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The attitude motion is studied of asymmetric dual-spin gyrostats which may be modeled as free systems of two rigid bodies, one
asymmetric and one axisymmetric. Exact analytical solutions of the attitude motion are presented for all possible ratios of inertia
moments of these bodies. The dynamics of free gyrostats with zero internal torque is considered. The dimensionless nonlinear
equations of the gyrostat arewritten in Serret-Andoyer canonical variables.Thepreviously known exact solutions are complemented
by new several solutions in terms of Jacobi elliptic functions. The results of the study can be useful for the analysis of dual-spin
spacecraft dynamics.

1. Introduction

The dynamics of rotating bodies is a classic topic of study
in mechanics. In the eighteenth and nineteenth centuries,
several aspects of the motion of a rotating rigid body were
studied by such famous mathematicians as Euler, Cauchy,
Jacobi, Poinsot, Lagrange, and Kovalevskaya. However, the
study of the dynamics of rotating bodies is still very important
for numerous applications such as the dynamics of satellite
gyrostat, spacecraft, robotics, and the like. In this paper we
deal with a particular case of gyrostat; it consists of a platform
with a triaxial ellipsoid of inertia and a symmetrical rotor
whose axis of symmetry is aligned along one of the principal
axes of inertia of the platform.

The paper deals with the analytical solutions of the
attitudemotion of the axial gyrostats.The analytical solutions
of determining the attitude motion of the axial gyrostat
with a free rotor (see, e.g., [1]) are relatively straightforward.
Furthermore, Kane [2] has given the solution for the attitude
motion of an axial gyrostat with a driven rotor. In many
papers (see, e.g., [3–16]), this modern problem is usually
performed by following two distinct steps. The dynamics of
the rotation are represented by using differential equations
written for the components of the angular momentum,
and then the kinematic equations are utilized to transform
the angular momentum. While this classical formulation

is widespread, scientists also exhibit a preference for the
Serret-Andoyer variables (SA) variables, which allow per-
forming convenient analysis of the attitude motion of the
gyrostats. Serret [17] discovered these variables by solving
the Hamilton-Jacobi equation written in terms of Eulerian
coordinates. Andoyer [18] used spherical trigonometry to
show that the Serret transformation was simply a change
of Eulerian coordinates that depended upon the angular
momentum components. Deprit [19] and Deprit and Elipe
[20] established the canonicity of the Serret transforma-
tion by using differential forms and without resorting to
finding a generating function. SA variables are used also
in Hamiltonian structure of an asymmetric gyrostat in the
gravitational field [21]. The SA variables are used to describe
the Hamiltonian equations for attitude motions of the axial
free gyrostat [22–26]. Euler angles and angular velocities of
the gyrostat as functions of the SA variables are given in
Aslanov [27].

Hall [6] proposed a procedure based upon the global
analysis of the rotational dynamics. Hall and Rand [7]
considered spinup dynamics of classical axial gyrostat com-
posed of an asymmetric platform and an axisymmetric rotor.
They obtained the averaged equations for slowly varying
relative rotation of the bodies and analytical solutions for the
projections of angular momentum in the case of constant
relative rotation. Cochran et al. [3] have obtained analytical
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solutions of the attitude motion of the free gyrostats. Elipe
[8] investigated a free gyrostat with three flywheels rotating
about the three principal axes of inertia and without any
external forces or torques. Elipe and Lanchares [28] have
introduced coordinates to represent the orbits of constant
angularmomentum as a flow on a sphere.This representation
has shown that the problem is equivalent to a quadratic
Hamiltonian depending on two parameters.

