑇

(𝑘) [𝐵
𝑇

𝑖
(𝜆) 𝑃
𝑖
(𝜆
𝑚

) 𝐵
𝑖
(𝜆)] 𝜔 (𝑘) .

(29)

When 𝑖 = 𝑖, the switched system is described by the 𝑖th
mode. When 𝑖 ̸= 𝑖, it represents the switched system being at
the switching times from mode 𝑖 to mode 𝑖.

Before and aftermultiplying inequality (26) by {𝜆𝑚+1⊗𝐼}𝑇

and {𝜆𝑚+1 ⊗ 𝐼}, we have

(

Φ
𝑃
𝑖
𝑅
𝑖

(𝑠𝑞 (𝜆
𝑚+1

)) 0 Φ
𝑅
𝑖
𝐴
𝑖

(𝑠𝑞 (𝜆
𝑚+1

)) Φ
𝑅
𝑖
𝐵
𝑖

(𝑠𝑞 (𝜆
𝑚+1

))

∗ −Φ
𝐼
(𝑠𝑞 (𝜆

𝑚+1

)) Φ
𝐶
𝑖

(𝑠𝑞 (𝜆
𝑚+1

)) Φ
𝐷
𝑖

(𝑠𝑞 (𝜆
𝑚+1

))

∗ ∗ Φ
𝑃
𝑖

(𝑠𝑞 (𝜆
𝑚+1

)) 0

∗ ∗ ∗ −𝛾
2

Φ
𝐼
(𝑠𝑞 (𝜆

𝑚+1

))

) < 0. (30)

From Lemma 7, one has

(

Φ
𝑃
𝑖
𝑅
𝑖

(𝜆
𝑚+1

) 0 Φ
𝑅
𝑖
𝐴
𝑖

(𝜆
𝑚+1

) Φ
𝑅
𝑖
𝐵
𝑖

(𝜆
𝑚+1

)

∗ −Φ
𝐼
(𝜆
𝑚+1

) Φ
𝐶
𝑖

(𝜆
𝑚+1

) Φ
𝐷
𝑖

(𝜆
𝑚+1

)

∗ ∗ Φ
𝑃
𝑖

(𝜆
𝑚+1

) 0

∗ ∗ ∗ −𝛾
2

Φ
𝐼
(𝜆
𝑚+1

)

) < 0 (31)
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which implies

(

𝑃
𝑖
(𝜆
𝑚

) − 𝑅
𝑖
(𝜆
𝑚

) − 𝑅
𝑇

𝑖
(𝜆
𝑚

) 0 𝑅
𝑖
(𝜆
𝑚

) 𝐴
𝑖
(𝜆) 𝑅

𝑖
(𝜆
𝑚

) 𝐵
𝑖
(𝜆)

∗ −𝐼 𝐶
𝑖
(𝜆) 𝐷

𝑖
(𝜆)

∗ ∗ 𝑃
𝑖
(𝜆
𝑚

) 0

∗ ∗ ∗ −𝛾
2

𝐼

) < 0. (32)

Under the disturbance 𝜔(𝑘) = 0, we get

Δ𝑉 = 𝑥
𝑇

(𝑘) [𝐴
𝑇

𝑖
(𝜆) 𝑃
𝑖
(𝜆
𝑚

) 𝐴
𝑖
(𝜆) − 𝑃

𝑖
(𝜆
𝑚

)] 𝑥 (𝑘) .

(33)

If

𝐴
𝑇

𝑖
(𝜆) 𝑃
𝑖
(𝜆
𝑚

) 𝐴
𝑖
(𝜆) − 𝑃

𝑖
(𝜆
𝑚

) < 0, ∀𝑖, 𝑖 ∈ Π, (34)

then Δ𝑉 < 0. It implies system (1) is robust asymptotic stable.
In terms of Lemma 8, condition (34) is equivalent to

(

−𝑃
𝑖
(𝜆
𝑚

) 𝑃
𝑖
(𝜆
𝑚

) 𝐴
𝑖
(𝜆)

∗ 𝑃
𝑖
(𝜆
𝑚

)

) < 0. (35)

