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The specific case of scattering of a plane wave by a two-layered penetrable eccentric circular cylinder has been considered and it
is about the validity of the on surface radiation condition method and its applications to the scattering of a plane wave by a two-
layered penetrable eccentric circular cylinder. The transformation of the problem of scattering by the eccentric circular cylinder to
the problem of scattering by the concentric circular cylinder by using higher order radiation conditions, is observed. Numerical
results presented the magnitude of the far field.

1. Introduction

Approximate techniques have been introduced to study the
scattering of waves by obstacles. The OSRCmethod has been
devised by Kriegsmann et al. to investigate electromagnetic
scattering problems involving cylindrical convex objects [1].
The main concept of this method is the application of a
radiation boundary condition (RBC), connecting the field
and its normal derivative, directly onto the surface of the
scatterer, to determine approximately the surface field or its
derivative in terms of the given field.

Two main approaches have been employed to derive
RBCs [2, 3]. One of themethods is based on the idea of killing
the terms of the expansion of the scattering field satisfying
theHelmholtz equation and Sommerfeld radiation condition.
An 𝑛th-order RBC operator which annihilates the first 𝑛
terms in the expansion is obtained either on a large circular
cylinder enclosing a cylindrical convex object or on a large
sphere enclosing a finite convex object, depending on the
geometrical dimensions of the problem. These RBCs can be
generalized so that they can be used in the OSRC method
for constructing the approximate solution of a scattering
problem involving an arbitrary convex object.

The second approach which is capable of supplying SRCs
of any order on a smooth scattering surface of arbitrary form,
thus avoiding the difficulty mentioned above, was introduced

by Kriegsmann and Moore [3]. This method is based on
an asymptotic expansion, similar to the Luneburg-Kline
expansion, made in the neighbourhood of a phase front
by assuming that the field has a well defined phase front
in the regions of interest. Then the assumption that the
surface of the scattering is a phase front yields the SRC
of the OSRC method. Although the method of Jones may,
in principle, furnish SRCs to any desired order, only the
second-order condition has been produced and applied to
various problems to examine the predictions of the method.
From these investigations it has been observed that, for hard
objects, as frequency increases, second-order SRCs begin to
fail to account for creeping wave physics adequately.

Considering these results, it has been conjectured that,
by introducing higher-order SRCs in the method, creeping
wave physics may be modelled more accurately; that is, the
approximation of the OSRC method may be improved. In
[1, 3–7] only the first- and second-order RBCs have been
produced and used in conjunction with the OSRC method.
Later [2, 8, 9] third- and fourth-order RBCs have been used to
examine whether the use of higher-order SRCs in the OSRC
method models creeping wave physics more accurately than
a second-order SRC.

In this work we applied the higher-order SRCs to scat-
tering of plane waves by an eccentric penetrable circular
cylinder. The results are compared with those of second- and
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Figure 1

fourth-order SRCs and with those of the scattering of plane
waves by a concentric penetrable cylinder [9].

This paper is organized as follows. The formulation of
the problem together with the exact and the approximate
solutions of these equations with OSRC method is presented
and calculated in Sections 2 and 3, respectively. In Section 4
the comparisons and some concluding remarks take place.

2. Formulation and Exact Solution

We denote the outer and the inner layers byB
2
, with sound

speed 𝑐
2
(m/s) and constant density 𝜌

2
(kg/m3), and by B

3
,

with sound speed 𝑐
3
(m/s) and constant density 𝜌

3
(kg/m3),

respectively. The interface between them is the circular
cylinder Σ

2
of radius 𝑟

2
. The radius of the circular cylinder

between the exterior region B
1
which is a homogeneous

isotropic medium with sound speed 𝑐
1
(m/s) and constant

density 𝜌
1
(kg/m3) and the region B

2
is 𝑟
1
, B
1
= {𝑟 >

𝑟
1
}, B
2
= {𝑟
2
< 𝑟 < 𝑟

1
}, and B

3
= {𝑟 < 𝑟

2
}.

Let us denote byO
1
the center of the outer cylinderΣ

1
and

by O
2
the center of the inner cylinder Σ

2
and take O

1
as the

origin of the rectangular Cartesian coordinate system (𝑥, 𝑦).
We suppose that the 𝑥-axis passes through the points O

1
and

O
2
. In addition to this, we consider two polar coordinate

systems centered at O
1
and O

2
. Radial and angular variables

are denoted by (𝑟, 𝜙) and (𝜌, 𝜃), respectively. 𝜙 and 𝜃 are
measured from the positive 𝑥-axis. Under these assumptions
the geometry of the problem is defined in Figure 1, where 𝑟

1
,

𝑟
2
are the outer and inner cylinder radii, while the distance

between the centers of the cylinders is represented by 𝑒.
The scattering problem is described by the following

equations and boundary conditions:

∇
2
𝑢
𝑙
+ 𝑘
2

𝑙
𝑢
𝑙
= 0 (𝑥, 𝑦) ∈B

𝑙

for 𝑘
𝑙
=

𝑤

𝑐
𝑙

, 𝑙 = 1, 2, 3,

(1)

𝑢
1
+ 𝑢
𝑖
= 𝑢
2
,

𝜕

𝜕𝑟

(𝑢
1
+ 𝑢
𝑖
) = 𝜉
1

𝜕𝑢
2

𝜕𝑟

on 𝑟 = 𝑟
1
, (2)

𝑢
2
= 𝑢
3
,

𝜕𝑢
2

𝜕𝑟

= 𝜉
2

𝜕𝑢
3

𝜕𝑟

on 𝜌 = 𝑟
2
, (3)

where 𝜁
1
= 𝜌
1
/𝜌
2
, 𝜁
2
= 𝜌
2
/𝜌
3
, 𝑘
𝑙
= 𝑤/𝑐

𝑙
is a wave number,

and 𝑤 is the angular frequency. In addition, at infinity the
scattered field 𝑢

1
must have the form of a radiating wave;

that is, the following Sommerfeld radiation condition must
be satisfied:

lim
𝑟→∞

𝑟
1/2
(

𝜕𝑢
1

𝜕𝑟

+ 𝑖𝑘
1
𝑢
1
) = 0. (4)

Since 𝜙
0
is the direction of propagation of the incident

wave, the propagation vector of the incident wave is assumed
to be p = (− cos𝜙

0
, − sin𝜙

0
). 𝜙, 𝑟 are the polar coordinates

and the assumed time dependence is 𝑒−𝑖𝑤𝑡. All the field
quantities are then independent of 𝑧. If 𝑥 = 𝑟 cos𝜙, 𝑦 =
𝑟 sin𝜙 then the incident wave can be expressed as

𝑢
𝑖
= 𝑒
−𝑖𝑘
1
p⋅x
= 𝑒
𝑖𝑘
1
𝑟 cos(𝜙−𝜙

0
)

=

∞

∑

𝑛=−∞

𝐽
𝑛
(𝑘
1
𝑟) 𝑒
𝑖𝑛(𝜙−𝜙

0
+𝜋/2)

(5)

[4]. Solutions for 𝑢
1
, 𝑢
2
, and 𝑢

3
can be expressed in polar

coordinates as follows:

𝑢
1
=

∞

∑

𝑛=−∞

𝑎
𝑛
𝐻
𝑛
(𝑘
1
𝑟) 𝑒
𝑖𝑛(𝜙−𝜙

0
+𝜋/2)

, (6)

𝑢
2
=

∞

∑

𝑛=−∞

[𝑏
𝑛
𝐽
𝑛
(𝑘
2
𝜌) + 𝑐

𝑛
𝐻
𝑛
(𝑘
2
𝜌)] 𝑒
𝑖𝑛(𝜃−𝜋/2)

, (7)

𝑢
3
=

∞

∑

𝑛=−∞

𝑑
𝑛
𝐽
𝑛
(𝑘
3
𝜌) 𝑒
𝑖𝑛(𝜃−𝜋/2)

. (8)

𝑢
2
solution is expressed in polar coordinates centered at O

2
.

In order to be able to use this solution for 𝑟 = 𝑟
1
it has to be

written first in polar coordinates (𝑟, 𝜙). We know that 𝐽
𝑛
(𝑘
2
𝜌)

and𝐻
𝑛
(𝑘
2
𝜌) can be expressed as follows:

𝐽
𝑛
(𝑘
2
𝜌) 𝑒
𝑖𝑛𝜃
=

∞

∑

𝑞=−∞

𝐽
𝑞
(𝑘
2
𝑟) 𝐽
𝑞−𝑛
(𝑘
2
𝑒) 𝑒
𝑖𝑞𝜙
,

𝐻
𝑛
(𝑘
2
𝜌) 𝑒
𝑖𝑛𝜃
=

∞

∑

𝑞=−∞

𝐻
𝑞
(𝑘
2
𝑟) 𝐽
𝑞−𝑛
(𝑘
2
𝑒) 𝑒
𝑖𝑞𝜙
.

(9)

If (9) is inserted in (7) the solution for 𝑢
2
in polar coordinates

(𝑟, 𝜙) takes the following mentioned form:

𝑢
2
=

∞

∑

𝑛=−∞

𝑏
𝑛
{

∞

∑

𝑞=−∞

𝐽
𝑞−𝑛
(𝑘
2
𝑒) 𝐽
𝑞
(𝑘
2
𝑟) 𝑒
𝑖𝑞𝜙
}𝑒
−𝑖𝑛𝜋/2

+

∞

∑

𝑛=−∞

𝑐
𝑛
{

∞

∑

𝑞=−∞

𝐽
𝑞−𝑛
(𝑘
2
𝑒)𝐻
𝑞
(𝑘
2
𝑟) 𝑒
𝑖𝑞𝜙
}𝑒
−𝑖𝑛𝜋/2

.