This paper focuses on the study of the attitude motion of
the gyrostat𝑃+𝑅 consisting of an axisymmetric rotor𝑅 (𝐴

𝑟
=

𝐵
𝑟
, 𝐶
𝑟
) and of an unbalanced platform 𝑃 (𝐴

𝑝
> 𝐵
𝑝
, 𝐶
𝑝
). This

paper is a development of Aslanov’s works [23, 24, 27] in
which we studied three types of the gyrostats: oblate (𝐶

𝑝
>

𝐴
𝑝
+𝐴
𝑟
> 𝐵
𝑝
+𝐴
𝑟
), intermediate (𝐴

𝑝
+𝐴
𝑟
> 𝐶
𝑝
> 𝐵
𝑝
+𝐴
𝑟
),

and prolate (𝐴
𝑝
+𝐴
𝑟
> 𝐵
𝑝
+𝐴
𝑟
> 𝐶
𝑝
). Here we add two new

types of the gyrostats: oblate-intermediate (𝐶
𝑝
= 𝐴
𝑝
+ 𝐴
𝑟
>

𝐵
𝑝
+𝐴
𝑟
) and prolate-intermediate (𝐴

𝑝
+𝐴
𝑟
> 𝐶
𝑝
= 𝐵
𝑝
+𝐴
𝑟
),

and we do not impose restrictions on the angular velocity of
rotation of the rotor relative to the platform as in the papers
[23, 24].

The paper is divided into five sections. In Section 2 the
dimensionless differential equations of the motion variables
and the stationary solutions are presented in terms of the
SA variables. In Section 3 we find singular points on a phase
plane for various types of the gyrostats. Section 4 focuses on
an integration of the motion equations in terms of Jacobi
elliptic functions. Section 5 presents a complete set of the
phase trajectories and the exact solutions.

2. Canonical Equations
and Stationary Solutions

Let us consider a motion of a gyrostat in the absence of
external torque and internal torque applied by 𝑃 on 𝑅 about
axis 𝑂𝑧. We set the platform’s frame Oxyz relative to an
inertial frame OXYZ, using the canonical SA variables [24]:
𝑙, 𝑔, ℎ̃, 𝐿, 𝐺, �̃�. The orientation of the rotor relative to the
platform’s frameOxyz is defined by the angle 𝛿 (Figure 1).The
Hamiltonian for the torque-free motion with use of the SA
variables and pair of variables (𝛿, 𝑝

𝛿
) is [22]

𝐻
0
=

𝐺
2

− 𝐿
2

2
[

cos2𝑙
𝐴
𝑟
+ 𝐵
𝑝

+
sin2𝑙

𝐴
𝑟
+ 𝐴
𝑝

] +
(𝐿 − 𝑝

𝛿
)
2

2𝐶
𝑝

+
𝑝
𝛿

2

2𝐶
𝑟

= ℎ
0
= const,

(1)

where 𝑝
𝛿
= 𝜕𝑇/𝜕 ̇𝛿 is the generalized momentum and 𝑇 is

the kinetic energy of the gyrostat. Since 𝑔, ℎ̃, and 𝛿 are cyclic
and �̃� does not appear in the Hamiltonian, thus 𝐺, ℎ̃, �̃�, and
𝑝
𝛿
are constants, which means that the angular momentum

vector is conserved and the first integrals of the motion are

𝐺 = √ℎ2
𝑥
+ ℎ2
𝑦
+ ℎ2
𝑧
= const,

𝑝
𝛿
= const,

(2)
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Figure 1: The axial gyrostat.

where components of the angular momentum vector in the
coordinate system Oxyz are

ℎ
𝑥
= √𝐺2 − 𝐿2 sin 𝑙, ℎ

𝑦
= √𝐺2 − 𝐿2 cos 𝑙,

ℎ
𝑧
= 𝐿.