Since (26), it follows that

𝑃
𝑖
(𝜆
𝑚

) − 𝑅
𝑖
(𝜆
𝑚

) − 𝑅
𝑇

𝑖
(𝜆
𝑚

) < 0 (36)

which implies the matrices 𝑅
𝑖
(𝜆
𝑚

) are nonsingular for each 𝑖.
Then, we have

(𝑃
𝑖
(𝜆
𝑚

) − 𝑅
𝑖
(𝜆
𝑚

)) 𝑃
−1

𝑖
(𝜆
𝑚

) (𝑃
𝑖
(𝜆
𝑚

) − 𝑅
𝑖
(𝜆
𝑚

))
𝑇

≥ 0

(37)

which is equivalent to

𝑃
𝑖
(𝜆
𝑚

) − 𝑅
𝑖
(𝜆
𝑚

) − 𝑅
𝑇

𝑖
(𝜆
𝑚

) ≥ −𝑅
𝑖
(𝜆
𝑚

) 𝑃
−1

𝑖
(𝜆
𝑚

) 𝑅
𝑇

𝑖
(𝜆
𝑚

) .

(38)

Hence, it can be readily established that (32) is equivalent to

(

−𝑅
𝑖
(𝜆
𝑚

) 𝑃
−1

𝑖

(𝜆
𝑚

) 𝑅
𝑇

𝑖
(𝜆
𝑚

) 0 𝑅
𝑖
(𝜆
𝑚

) 𝐴
𝑖
(𝜆)

∗ −𝐼 𝐶
𝑖
(𝜆)

∗ ∗ −𝑃
𝑖
(𝜆
𝑚

)

∗ ∗ ∗

𝑅
𝑖
(𝜆
𝑚

) 𝐵
𝑖
(𝜆)

𝐷
𝑖
(𝜆)

0

−𝛾
2

𝐼

) < 0. (39)

Before and after multiplying the above inequality by
diag{−𝑅−𝑇

𝑖
(𝜆
𝑚

)𝑃
𝑖
(𝜆
𝑚

), 𝐼, 𝐼, 𝐼}, we obtain

(

−𝑃
𝑖
(𝜆
𝑚

) 0 𝑃
𝑖
(𝜆
𝑚

) 𝐴
𝑖
(𝜆) 𝑃

𝑖
(𝜆
𝑚

) 𝐵
𝑖
(𝜆)

∗ −𝐼 𝐶
𝑖
(𝜆) 𝐷

𝑖
(𝜆)

∗ ∗ −𝑃
𝑖
(𝜆
𝑚

) 0

∗ ∗ ∗ −𝛾
2

𝐼

) < 0,

(40)

which implies that (35) holds.Then, the stability of system (1)
can be deduced.

On the other hand, let

𝐽 =

∞

∑

𝑘=0

[𝑦
𝑇

(𝑘) 𝑦 (𝑘) − 𝛾
2

𝜔
𝑇

(𝑘) 𝜔 (𝑘)] (41)

be performance index to establish the 𝐻
∞

performance of
system (1). When the initial condition 𝑥(0) = 0, we have
𝑉(𝑘, 𝑥(𝑘))|

𝑘=0
= 0 which implies

𝐽 <

∞

∑

𝑘=0

[𝑦
𝑇

(𝑘) 𝑦 (𝑘) − 𝛾
2

𝜔
𝑇

(𝑘) 𝜔 (𝑘) + Δ𝑉]

=

∞

∑

𝑘=0

(𝑥
𝑇

(𝑘) 𝜔
𝑇

(𝑘))(

Θ
11
Θ
12

Θ
𝑇

12
Θ
22

)(

𝑥 (𝑘)

𝜔 (𝑘)

) ,

(42)

where

Θ
11
= 𝐴
𝑇

𝑖
(𝜆) 𝑃
𝑖
(𝜆
𝑚

) 𝐴
𝑖
(𝜆) − 𝑃

𝑖
(𝜆
𝑚

) + 𝐶
𝑇

𝑖
(𝜆) 𝐶
𝑖
(𝜆) ;

Θ
12
= 𝐴
𝑇

𝑖
(𝜆) 𝑃
𝑖
(𝜆
𝑚

) 𝐵
𝑖
(𝜆) + 𝐶

𝑇

𝑖
(𝜆)𝐷
𝑖
(𝜆) ;

Θ
22
= −𝛾
2

𝐼 + 𝐵
𝑇

𝑖
(𝜆) 𝑃
𝑖
(𝜆
𝑚

) 𝐵
𝑖
(𝜆) + 𝐷

𝑇

𝑖
(𝜆)𝐷
𝑖
(𝜆) .