(10)
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Now, if (5), (6), and (10) are used under the boundary
conditions (2), in order for these conditions to be satisfied

𝐽
𝑞
(𝑘
1
𝑟
1
) 𝑒
−𝑖𝑞(𝜙

0
−𝜋/2)

+ 𝑎
𝑞
𝐻
𝑞
(𝑘
1
𝑟
1
) 𝑒
−𝑖𝑞(𝜙

0
−𝜋/2)

= 𝐽
𝑞
(𝑘
2
𝑟
1
)

∞

∑

𝑛=−∞

𝑏
𝑛
𝐽
𝑞−𝑛
(𝑘
2
𝑒) 𝑒
−𝑖𝑛𝜋/2

+ 𝐻
𝑞
(𝑘
2
𝑟
1
)

∞

∑

𝑛=−∞

𝑐
𝑛
𝐽
𝑞−𝑛
(𝑘
2
𝑒) 𝑒
−𝑖𝑛𝜋/2

(11)

𝑘
1
𝐽
󸀠

𝑞
(𝑘
1
𝑟
1
) 𝑒
−𝑖𝑞(𝜙

0
−𝜋/2)

+ 𝑘
1
𝑎
𝑞
𝐻
󸀠

𝑞
(𝑘
1
𝑟
1
) 𝑒
−𝑖𝑞(𝜙

0
−𝜋/2)

= 𝑘
2
𝜉
1
𝐽
󸀠

𝑞
(𝑘
2
𝑟
1
)

∞

∑

𝑛=−∞

𝑏
𝑛
𝐽
𝑞−𝑛
(𝑘
2
𝑒) 𝑒
−𝑖𝑛𝜋/2

+ 𝑘
2
𝜉
1
𝐻
󸀠

𝑞
(𝑘
2
𝑟
1
)

∞

∑

𝑛=−∞

𝑐
𝑛
𝐽
𝑞−𝑛
(𝑘
2
𝑒) 𝑒
−𝑖𝑛𝜋/2

(12)

𝑒 = 0𝐽
𝑞−𝑛
(𝑘
2
𝑒) = {

1; 𝑞 = 𝑛

0; 𝑞 ̸= 𝑛.

(13)

Thus, if 𝜙
0
= 𝜋 is taken it is seen that in case of 𝑒 = 0 or

𝑘
2
𝑒 → 0 (11) and (12) are, respectively, transformed to (2.8)

and (2.9) in [9].Then if (7) and (8) are usedwith the boundary
conditions (3), the requirements for these conditions to be
satisfied are

𝑏
𝑛
𝐽
𝑛
(𝑘
2
𝑟
2
) + 𝑐
𝑛
𝐻
𝑛
(𝑘
2
𝑟
2
) = 𝑑
𝑛
𝐽
𝑛
(𝑘
3
𝑟
2
) , (14)

𝑘
2
𝑏
𝑛
𝐽
󸀠

𝑛
(𝑘
2
𝑟
2
) + 𝑘
2
𝑐
𝑛
𝐻
󸀠

𝑛
(𝑘
2
𝑟
2
) = 𝜉
2
𝑘
3
𝑑
𝑛
𝐽
󸀠

𝑛
(𝑘
3
𝑟
2
) . (15)

Equations (11), (12), (14), and (15) constitute a system of
algebraic equations with an infinite dimension for 𝑎

𝑛
, 𝑏
𝑛
, 𝑐
𝑛
,

and 𝑑
𝑛
. First the infinite sums in (11) and (12) are converted to

finite sums by choosing a naturel number𝑁
1
.The summation

is implemented up to 𝑁
1
. Therefore a system of infinite

dimension is approximated by this finite system and is
numerically solved. Then the same process is repeated by
choosing a greater naturel number𝑁

2
. This is repeated until

a solution of required precision is obtained. In this process,
in order to diminish the load of the numerical calculations,
instead of dealing with all (11), (12), (14), and (15) an algebraic
system of equations with a finite dimension which includes
only 𝑏

𝑛
’s can be derived as follows. By eliminating 𝑎

𝑛
from

(11) and (12) the below mentioned system of equations which
includes only 𝑏

𝑛
and 𝑐
𝑛
is obtained:

∞

∑

𝑙=−∞

[Λ
𝑙
(𝑛) 𝑏
𝑙
+ Φ
𝑙
(𝑛) 𝑐
𝑙
] = Ψ
𝑛
. (16)

Here the elements of matrices Λ
𝑙
(𝑛),Φ

𝑙
(𝑛) and vector Ψ

𝑛
are

defined as follows:

Λ
𝑙
(𝑛) = 𝐽

𝑛−𝑙
(𝑘
2
𝑒) 𝑒
−𝑖𝑙(𝜋/2)+𝑖𝑛(𝜙

0
−𝜋/2)

⋅ [

𝐽
𝑛
(𝑘
2
𝑟
1
)

𝐻
𝑛
(𝑘
1
𝑟
1
)

−

𝑘
2
𝜉
1
𝐽
󸀠

𝑛
(𝑘
2
𝑟
1
)

𝑘
1
𝐻
󸀠

𝑛
(𝑘
1
𝑟
1
)

] ,

Φ
𝑙
(𝑛) = 𝐽

𝑛−𝑙
(𝑘
2
𝑒) 𝑒
−𝑖𝑙(𝜋/2)+𝑖𝑛(𝜙

0
−𝜋/2)

⋅ [

𝐻
𝑛
(𝑘
2
𝑟
1
)

𝐻
𝑛
(𝑘
1
𝑟
1
)

−

𝑘
2
𝜉
1
𝐻
󸀠

𝑛
(𝑘
2
𝑟
1
)

𝑘
1
𝐻
󸀠

𝑛
(𝑘
1
𝑟
1
)

] ,

Ψ
𝑛
= [

𝐽
𝑛
(𝑘
1
𝑟
1
)

𝐻
𝑛
(𝑘
1
𝑟
1
)

−

𝐽
󸀠

𝑛
(𝑘
1
𝑟
1
)

𝐻
󸀠

𝑛
(𝑘
1
𝑟
1
)

] .

(17)

On the other side if 𝑑
𝑛
is eliminated from (14) and (15) the

relation

𝑐
𝑛
=

𝜁
𝑛

𝜂
𝑛

𝑏
𝑛 (18)

is obtained. 𝜁
𝑛
and 𝜂
𝑛
are defined as follows:

𝜁
𝑛
=

𝑘
3
𝜉
2
𝐽
󸀠

𝑛
(𝑘
3
𝑟
2
) 𝐽
𝑛
(𝑘
2
𝑟
2
)

𝑘
2
𝐻
𝑛
(𝑘
2
𝑟
2
)𝐻
󸀠

𝑛
(𝑘
2
𝑟
2
)

−

𝐽
𝑛
(𝑘
3
𝑟
2
) 𝐽
󸀠

𝑛
(𝑘
2
𝑟
2
)

𝐻
𝑛
(𝑘
2
𝑟
2
)𝐻
󸀠

𝑛
(𝑘
2
𝑟
2
)

, (19)

𝜂
𝑛
=

−𝑘
3
𝜉
2
𝐽
󸀠

𝑛
(𝑘
3
𝑟
2
)

𝑘
2
𝐻
󸀠

𝑛
(𝑘
2
𝑟
2
)

+

𝐽
𝑛
(𝑘
3
𝑟
2
)

𝐻
𝑛
(𝑘
2
𝑟
2
)

. (20)

If 𝑐
𝑛
in (16) is replaced by the right hand side of (18), the below

system of equations is obtained for 𝑏
𝑛
:

∞

∑

𝑙=−∞

𝐴
𝑙
(𝑛) 𝑏
𝑙
= Ψ
𝑛
. (21)

Here the elements of the 𝐴
𝑙
(𝑛)matrix are defined as follows:

𝐴
𝑙
(𝑛) = Λ

𝑙
(𝑛) + Φ

𝑙
(𝑛)

𝜁
𝑙

𝜂
𝑙

. (22)

By replacing 𝑙 and 𝑛 by the elements of the increasing
whole number sequence {𝑁

1
, 𝑁
2
, 𝑁
3
, . . .} and by making (21)

finite, finite number of 𝑏
𝑛
is found with the same process as

described above. By using 𝑏
𝑛
’s in (18), (14) (or (15)), and (11)

(or (12)) the same numbers of 𝑐
𝑛
, 𝑑
𝑛
, and 𝑎

𝑛
’s are calculated.

Thus, the scattered field is approximated by a finite sum.

3. Approximate Solution

By using on surface radiation conditionmethod, the problem
is converted to an internal one together with the boundary
conditions of the impedance [9] type on Σ

1
, boundary

conditions (3) on Σ
2
, and (1) (for 𝑙 = 2, 3). For this reason

in the boundary condition of the impedance type [9] 𝜃 is
replaced by 𝜙.