(3)

Since the number of degrees of freedom of the torque-free
motion of the gyrostat is reduced to one, the motion

̇𝑙 =
𝜕𝐻
0

𝜕𝐿
, �̇� = −

𝜕𝐻
0

𝜕𝑙
. (4)

The transformation of (4) to a dimensionless form is
obtained by scaling the twomomentums and time, as follows:

𝑠 =
𝐿

𝐺
, 𝑑 =

𝑝
𝛿

𝐺
=

𝐶
𝑟
(𝐿 + 𝐶

𝑝

̇𝛿)

(𝐶
𝑝
+ 𝐶
𝑟
)𝐺

, 𝜏 =
𝐺

𝐶
𝑝

𝑡. (5)

Derivatives with respect to 𝜏 are denoted by a derivative sign:
𝑥


= 𝑑𝑥/𝑑𝜏. The change of variables (5) leads to the to the
equivalent set of dimensionless equations:

𝑙


=
𝜕𝐻

𝜕𝑠
= 𝑠 − 𝑑 −

1

2
𝑠 (𝑎 + 𝑏 + (𝑏 − 𝑎) cos 2𝑙) , (6)

𝑠


= −
𝜕𝐻

𝜕𝑙
=

1

2
(𝑏 − 𝑎) (1 − 𝑠

2

) sin 2𝑙. (7)

Here 𝑎 = 𝐶
𝑝
/𝐴 and 𝑏 = 𝐶

𝑝
/𝐵 are the relative reciprocals of

the principal moments of inertia of the gyrostat𝐴 = 𝐴
𝑝
+𝐴
𝑟

and 𝐵 = 𝐵
𝑝
+ 𝐴
𝑟
, respectively.𝐻 is Hamiltonian by [24]

𝐻 =
1

4
[𝑎 + 𝑏 + (𝑏 − 𝑎) cos 2𝑙] (1 − 𝑠

2

) +
1

2
𝑠
2

− 𝑠𝑑

= ℎ = const.
(8)

Solving expression (8) with respect to cos 2𝑙, we obtain the
phase trajectories:

cos 2𝑙 = (𝑎 + 𝑏 − 2) 𝑠
2

+ 4𝑑𝑠 + 4ℎ − 𝑎 − 𝑏

(1 − 𝑠2) (𝑏 − 𝑎)
. (9)
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Figure 2: Separatrices in the plane and on the unit sphere.
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Figure 3: Separatrices in the plane and on the unit sphere for Euler’s case.

By equating to zero (6) and (7), we get

2 (𝑠 − 𝑑) − 𝑠 (𝑎 + 𝑏 + (𝑏 − 𝑎) cos 2𝑙) = 0,

(𝑏 − 𝑎) (1 − 𝑠
2

) sin 2𝑙 = 0.

(10)

Solving (10), we have four stationary solutions [24]:

cos (2𝑙
∗
) = 1, 𝑠

∗
=

𝑑

(1 − 𝑏)
, (11)

cos (2𝑙
∗
) = −1, 𝑠

∗
=

𝑑

(1 − 𝑎)
, (12)

cos (2𝑙
∗
) =

(2 − 𝑎 − 𝑏 − 2𝑑)

(𝑏 − 𝑎)
, 𝑠

∗
= 1, (13)

cos (2𝑙
∗
) =

(2 − 𝑎 − 𝑏 + 2𝑑)

(𝑏 − 𝑎)
, 𝑠

∗
= −1. (14)

Thefirst stationary solution (11) is stable if 𝑏 > 1 (𝐶
𝑃
> 𝐵) and

is unstable if 𝑏 < 1 (𝐶
𝑃
< 𝐵). The second stationary solution

(12) is stable if 𝑎 < 1 (𝐶
𝑃
< 𝐴) and unstable if 𝑎 > 1 (𝐶

𝑃
>

𝐴).The third and fourth stationary solutions (13) and (14) are
always unstable.

Figure 2 shows phase space on plane and unit sphere for
solutions (13). An angle between the tangents to the separatrix
and to the line 𝜗 = 0 in the vicinity 𝑠

∗
= ±1 is equal to

the angle 𝜗 = 𝑙
∗
. Next we will study the trajectories in the

phase space, except the separatrices which contain singular
points (11)–(14).

It is obvious that the roots of (13) and (14) give ambiguous
solutions when 𝑑 = 0 (Euler’s case, Figure 3), so this
particular case is excluded from consideration. The well-
known solutions of Euler’s Equations of motion of a rigid
body are studied in terms of the SA variables in the papers
[29, 30].