(43)

In terms of Lemma 8, we have 𝐽 < 0whichmeans that ‖𝑦‖
2
<

𝛾
2

‖𝜔‖
2
. Then, the proof is completed.

Remark 10. Within robustly 𝐻
∞

performance scheme, the
basic idea is to get an upper bound of𝐻

∞
noise-attenuation
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level. Since model uncertainties may result in significant
changes in 𝐻

∞
noise-attenuation level, we should effec-

tively reduce this effect. For this purpose, the homoge-
neous parameter-dependent quadratic Lyapunov function is
exploited inTheorem 9.

Remark 11. InTheorem 9,Ψ(⋅) is amatrixwhich ismade up of
𝐴
𝑖𝑗
, 𝐵
𝑖𝑗
, 𝐶
𝑖𝑗
,𝐷
𝑖𝑗
, 𝑃
𝑖𝑗
, 𝑅
𝑖𝑗
. For example, when 𝑛 = 2 and𝑚 = 1,

condition (26) can be written as

Ψ
11
(𝑃
𝑖𝑗
, 𝑅
𝑖𝑗
) =

(

(

(

(

(

(

(

(

(

𝑃
𝑖1
− 𝑅
𝑇

𝑖1
0 0

−𝑅
𝑖1

∗ −𝑅
𝑖1
− 𝑅
𝑇

𝑖1
0

−𝑅
𝑖2
− 𝑅
𝑇

𝑖2

+𝑃
𝑖1
+ 𝑃
𝑖2

∗ ∗ 𝑃
𝑖2
− 𝑅
𝑖2

−𝑅
𝑇

𝑖2

)

)

)

)

)

)

)

)

)

,

Ψ
13
(𝑅
𝑖𝑗
, 𝐴
𝑖𝑗
) = (

𝑅
𝑖1
𝐴
𝑖1

0 0

∗ 𝑅
𝑖1
𝐴
𝑖2
+ 𝑅
𝑖2
𝐴
𝑖1

0

∗ ∗ 𝑅
𝑖2
𝐴
𝑖2

),

Ψ
14
(𝑅
𝑖𝑗
, 𝐵
𝑖𝑗
) = (

𝑅
𝑖1
𝐵
𝑖1

0 0

∗ 𝑅
𝑖1
𝐵
𝑖2
+ 𝑅
𝑖2
𝐵
𝑖1

0

∗ ∗ 𝑅
𝑖2
𝐵
𝑖2

),

Ψ
23
(𝐶
𝑖𝑗
) = (

𝐶
𝑖1

0 0

∗ 𝐶
𝑖1
+ 𝐶
𝑖2

0

∗ ∗ 𝐶
𝑖2

),

Ψ
24
(𝐶
𝑖𝑗
) = (

𝐷
𝑖1

0 0

∗ 𝐷
𝑖1
+ 𝐷
𝑖2

0

∗ ∗ 𝐷
𝑖2

),

Ψ
33
(𝑃
𝑖𝑗
) = (

−𝑃
𝑖1

0 0

∗ −𝑃
𝑖1
− 𝑃
𝑖2

0

∗ ∗ −𝑃
𝑖2

).