When the incident wave is a plane wave, 𝑢𝑖(𝑎, 𝜙) = V𝑖(𝜙)
and (1/𝑘

1
)(𝜕𝑢
𝑖
/𝜕𝑟)(𝑎, 𝜙) = 𝑤

𝑖
(𝜙)

V𝑖 (𝜙) =
∞

∑

𝑛=−∞

𝐽
𝑛
(𝜀) 𝑒
𝑖𝑛(𝜙−𝜙

0
+𝜋/2)

, 𝜀 = 𝑘
1
𝑟
1
,

𝑤
𝑖
(𝜙) =

∞

∑

𝑛=−∞

𝐽
󸀠

𝑛
(𝜀) 𝑒
𝑖𝑛(𝜙−𝜙

0
+𝜋/2)

(23)
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are written. Solutions of (1) (for 𝑙 = 2, 3) can be expressed in
the following forms:

𝑢
2
=

∞

∑

𝑛=−∞

[
̃
𝑏
𝑛
𝐽
𝑛
(𝑘
2
𝜌) + 𝑐

𝑛
𝐻
𝑛
(𝑘
2
𝜌)] 𝑒
𝑖𝑛(𝜃−𝜋/2)

, (24)

𝑢
3
=

∞

∑

𝑛=−∞

̃
𝑑
𝑛
𝐽
𝑛
(𝑘
3
𝜌) 𝑒
𝑖𝑛(𝜃−𝜋/2)

. (25)

The expression of 𝑢
2
in (24) is written in (𝜌, 𝜃) coordinates.

From (10) this solution can be expressed in (𝜌, 𝜙) coordinates
as follows:

𝑢
2
=

∞

∑

𝑛=−∞

[

∞

∑

𝑞=−∞

̃
𝑏
𝑞
𝐽
𝑛−𝑞
(𝑘
2
𝑒) 𝑒
−𝑖𝑞𝜋/2

] 𝐽
𝑛
(𝑘
2
𝑟) 𝑒
𝑖𝑛𝜙

+

∞

∑

𝑛=−∞

[

∞

∑

𝑞=−∞

𝑐
𝑞
𝐽
𝑛−𝑞
(𝑘
2
𝑒) 𝑒
−𝑖𝑞𝜋/2

]𝐻
𝑛
(𝑘
2
𝑟) 𝑒
𝑖𝑛𝜙
.

(26)

When 𝑢
2
is taken as given in (26) and (23) are chosen for the

incident wave, in order for (2.3) condition and (2.21) of [9] to
be satisfied

{Θ
(𝑙)
(𝜀) 𝐽
𝑛
(𝑘
2
𝑟
1
) −

𝑘
2
𝜉
1

𝑘
1

𝐽
󸀠

𝑛
(𝑘
2
𝑟
1
)}

⋅ {

∞

∑

𝑞=−∞

̃
𝑏
𝑞
𝐽
𝑛−𝑞
(𝑘
2
𝑒) 𝑒
−𝑖𝑞𝜋/2

}

+ {Θ
(𝑙)
(𝜀)𝐻
𝑛
(𝑘
2
𝑟
1
) −

𝑘
2
𝜉
1

𝑘
1

𝐻
󸀠

𝑛
(𝑘
2
𝑟
1
)}

⋅ {

∞

∑

𝑞=−∞

𝑐
𝑞
𝐽
𝑛−𝑞
(𝑘
2
𝑒) 𝑒
−𝑖𝑞𝜋/2

}

= {Θ
(𝑙)
(𝜀) 𝐽
𝑛
(𝜀) − 𝐽

󸀠

𝑛
(𝜀)} 𝑒
−𝑖𝑛(𝜙

0
−𝜋/2)

(27)

is required. Here the function Θ(𝑙)(𝜀) is defined in (2.32) of
[9].

For 𝑒 = 0 two cylinders have the same axis and relation
(13) holds.Thus if we take 𝜙

0
= 𝜋 at the 𝑘

2
𝑒 → 0 limit we can

easily observe that (27) is converted to that of the problem
which is the same as in [9]. If solutions (24) and (25) are
used under conditions (3) in order for those conditions to be
satisfied it is required that

̃
𝑏
𝑛
𝐽
𝑛
(𝑘
2
𝑟
2
) + 𝑐
𝑛
𝐻
𝑛
(𝑘
2
𝑟
2
) =

̃
𝑑
𝑛
𝐽
𝑛
(𝑘
3
𝑟
2
) , (28)

𝑘
2
̃
𝑏
𝑛
𝐽
󸀠

𝑛
(𝑘
2
𝑟
2
) + 𝑘
2
𝑐
𝑛
𝐻
󸀠

𝑛
(𝑘
2
𝑟
2
) = 𝜉
2
𝑘
3
̃
𝑑
𝑛
𝐽
󸀠

𝑛
(𝑘
3
𝑟
2
) (29)

hold. As a result (27), (28), and (29) constitute an algebraic
system of equations of infinite dimension, for ̃𝑏

𝑛
, 𝑐
𝑛
, and ̃𝑑

𝑛
.