Other authors [3, 7, 9] formulated the problem in terms
of the angular momentum components (3):

ℎ
𝑥
= 𝐺√1 − 𝑠2 sin 𝑙, ℎ

𝑦
= 𝐺√1 − 𝑠2 cos 𝑙,

ℎ
𝑧
= 𝐺𝑠,

(15)

which avoid the singularity in the points (13) and (14)

ℎ
𝑥∗

= 0, ℎ
𝑦∗

= 0, ℎ
𝑧∗

= ±𝐺. (16)

The Hamiltonian (8) has the form for the axisymmetric
platform 𝐴

𝑝
= 𝐵
𝑝
⇒ (𝑎 = 𝑏):

𝐻(𝑠) =

𝑎 (1 − 𝑠
2

)

2
+
𝑠
2

2
− 𝑠𝑑 = ℎ = const. (17)

In this case the attitude motion is a precession around the
vector of the angular momentum �⃗� with a constant angle
𝛼 = arccos(𝑠).
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Table 1: The singular points.

Gyrostat type Subtype Kinematical conditions
The singular points (𝑙, 𝑠)

Centers Saddles
𝑙
𝑐

𝑠
𝑐

𝑙
𝑠

𝑠
𝑠

Oblate
𝐶
𝑃
> 𝐴 > 𝐵

(𝑏 > 𝑎 > 1)

Oa 𝑉
𝑎
≤ 1 0 𝑑

1 − 𝑏
±
𝜋

2

𝑑

1 − 𝑎

Ob 𝑉
𝑎
> 1

0 𝑑

1 − 𝑏

±
𝜋

2

𝑑

1 − 𝑎
𝑙
+

𝑠
− sin 𝑑Oblate-intermediate

𝐶
𝑃
= 𝐴 > 𝐵

(𝑏 > 𝑎 = 1)

Oi 𝑉
𝑎
→ ∞

0
𝑑

1 − 𝑏

Intermediate
𝐴 > 𝐶

𝑃
> 𝐵

(𝑏 > 1 > 𝑎)

Ia 𝑉
𝑎
≥ 1

Ib 𝑉
𝑎
< 1, 𝑉

𝑏
< 1

0 𝑑

1 − 𝑏
𝑙
+

𝑠
− sin 𝑑

±
𝜋

2

𝑑

1 − 𝑎
𝑙
−

𝑠
sin 𝑑

Ic 𝑉
𝑏
≥ 1

±
𝜋

2

𝑑

1 − 𝑎
Prolate-intermediate
𝐴 > 𝐶

𝑃
= 𝐵

(𝑏 = 1 > 𝑎)

Pi 𝑉
𝑏
→ ∞

Prolate
𝐴 > 𝐵 > 𝐶

𝑃

(1 > 𝑏 > 𝑎)

Pa 𝑉
𝑏
> 1

0 𝑑

1 − 𝑏
𝑙
−

𝑠
sin 𝑑

±
𝜋

2

𝑑

1 − 𝑎

Pb 𝑉
𝑏
≤ 1 ±

𝜋

2

𝑑

1 − 𝑎
0

𝑑

1 − 𝑏

3. Types of the Gyrostats and Singular Points
in the Phase Space

The five basic types of the gyrostats are determined by the
following ratios of the inertia moments:

(1) oblate gyrostat: 𝐶
𝑃
> 𝐴 > 𝐵 (𝑏 > 𝑎 > 1),

(2) oblate-intermediate gyrostat: 𝐶
𝑃
= 𝐴 > 𝐵 (𝑏 > 𝑎 =

1),
(3) intermediate gyrostat: 𝐴 > 𝐶

𝑃
> 𝐵 (𝑏 > 1 > 𝑎),

(4) prolate-intermediate gyrostat: 𝐴 > 𝐶
𝑃
= 𝐵 (𝑏 = 1 >

𝑎),
(5) prolate gyrostat: 𝐴 > 𝐵 > 𝐶

𝑃
(1 > 𝑏 > 𝑎).