(44)

Remark 12. About the calculation of matrices L
11
⋅ ⋅ ⋅L
44
,

the following algorithm is presented in [26]:

(1) choose 𝑥𝑚 and 𝑥2𝑚 as in Definition 3 where 𝑥 ∈ R𝑛

(2) set 𝐴 = 0
𝑑
(𝑛,2𝑚)
𝑑
(𝑟,2)
×3

and 𝑏 = 0 and define the variable
𝛼 ∈ R𝜔(𝑛,𝑚,𝑟)

(3) for 𝑖 = 1, . . . , 𝑑
(𝑛,𝑚)

and 𝑗 = 1, . . . , 𝑟
(4) set 𝑐 = 𝑟(𝑖 − 1) + 𝑗
(5) for 𝑘 = 1, . . . , 𝑑

(𝑛,𝑚)
and 𝑙 = max{1, 𝑗 + 𝑟(𝑖 − 𝑘)}, . . . , 𝑟

(6) set 𝑑 = 𝑟(𝑘 − 1) + 𝑙 and 𝑓 = 𝑖𝑛𝑑((𝑥𝑚)
𝑖
(𝑥
𝑚

)
𝑘
, 𝑥
2𝑚

)

(7) set 𝑔 = 𝑖𝑛𝑑(𝑦
𝑗
𝑦
𝑙
, 𝑦
2

) and 𝑎 = 𝑓𝑑
𝑟,2
+ 𝑔 and 𝐴

𝑎,1
=

𝐴
𝑎,1
+ 1

(8) if 𝐴
𝑎,1
= 1

(9) set 𝐴
𝑎,2
= 𝑐 and 𝐴

𝑎,3
= 𝑑

(10) else

(11) set 𝑏 = 𝑏 + 1 and 𝐺 = 0
𝑟𝑑
(𝑛,𝑚)
×𝑟𝑑
(𝑛,𝑚)

and 𝐺
𝑐,𝑑
= 1

(12) set ℎ = 𝐴
𝑎,2

and 𝑝 = 𝐴
𝑎,3

and 𝐺
ℎ,𝑝
= 𝐺
ℎ,𝑝
− 1

(13) set 𝐿 = 𝐿 + 𝛼
𝑏
𝐺

(14) endif

(15) endfor

(16) endfor

(17) setL = 0.5ℎ𝑒(L).

Next, the condition for robust𝐻
∞
filter is formulated. For

convenience, we define 𝑛 = 2,𝑚 = 1, and 𝑠 = 2.

Theorem 13. Given a constant 𝛾 > 0, if there exist matrices
𝑃
2𝑖𝑗
, 𝑦
𝑖
, 𝜁
𝑖𝑗
, 𝐴
𝑓𝑖
, 𝐵
𝑓𝑖
, 𝐶
𝑓𝑖
, 𝐷
𝑓𝑖
, 𝑥
𝑖𝑗
and positive definite matrices

𝑃
1𝑖𝑗
, 𝑃
3𝑖𝑗

and scalar 𝜀
𝑖
such that

(

(

(

(

(

(

Λ
11
Λ
12

0 Λ
14
Λ
15
Λ
16

∗ Λ
22

0 Λ
24
Λ
25
Λ
26

∗ ∗ Λ
33
Λ
34
Λ
35
Λ
36

∗ ∗ ∗ Λ
44
Λ
45

0

∗ ∗ ∗ ∗ Λ
55

0

∗ ∗ ∗ ∗ ∗ Λ
66

)

)

)

)

)

)

+

(

(

(

(

(

(

L
11

L
12

L
13

L
14

L
15

L
16

∗ L
22

L
23

L
24

L
25

L
26

∗ ∗ L
33

L
34

L
35

L
36

∗ ∗ ∗ L
44

L
45

L
46

∗ ∗ ∗ ∗ L
55

L
56

∗ ∗ ∗ ∗ ∗ L
66

)

)

)

)

)

)

< 0

(45)

with

Λ
11
=

(

(

(

(

(

(

(

(

(

𝑃
1𝑖1
− 𝑥
𝑖1

0 0

−𝑥
𝑇

𝑖1

0 −𝑥
𝑖1
− 𝑥
𝑇

𝑖1
0

−𝑥
𝑖2
− 𝑥
𝑇

𝑖2

+𝑃
1𝑖1
+ 𝑃
1𝑖2

0 0 𝑃
1𝑖2
− 𝑥
𝑖2

−𝑥
𝑇

𝑖2

)

)

)

)

)

)

)

)

)