We can write (27) as follows:
∞

∑

𝑞=−∞

[Λ̃
𝑞
(𝑛)
̃
𝑏
𝑙
+ Φ̃
𝑞
(𝑛) 𝑐
𝑙
] = Ψ̃
𝑛
. (30)

Here Λ̃
𝑞
(𝑛), Φ̃

𝑞
(𝑛), and Ψ̃

𝑛
are defined as follows:

Λ̃
𝑞
(𝑛) = 𝐽

𝑛−𝑞
(𝑘
2
𝑒) 𝑒
−𝑖𝑞(𝜋/2)+𝑖𝑛(𝜙

0
−𝜋/2)

⋅ {Θ
(𝑙,𝑚)
(𝜀) 𝐽
𝑛
(𝑘
2
𝑟
1
) −

𝑘
2
𝜉
1

𝑘
1

𝐽
󸀠

𝑛
(𝑘
2
𝑟
1
)} ,

Φ̃
𝑞
(𝑛) = 𝐽

𝑛−𝑞
(𝑘
2
𝑒) 𝑒
−𝑖𝑞(𝜋/2)+𝑖𝑛(𝜙

0
−𝜋/2)

⋅ {Θ
(𝑙,𝑚)
(𝜀)𝐻
𝑛
(𝑘
2
𝑟
1
) −

𝑘
2
𝜉
1

𝑘
1

𝐻
󸀠

𝑛
(𝑘
2
𝑟
1
)}

Ψ̃
𝑛
= Θ
(𝑙,𝑚)
(𝜀) 𝐽
𝑛
(𝜀) − 𝐽

󸀠

𝑛
(𝜀) .

(31)

System (30) is the approximation prescribed by the method
to system (16) that is derived for the exact solution. It is
observed that the replacement of Θ(𝑚)(𝜀) by 𝐻󸀠

𝑛
(𝜀)/𝐻

𝑛
(𝜀) in

(31) yields the exact ones. It is easily seen that the expressions
Λ̃
𝑞
(𝑛), Φ̃

𝑞
(𝑛), and Ψ̃

𝑛
are transformed to 𝐻(2)󸀠

𝑛
(𝜀)Λ
𝑞
(𝑛),

𝐻
(2)󸀠

𝑛
(𝜀)Φ
𝑞
(𝑛), and𝐻(2)󸀠

𝑛
(𝜀)Ψ
𝑛
. Therefore (30) is transformed

to (16).Thus, for the problem under consideration the surface
radiation conditions method is equivalent to introducing the
approximation Θ(𝑙)(𝜀) = 𝐻(2)󸀠

𝑛
(𝜀)/𝐻

(2)

𝑛
(𝜀) and, therefore, this

result is independent of the boundary conditions prescribed
on the surface of the circular cylinderΣ

1
. Hence, the accuracy

of the method for the cylinder problems will depend on the
accuracy of the approximation in𝐻(2)󸀠

𝑛
(𝜀)/𝐻

(2)

𝑛
(𝜀).

If ̃𝑑
𝑛
is eliminated from (28) and (29) as in the exact

solution, the following relation is obtained:

𝑐
𝑛
=

𝜁
𝑛

𝜂
𝑛

̃
𝑏
𝑛
, (32)

where 𝜁
𝑛
and 𝜂
𝑛
are given, respectively, by (19) and (20). The

system of equations for ̃𝑏
𝑛

∞

∑

𝑙=−∞

𝐴
𝑙
(𝑛)
̃
𝑏
𝑙
= Ψ̃
𝑛 (33)

is obtained by (32) and (30). Here 𝐴
𝑙
(𝑛) is

𝐴
𝑙
(𝑛) = Λ̃

𝑙
(𝑛) + Φ̃

𝑙
(𝑛)

𝜁
𝑙

𝜂
𝑙

. (34)

First ̃𝑏
𝑛
is obtained as a result of this system and then 𝑐

𝑛

and ̃𝑑
𝑛
are obtained, respectively, from (32) and (28) or (29).

After having calculated ̃𝑏
𝑛
and 𝑐
𝑛
from the above relations

if at 𝑟 = 𝑟
1
, namely, over Σ

1
, relations 𝑢𝑡(𝑟

1
, 𝜃) = V

2
(𝜃),

(𝜕𝑢
𝑡
/𝜕𝑟)(𝑎, 𝜃) = 𝑘

2
𝜉
1
𝑤
2
(𝜃), andX(x, y) = −(1/4)𝑖𝐻(2)

0
(𝑘
1
|x−

y|) are used in the integral representation below:

𝑢
𝑖
(x) + ∫

Σ
1

{

𝜕𝑢
𝑡
(y)

𝜕𝑛
𝑦

X (x, y)

− 𝑢
𝑡
(y) 𝜕
𝜕𝑛
𝑦

X (x, y)} 𝑑𝑠
𝑦
= 𝑢
𝑡
(x) , x ∈B

1
.