The singular points corresponding to stationary solutions
(11)–(14) for all types of gyrostats are shown in Table 1. The
table notations are as follows:

𝑉
𝛾
=



𝑑

1 − 𝛾



(𝛾 = 𝑎, 𝑏) , cos 2𝑙±
𝑠
=

2 − 𝑎 − 𝑏 ± 2𝑑

𝑏 − 𝑎
.

(18)

4. The Exact Solutions

4.1. Integration of the Canonical Equations by Quadrature.
In this formulation the exact solutions of (6) and (7) are

presented only for the three subtypes [24]: Oa, Ib, and Pb. To
find all possible kinds of the solutions we use (7) and (9):

𝜏 = ±∫
𝑑𝑠

√𝐹 (𝑠)

+ const, (19)

𝐹 (𝑠) = −4𝑓
𝑎
(𝑠) 𝑓
𝑏
(𝑠) ,

𝑓
𝛾
(𝑠) =

1

2
(1 − 𝛾) 𝑠

2

− 𝑑𝑠 +
𝛾

2
− ℎ, 𝛾 = 𝑎, 𝑏.

(20)

Function (20) is a polynomial of the third degree for the two
subtypes Oi (𝑎 = 1) or Pi (𝑏 = 1):

𝐹
3
(𝑠) = (𝑠 − 𝑠

1
) (𝑠 − 𝑠

2
) (𝑠 − 𝑠

3
)

= 𝑎
1
𝑠
3

+ 𝑎
2
𝑠
2

+ 𝑎
3
𝑠 + 𝑎
4
.

(21)

For all other subtypes function (20) is a polynomial of degree
four:

𝐹
4
(𝑠) = (𝑠 − 𝑠

1
) (𝑠 − 𝑠

2
) (𝑠 − 𝑠

3
) (𝑠 − 𝑠

4
)

= 𝑎
0
𝑠
4

+ 𝑎
1
𝑠
3

+ 𝑎
2
𝑠
2

+ 𝑎
3
𝑠 + 𝑎
4
.

(22)

Real roots are numbered as follows:

𝑠
4
< 𝑠
3
< 𝑠
2
< 𝑠
1
. (23)
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Complex conjugate roots are written as

𝑠
𝑚,𝑛

= 𝑠
𝑠
± 𝑖𝑠
𝑘
. (24)

Let us denote the roots of the degree four (20):

𝑠
𝛾

1,2
(ℎ) =

(𝑑 ± √𝐷
𝛾
(ℎ))

(1 − 𝛾)
,

𝐷
𝛾
(ℎ) = 𝑑

2

+ (2ℎ − 𝛾) (1 − 𝛾) , 𝛾 = 𝑎, 𝑏.

(25)

4.2. Various Types of the Exact Solutions. Case (𝐹(𝑠) = 𝐹
4
(𝑠),

𝑎
0
< 0).The integral (19) can be written as

𝜆
(−)

𝜏 = ∫

𝑠

𝑠
2

𝑑𝑠

√(𝑠
1
− 𝑠) (𝑠 − 𝑠

2
) (𝑠 − 𝑠

3
) (𝑠 − 𝑠

4
)

, (26)

where 𝜆
(−)

= √(𝐴 − 𝐶
𝑝
)(𝐵 − 𝐶

𝑝
)/(𝐴𝐵).