,



Advances in Mathematical Physics 7

Λ
12
=

(

(

(

(

(

(

(

(

(

(

(

(

𝑃
2𝑖1
− 𝜀
𝑖
𝑦
𝑖

0 0

−𝜁
𝑖1

0 𝑃
2𝑖1
+ 𝑃
2𝑖2

0

−𝜁
𝑖1
− 𝜁
𝑖2

−2𝜀
𝑖
𝑦
𝑖

0 0 𝑃
2𝑖1
− 𝜀
𝑖
𝑦
𝑖

−𝜁
𝑖2

)

)

)

)

)

)

)

)

)

)

)

)

,

Λ
14
=

(

(

(

(

(

(

(

𝑥
𝑖1
𝐴
𝑖1

0 0

+𝜀
𝑖
𝐵
𝑓𝑖
𝐶
𝑖1

0 𝑥
𝑖1
𝐴
𝑖2
+ 𝜀
𝑖
𝐵
𝑓𝑖
𝐶
𝑖1

0

+𝑥
𝑖2
𝐴
𝑖1
+ 𝜀
𝑖
𝐵
𝑓𝑖
𝐶
𝑖2

0 0 𝑥
𝑖2
𝐴
𝑖2

+𝜀
𝑖
𝐵
𝑓𝑖
𝐶
𝑖2

)

)

)

)

)

)

)

,

Λ
15
= (

𝜀
𝑖
𝐴
𝑓𝑖

0 0

0 2𝜀
𝑖
𝐴
𝑓𝑖

0

0 0 𝜀
𝑖
𝐴
𝑓𝑖

),

Λ
16
=

(

(

(

(

(

(

(

𝑥
𝑖1
𝐵
𝑖1

0 0

+𝜀
𝑖
𝐵
𝑓i𝐷𝑖1

0 𝑥
𝑖1
𝐵
𝑖2
+ 𝜀
𝑖
𝐵
𝑓𝑖
𝐷
𝑖1

0

+𝑥
𝑖2
𝐵
𝑖1
+ 𝜀
𝑖
𝐵
𝑓𝑖
𝐷
𝑖2

0 0 𝑥
𝑖2
𝐴
𝑖2

+𝜀
𝑖
𝐵
𝑓𝑖
𝐷
𝑖2

)

)

)

)

)

)

)

,

Λ
22
=

(

(

(

(

(

(

𝑃
3𝑖1
− 𝑦
𝑖

0 0

−𝑦
𝑇

𝑖

0 𝑃
3𝑖1
+ 𝑃
3𝑖2

0

−2𝑦
𝑖
− 2𝑦
𝑇

𝑖

0 0 𝑃
3𝑖2
− 𝑦
𝑖

−𝑦
𝑇

𝑖

)

)

)

)

)

)

,

Λ
24
=

(

(

(

(

(

(

(

𝜁
𝑖1
𝐴
𝑖1

0 0

+𝐵
𝑓𝑖
𝐶
𝑖1

0 𝜁
𝑖1
𝐴
𝑖2
+ 𝐵
𝑓𝑖
𝐶
𝑖1

0

+𝜁
𝑖2
𝐴
𝑖1
+ 𝐵
𝑓𝑖
𝐶
𝑖2

0 0 𝜁
𝑖2
𝐴
𝑖2

+𝐵
𝑓𝑖
𝐶
𝑖2

)

)

)

)

)

)

)

,

Λ
25
= (

𝐴
𝑓𝑖

0 0

0 2𝐴
𝑓𝑖

0

0 0 𝐴
𝑓𝑖

),

Λ
26
=

(

(

(

(

(

(

(

𝜁
𝑖1
𝐵
𝑖1

0 0

+𝐵
𝑓𝑖
𝐷
𝑖1

0 𝜁
𝑖1
𝐵
𝑖2
+ 𝐵
𝑓𝑖
𝐷
𝑖1

0

+𝜁
𝑖2
𝐵
𝑖1
+ 𝐵
𝑓𝑖
𝐷
𝑖2

0 0 𝜁
𝑖2
𝐴
𝑖2

+𝐵
𝑓𝑖
𝐷
𝑖2

)

)

)

)

)

)

)