(35)

The scattered field in any point in the region B
1
is obtained

by calculating the following integral [4]:

𝑢
1
(𝑟, 𝜃)

=

𝑖

4

∫

2𝜋

0

[V
2
(𝜃
󸀠
)

𝜕

𝜕𝑟
1

𝐻
0

⋅ {𝑘
1
(𝑟
2
+ 𝑟
2

1
− 2𝑟𝑟
1
cos (𝜃 − 𝜃󸀠))

1/2

}
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Figure 2

− 𝑘
2
𝜉
1
𝑤
2
(𝜃
󸀠
)𝐻
0

⋅ {𝑘
1
(𝑟
2
+ 𝑟
2

1
− 2𝑟𝑟
1
cos (𝜃 − 𝜃󸀠))

1/2

}] 𝑟
1
𝑑𝜃
󸀠
.

(36)

Thus the amplitude of the far field is obtained as follows:

𝑃 (𝜃) =

𝑖𝜀

4

∫

2𝜋

0

{V
2
(𝜃
󸀠
) 𝑖 cos (𝜃 − 𝜃󸀠)

−

𝑘
2

𝑘
1

𝜉
1
𝑤
2
(𝜃
󸀠
)} 𝑒
𝑖𝜀 cos(𝜃−𝜃󸀠)

𝑑𝜃
󸀠
.

(37)
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Figure 3

Here if (24) is used and the expressions
∫

2𝜋

0
𝑒
𝑖𝜀 cos(𝜃−𝜃󸀠)+𝑖𝑛(𝜃󸀠−𝜋/2)

𝑑𝜃
󸀠
= 2𝜋𝐽

𝑛
(𝜀)𝑒
𝑖𝑛𝜃 and ∫2𝜋

0
cos(𝜃 −

𝜃
󸀠
)𝑒
𝑖𝜀 cos(𝜃−𝜃󸀠)+𝑖𝑛(𝜃󸀠−𝜋/2)

𝑑𝜃
󸀠
= −𝑖2𝜋𝐽

󸀠

𝑛
(𝜀)𝑒
𝑖𝑛𝜃 are considered,

after the calculations, the amplitude of the far field is obtained
as follows:

𝑃 (𝜃) =

𝑖𝜀𝜋

2

∞

∑

𝑛=−∞

̃
𝑓
𝑛
𝑒
𝑖𝑛𝜃
. (38)

Here again ̃𝑓
𝑛
is expressed as follows: ̃𝑓

𝑛
= {𝐽
󸀠

𝑛
(𝑘
1
𝑟
1
)𝐽
𝑛
(𝑘
2
𝑟
1
)−

(𝑘
2
𝜉
1
/𝑘
1
)𝐽
𝑛
(𝑘
1
𝑟
1
)𝐽
󸀠

𝑛
(𝑘
2
𝑟
1
)}
̃
𝑏
𝑛
+ {𝐽
󸀠

𝑛
(𝑘
1
𝑟
1
)𝐻
𝑛
(𝑘
2
𝑟
1
) − (𝑘

2
𝜉
1
/

𝑘
1
)𝐽
𝑛
(𝑘
1
𝑟
1
)𝐻
󸀠

𝑛
(𝑘
2
𝑟
1
)}𝑐
𝑛
. For the exact solution, the amplitude

of the far field is calculated from 𝑃𝑒(𝜃) = ∑∞
𝑛=−∞

𝑎
𝑛
𝑒
𝑖𝑛𝜃. If

̃
𝑏
𝑛
and 𝑐
𝑛
are replaced by 𝑏

𝑛
and 𝑐
𝑛
, ̃𝑓
𝑛
= {𝐽
󸀠

𝑛
(𝑘
1
𝑟
1
)𝐽
𝑛
(𝑘
2
𝑟
1
) −

(𝑘
2
𝜉
1
/𝑘
1
)𝐽
𝑛
(𝑘
1
𝑟
1
)𝐽
󸀠

𝑛
(𝑘
2
𝑟
1
)}𝑏
𝑛

+ {𝐽
󸀠

𝑛
(𝑘
1
𝑟
1
)𝐻
𝑛
(𝑘
2
𝑟
1
) −
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Figure 4

(𝑘
2
𝜉
1
/𝑘
1
)𝐽
𝑛
(𝑘
1
𝑟
1
)𝐻
󸀠

𝑛
(𝑘
2
𝑟
1
)}𝑐
𝑛

is obtained. Therefore (𝑖𝜀𝜋/
2)
̃
𝑓
𝑛
= 𝑎
𝑛
is obtained.

4. Comparison

Comparisons are made between the exact answer of the
problem and the surface radiation condition solutions. It

is observed that the introduction of higher-order radiation
conditions improves the approximation considerably in com-
parison with the results obtained by the use of a second-order
radiation condition, especially in cases where creeping waves
are less pervasive.