Two Real Roots and Two Complex Conjugate Roots. The roots
(25) include two real roots 𝑠

1
> 𝑠
2
and two complex conjugate

roots 𝑠
3,4

= 𝑠
𝑠
± 𝑖𝑠
𝑘
. Change of variable [31]

(tan
𝜑

2
)

2

=
cos 𝜃
1

cos 𝜃
2

𝑠
1
− 𝑠

𝑠 − 𝑠
2

=
1 − cos𝜑
1 + cos𝜑

(27)

converts the integral (26) to the Legendre normal form

𝜔𝜏 = ∫

𝜑

𝜋

𝑑𝜑

√1 − 𝑘2sin2𝜑
, (28)

where

𝜔 = −
𝜆
(−)

𝑠
𝑘

√cos 𝜃
1
cos 𝜃
2

, 𝑘 = sin 𝜃
1
− 𝜃
2

2
,

tan 𝜃
1
=

𝑠
1
− 𝑠
𝑠

𝑠
𝑘

, tan 𝜃
2
=

𝑠
2
− 𝑠
𝑠

𝑠
𝑘

(29)

(𝜃
1
, 𝜃
2
are acute angles).

Taking into account (27) and (28), we get

𝑠 =
(𝑐
1
𝑠
1
+ 𝑐
2
𝑠
2
) + (𝑐
2
𝑠
2
− 𝑐
1
𝑠
1
) 𝑐𝑛 [𝜔 (𝜏 − 𝜏

0
) , 𝑘]

(𝑐
1
+ 𝑐
2
) + (𝑐
2
− 𝑐
1
) 𝑐𝑛 [𝜔 (𝜏 − 𝜏

0
) , 𝑘]

, (30)

where 𝑐
1
= cos 𝜃

1
, 𝑐
2
= cos 𝜃

2
, and 𝑐𝑛[𝑢, 𝑘] is an elliptic cosine.

The arbitrary constant 𝜏
0
is equal to zero if 𝑠

0
= 𝑠
2
.

Four Real Roots. If the roots (25) are real and they correspond
to the motion: −1 ≤ 𝑠

4
≤ 𝑠 ≤ 𝑠

3
and 𝑠
2
≤ 𝑠 ≤ 𝑠

1
≤ 1, then the

exact solutions can be written as

𝑠 =
𝑠
2
𝑠
31
− 𝑠
3
𝑠
21
sn2 [𝜔 (𝜏 − 𝜏

0
) , 𝑘]

𝑠
31
− 𝑠
21
sn2 [𝜔 (𝜏 − 𝜏

0
) , 𝑘]

if 𝑠
2
≤ 𝑠 ≤ 𝑠

1
, (31)

𝑠 =
𝑠
4
𝑠
31
+ 𝑠
1
𝑠
43
sn2 [𝜔 (𝜏 − 𝜏

0
) , 𝑘]

𝑠
31
+ 𝑠
43
sn2 [𝜔 (𝜏 − 𝜏

0
) , 𝑘]

if 𝑠
4
≤ 𝑠 ≤ 𝑠

3
, (32)

where

𝜔 =
𝜆
(−)

2
√𝑠
31
𝑠
42
, 𝑘

2

=
𝑠
43
𝑠
12

𝑠
13
𝑠
42

, (33)

where 𝑠
𝑖𝑗
= 𝑠
𝑗
−𝑠
𝑖
and sn[𝑢; 𝑘] is an elliptic sine.The arbitrary

constant 𝜏
0
is equal to zero if 𝑠

0
= 𝑠
2
for (31) and if 𝑠

0
= 𝑠
4

for (32). The solutions as similar the solutions (30)–(32) are
obtained earlier in other variables by Cochran et al. [3].

Case (𝐹(𝑠) = 𝐹
4
(𝑠), 𝑎

0
> 0). The integral (19) can be written

as

𝜆
(+)

𝜏 = ∫

𝑠

𝑠
3

𝑑𝑠

√(𝑠 − 𝑠
1
) (𝑠 − 𝑠

2
) (𝑠 − 𝑠

3
) (𝑠 − 𝑠

4
)

, (34)

where 𝜆
(+)

= √(𝐴 − 𝐶
𝑝
)(𝐶
𝑝
− 𝐵)/(𝐴𝐵).