,

Λ
33
= (

−𝐼
1×1

0 0

0 −2𝐼
1×1

0

0 0 −𝐼
1×1

),

Λ
34
=(

𝐻
𝑖1
− 𝐷
𝑓𝑖
𝐶
𝑖1

0 0

0 𝐻
𝑖1
− 𝐷
𝑓𝑖
𝐶
𝑖1

0

+𝐻
𝑖2
− 𝐷
𝑓𝑖
𝐶
𝑖2

0 0 𝐻
𝑖2
− 𝐷
𝑓𝑖
𝐶
𝑖2

),

Λ
35
= (

−𝐶
𝑓𝑖

0 0

0 −2𝐶
𝑓𝑖

0

0 0 −𝐶
𝑓𝑖

),

Λ
36
=(

𝐿
𝑖1
− 𝐷
𝑓𝑖
𝐷
𝑖1

0 0

0 𝐿
𝑖1
− 𝐷
𝑓𝑖
𝐷
𝑖1

0

+𝐿
𝑖2
− 𝐷
𝑓𝑖
𝐷
𝑖2

0 0 𝐿
𝑖2
− 𝐷
𝑓𝑖
𝐷
𝑖2

),

Λ
44
= (

−𝑃
1𝑖1

0 0

0 −𝑃
1𝑖1
− 𝑃
1𝑖2

0

0 0 −𝑃
1𝑖2

),

Λ
45
= (

−𝑃
2𝑖1

0 0

0 −𝑃
2𝑖1
− 𝑃
2𝑖2

0

0 0 −𝑃
2𝑖2

),

Λ
55
= (

−𝑃
3𝑖1

0 0

0 −𝑃
3𝑖1
− 𝑃
3𝑖2

0

0 0 −𝑃
3𝑖2

),

Λ
66
= (

−𝛾
2

𝐼
1×1

0 0

0 −2𝛾
2

𝐼
1×1

0

0 0 −𝛾
2

𝐼
1×1

),

L
11
⋅ ⋅ ⋅L
66
∈ L
2,2,2

,

(46)

then there exists a robust switched linear filter in form of (4)
such that, for all admissible uncertainties, the filter error system
(5) is robustly asymptotically stable and performance index
holds for any nonzero 𝜔 ∈ 𝑙

2
[0,∞), where 𝐴

𝑓𝑖
= 𝑦
−1

𝑖
𝐴
𝑓𝑖
,

𝐵
𝑓𝑖
= 𝑦
−1

𝑖
𝐵
𝑓𝑖
, 𝐶
𝑓𝑖
= 𝐶
𝑓𝑖
, and 𝐷

𝑓𝑖
= 𝐷
𝑓𝑖
.



8 Advances in Mathematical Physics

Proof. Let

𝑃
𝑖
(𝜆) = (

𝑃
1𝑖
(𝜆) 𝑃

2𝑖
(𝜆)

∗ 𝑃
3𝑖
(𝜆)

) , 𝑅
𝑖
(𝜆) = (

𝑥
𝑖
(𝜆) 𝜀
𝑖
𝑦
𝑖

𝜁
𝑖
(𝜆) 𝑦

𝑖

) ,

(47)

where

𝑃
1𝑖
(𝑠𝑞 (𝜆)) = {𝜆 ⊗ 𝐼}

𝑇

(

𝑃
1𝑖1

0

0 𝑃
1𝑖2

) {𝜆 ⊗ 𝐼} ,

𝑃
2𝑖
(𝑠𝑞 (𝜆)) = {𝜆 ⊗ 𝐼}

𝑇

(

𝑃
2𝑖1

0

0 𝑃
2𝑖2

) {𝜆 ⊗ 𝐼} ,

𝑃
3𝑖
(𝑠𝑞 (𝜆)) = {𝜆 ⊗ 𝐼}

𝑇

(

𝑃
3𝑖1

0

0 𝑃
3𝑖2

) {𝜆 ⊗ 𝐼} ,

𝑥
𝑖
(𝑠𝑞 (𝜆)) = {𝜆 ⊗ 𝐼}

𝑇

(

𝑥
𝑖1

0

0 𝑥
𝑖2

) {𝜆 ⊗ 𝐼} ,

𝜁
𝑖
(𝑠𝑞 (𝜆)) = {𝜆 ⊗ 𝐼}

𝑇

(

𝜁
𝑖1

0

0 𝜁
𝑖2

) {𝜆 ⊗ 𝐼} .