Various graphics are generated from analytic solutions
obtained from the on surface radiation conditionmethod and
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from the exact solution of the problem in question in order
to examine the consequences of using radiation boundary
conditions having an order higher than two in the on surface
radiation condition method. For simplicity and readability of
graphics only the curves corresponding to solutions of the
second and fourth order are shown. Curves corresponding
to the third-order condition behave in between those two. In
the figures the variations of the modulus of far field, namely,
of scattering function 𝑃 with respect to 𝜃, are given. These
studies are done depending on the density of themedium and
the velocity of the wave.

From the comparisons made between the exact solu-
tion of the problem and the approximate analytic solution
obtained by on surface radiation condition method, it can be
observed that using the fourth order instead of the second
order highly ameliorates the approximation of the method.

(A)Whenever the regions are, respectively, air, water, and
a region denser than water from outside to inside the results
of the second- and fourth-order surface radiation conditions
for the following parameters are depicted together with the
exact curve for 𝑟

1
= 10, 𝑟

2
= 5, 𝜀 = 10, 𝑘

3
= (𝑐
1
/𝑐
3
)𝑘
1
, 𝑘
2
=

(𝑐
1
/𝑐
2
)𝑘
1
, 𝜉
1
= 𝜌
1
/𝜌
2
, 𝜉
2
= 𝜌
2
/𝜌
3
, 𝜌
1
= 1.2, 𝑐

1
= 340, 𝜌

2
=

1000, 𝑐
2
= 1480, 𝜌

3
= 1200, and 𝑐

3
= 1600. As for the

graphics of the solutions concerning the far fields and under
the parameter values, the variation of the scattered field with
𝑒 = 0 and 𝜙

0
= 𝜋 is given in Figure 2(a)

Here the attitude of the curve is like in the case of a hard
cylinder. With 𝑒 = 0.5 and 𝜙

0
= 𝜋/3 the scattered field gives

acceptable results especially for the fourth order as it is seen in
Figure 2(b). As it is seen in Figure 2(c) the scattered field gives
good results in shadowed and luminous regions especially for
the fourth order when the eccentricity 𝑒 = 2.0 and 𝜙

0
= 𝜋/3

are taken.
(B)Whenever the regions are, respectively, water, air, and

a region denser than air from outside to inside the results
of the second- and fourth-order surface radiation conditions
for the parameters are 𝑟

1
= 10, 𝑟

2
= 5, 𝜀 = 10, 𝑘

3
=

(𝑐
1
/𝑐
3
)𝑘
1
, 𝑘
2
= (𝑐
1
/𝑐
2
)𝑘
1
, 𝜉
1
= 𝜌
1
/𝜌
2
, 𝜉
2
= 𝜌
2
/𝜌
3
, 𝜌
1
=

1000, 𝑐
1
= 1480, 𝜌

2
= 1.2, 𝑐

2
= 340, 𝜌

3
= 1.0, 𝑐

3
= 280.

As for the graphics of the solutions concerning the far fields
and under the parameter values, the variation of the scattered
field with 𝑒 = 0 and 𝜙

0
= 𝜋 is given in Figure 3(a).

Here the attitude of the curve is like in the case of a soft
cylinder. In Figures 3(b) and 3(c) the results of the scattered
field in shadowed and luminous regions are compared as
the eccentricity increases. With 𝑒 = 0.5 and 𝜙

0
= 𝜋/3 the

scattered field gives good results especially for the fourth
order as it is seen in Figure 3(b).

As it is seen in Figure 3(c) the scattered field gives good
results in shadowed and luminous regions especially for the
fourth order when the eccentricity 𝑒 = 2.0 and 𝜙

0
= 𝜋/3 are

taken.
(C) Whenever the regions are, respectively, a region

denser than water, water, and air from outside to inside the
results of the second- and fourth-order surface radiation
conditions for the parameters are, 𝑟

1
= 10, 𝑟

2
= 5, 𝜀 =

10, 𝑘
3
= (𝑐
1
/𝑐
3
)𝑘
1
, 𝑘
2
= (𝑐
1
/𝑐
2
)𝑘
1
, 𝜉
1
= 𝜌
1
/𝜌
2
, 𝜉
2
= 𝜌
2
/𝜌
3
,

𝜌
1
= 1200, 𝑐

1
= 1600, 𝜌

2
= 1000, 𝑐

2
= 1480, 𝜌

3
= 1.2, 𝑐

3
=

340.

As for the graphics of the solutions concerning the far
fields and under the parameter values, the variation of the
scattered field with 𝑒 = 0 and 𝜙

0
= 𝜋 is given in Figure 4(a).

Here also the attitude of the curve is almost like in the case of
a soft cylinder.

With 𝑒 = 0.5 and 𝜙
0
= 𝜋/3 the scattered field gives good

results for all orders in both shadowed and luminous regions
as it is seen in Figure 4(b).

As it is seen in Figure 4(c) the scattered field gives good
results everywhere for the fourth order, when the eccentricity
𝑒 = 2.0 and 𝜙

0
= 𝜋/3 are taken.
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