(48)

From Theorem 9, the filter error system is robustly asymp-
totically stable with a prescribed 𝐻

∞
noise-attenuation level

bound 𝛾 if the following matrix inequality holds:

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

𝑃
1𝑖
(𝜆) − 𝑥

𝑖
(𝜆) 𝑃

2𝑖
(𝜆) − 𝜀

𝑖
𝑦
𝑖
0 𝑥
𝑖
(𝜆) 𝐴
𝑖
(𝜆) 𝜀

𝑖
𝐴
𝑓𝑖

𝑥
𝑖
(𝜆) 𝐵
𝑖
(𝜆)

−𝑥
𝑖
(𝜆)
𝑇

−𝜁
𝑖
(𝜆) +𝜀

𝑖
𝐵
𝑓𝑖
𝐶
𝑖
(𝜆) +𝜀

𝑖
𝐵
𝑓𝑖
𝐷
𝑖
(𝜆)

∗ 𝑃
3𝑖
− 𝑦
𝑖

0 𝜁
𝑖
(𝜆) 𝐴
𝑖
(𝜆) 𝐴

𝑓𝑖
𝜁
𝑖
(𝜆) 𝐵
𝑖
(𝜆)

−𝑦
𝑇

𝑖
+𝐵
𝑓𝑖
𝐶
𝑖
(𝜆) +𝐵

𝑓𝑖
𝐷
𝑖
(𝜆)

∗ ∗ −𝐼 𝐻
𝑖
(𝜆) 𝐶

𝑓𝑖
𝐿
𝑖
(𝜆)

−𝐷
𝑓𝑖
𝐶
𝑖
(𝜆) −𝐷

𝑓𝑖
𝐷
𝑖
(𝜆)

∗ ∗ ∗ −𝑃
1𝑖
(𝜆) −𝑃

2𝑖
(𝜆) 0

∗ ∗ ∗ ∗ −𝑃
3𝑖
(𝜆) 0

∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

< 0. (49)

By (48) and Lemma 7, one can obtain that inequality (45) is
equivalent to (49).Thus, if (45) holds, the filter error system is
robustly asymptotically stable with an𝐻

∞
noise-attenuation

level bound 𝛾 > 0. Then, the proof is completed.

4. Examples

The following example exhibits the effectiveness and appli-
cability of the proposed method for robust 𝐻

∞
filtering

problems with polytopic uncertainties.
Consider the following uncertain discrete-time switched

linear system (1) consisting of two uncertain subsystems
which is given in [1]. There are two groups of vertex matrices
in subsystem 1:

𝐴
11
= 𝜌(

0.82 0.10

−0.06 0.77

) , 𝐵
11
= 𝜌(

0

0.1

) ,

𝐶
11
= 𝜌 (1 0) , 𝐷

11
= 𝜌,

𝐻
11
= 𝜌 (1 0) , 𝐿

11
= 0,

𝐴
12
= 𝜌(

0.82 0.10

−0.06 −0.75

) , 𝐵
12
= 𝜌(

0

−0.1

) ,

𝐶
12
= 𝜌 (1 0.2) , 𝐷

12
= 0.8𝜌,

𝐻
12
= 𝜌 (1 0) , 𝐿

12
= 0

(50)

and two groups of vertex matrices in subsystem 2:

𝐴
21
= 𝜌(

0.82 0.06

−0.10 0.77

) , 𝐵
21
= 𝜌(

0.1

0

) ,

𝐶
21
= 𝜌 (0 −1) , 𝐷

21
= −𝜌,

𝐻
21
= 𝜌 (1 0) , 𝐿

21
= 0,

𝐴
22
= 𝜌(

0.82 0.06

−0.10 −0.75

) , 𝐵
22
= 𝜌(

−0.1

0

) ,

𝐶
22
= 𝜌 (0.2 −1) , 𝐷

22
= −0.8𝜌,

𝐻
22
= 𝜌 (1 0) , 𝐿

22
= 0.

(51)

Moreover, we define the disturbance:

𝜔 (𝑘) = 0.001𝑒
−0.003𝑘 sin (0.002𝜋𝑘) . (52)

Firstly, consider the problem of being robustly asymptot-
ically stable with an 𝐻

∞
noise-attenuation for the uncertain

switched systemwhich was given inTheorem 9.The different
minimum 𝐻

∞
noise-attenuation level bounds 𝛾 can be

obtained by different methods. Table 1 lists the different
calculation results. From Table 1, it can be clearly seen that
the results which are gotten by homogeneous parameter-
dependent quadratic Lyapunov functions are better.
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Table 1: Different minimum 𝛾 for uncertain switched system.

𝜌 1 1.1 1.2
[1] 1.2799 1.6985 6.2048
Theorem 9 1.2799 1.6984 4.0988
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Figure 1: The states responses corresponding to uncertain parame-
ters 𝜆

1
= 0.4 and 𝜆

2
= 0.6.
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Figure 2:𝐻
∞
noise-attenuation level bound 𝛾 = 4.0988.

In addition, for given 𝜌 = 1.2 and initial condition
𝑥(0) = [0.1, −0.3]

𝑇, Figures 1 and 2 show system (1) is robustly
asymptotically stable with an 𝐻

∞
noise-attenuation level

bound 𝛾 = 4.0988.
Next, we consider the problem of robust𝐻

∞
filtering. In

order to get 𝐻
∞

noise-attenuation level bound 𝛾, we define

Table 2: Different minimum 𝛾 for robust switched linear filter.

𝜌 1 1.1 1.2
[1] 0.5375 1.1414 4.4493
Theorem 13 0.5148 1.0826 4.2892
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Figure 3: The states responses corresponding to uncertain parame-
ters 𝜆

1
= 0.4 and 𝜆

2
= 0.6.

𝜀
1
= 𝜀
2
= 1. By solving the corresponding convex optimiza-

tion problems in Theorem 13, we obtain the minimum 𝐻
∞

noise-attenuation level bounds 𝛾. Table 2 lists our results and
[1]’s results. Moreover, when 𝜌 = 1.2, the admissible filter
parameters can be obtained according toTheorem 13 as

𝐴
𝑓1
= (

0.8770 0.0505

−0.7334 0.3356

) , 𝐵
𝑓1
= (

−0.0852

−0.1077

) ,

𝐶
𝑓1
= (−1.2057 0.0112) ,

𝐴
𝑓2
= (

1.1457 0.6743

−1.2492 −0.8883

) ,

𝐵
𝑓1
= (

−0.2593

0.5929

) ,

𝐶
𝑓2
= (−0.8695 −0.1525) ,

𝐷
𝑓1
= −0.0073, 𝐷

𝑓2
= −0.0045.

(53)

By comparison, using homogeneous parameter-dependent
quadratic Lyapunov function for the existence of a robust
switched linear filter in Theorem 13 is better.

By giving 𝐻
∞

noise-attenuation level bound 𝛾 = 4.2892
and initial condition 𝑥

𝑒
(0) = [0.1 − 0.3 0 0]

𝑇, Figure 3
shows the filtering error system is robustly asymptotically
stable and Figure 4 shows the error response of the resulting
filtering error system by applying above filter. It is clear that
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Figure 4: Filtering error response corresponding to uncertain
parameters 𝜆

1
= 0.4 and 𝜆

2
= 0.6.

the method inTheorem 13 is feasible and effective against the
variations of uncertain parameter.

5. Conclusions

In this paper, the problems of being robustly asymptotically
stable with an 𝐻

∞
noise-attenuation level bounds 𝛾 and

switched linear filter design for uncertain switched linear
system are studied by homogeneous parameter-dependent
quadratic Lyapunov functions. By using this method, the
less conservative 𝐻

∞
noise-attenuation level bounds are

obtained. Moreover, we also get a more feasible and effective
method against the variations of uncertain parameter under
the given arbitrary switching signal. Numerical examples
illustrate the effectiveness of our method.
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