Four Real Roots. If the roots of (25) are real and only two roots
correspond to the real motion

𝑠
4
< −1 < 𝑠

3
≤ 𝑠 ≤ 𝑠

2
< 1 < 𝑠

1
. (35)

The variable substitution [31] in the integral (34) gives

𝑠 =
𝑠
3
𝑠
42
− 𝑠
4
𝑠
32
sn2 [𝜔 (𝜏 − 𝜏

0
) , 𝑘]

𝑠
42
− 𝑠
32
sn2 [𝜔 (𝜏 − 𝜏

0
) , 𝑘]

, (36)

where

𝜔 =
𝜆
(+)

2
√𝑠
31
𝑠
42
, 𝑘

2

=
𝑠
41
𝑠
32

𝑠
31
𝑠
42

. (37)

The arbitrary constant 𝜏
0
is equal to zero if 𝑠

0
= 𝑠
3
. The

solutions obtained earlier by Elipe and Lanchares [28] and the
solutions (31), (32), and (36) have similar structure.

Case (𝐹(𝑠) = 𝐹
3
(𝑠)). The polynomial (20) is the third-degree

polynomial

𝐹 (𝑠) = 4 [𝑑𝑠 −
1

2
+ ℎ] [

1

2
(1 − 𝛾) 𝑠

2

− 𝑑𝑠 +
𝑏

2
− ℎ]

(𝛾 = 𝑎, 𝑏) .

(38)

ThreeReal Roots.Weare only interested of the three real roots,
which according to (25) and (38) can be written as

𝑠
1
=

1

𝑑
(
1

2
− ℎ) , 𝑠

2,3
= 𝑠
𝛾

1,2
(ℎ) . (39)

A positive value of the polynomial (38) and the condition
𝑠 ∈ [1, −1] correspond to the real motion of the gyrostat.
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Table 2: The exact solutions for the oblate gyrostats.

Subtype Motion
type Roots of 𝐹

4
(𝑠) Intervals for 𝑠 Intervals for the

constant ℎ
Add.

condition
Index of the region
in phase space

Solution

Oa

Libration

𝑠
1,2

= 𝑠
𝑏

2,1

𝑠
3,4

= 𝑠
𝑠
± 𝑖𝑠
𝑘

𝑠
𝑠
= 𝑑/(1 − 𝑎)

𝑠
𝑘
= √−𝐷

𝑎
(ℎ)/(1 − 𝑎)

𝑠
2
≤ 𝑠 ≤ 𝑠

1

𝑠
3,4

= 𝑠
𝑠
± 𝑖𝑠
𝑘

ℎ
𝑏
≥ ℎ ≥ ℎ

𝑎
— OaL (30)

Rotation
𝑠
3,2

= 𝑠
𝑎

1,2
(ℎ)

𝑠
4,1

= 𝑠
𝑏

1,2
(ℎ)

𝑠
2
≤ 𝑠 ≤ 𝑠

1

ℎ
𝑎
> ℎ > ℎ

𝑅
𝑑 > 0 OaR1 (31)

ℎ
𝑎
> ℎ > ℎ

𝐿
𝑑 < 0 OaR2

𝑠
4
≤ 𝑠 ≤ 𝑠

3

ℎ
𝑎
> ℎ > ℎ

𝐿
𝑑 > 0 OaR3 (32)

ℎ
𝑎
> ℎ > ℎ

𝑅
𝑑 < 0 OaR4

Ob

Libration

𝑠
1,2

= 𝑠
𝑏

2,1

𝑠
3,4

= 𝑠
𝑠
± 𝑖𝑠
𝑘

𝑠
𝑠
= 𝑑/(1 − 𝑎)

𝑠
𝑘
= √−𝐷

𝑎
(ℎ)/(1 − 𝑎)

𝑠
2
≤ 𝑠 ≤ 𝑠

1

𝑠
3,4

= 𝑠
𝑠
± 𝑖𝑠
𝑘

ℎ
𝑏
≥ ℎ ≥ ℎ

𝑎
— ObL1 (30)

𝑠
4,3

= 𝑠
𝑎

1,2
(ℎ)

𝑠
2,1

= 𝑠
𝑏

1,2
(ℎ)

−1 < 𝑠
2
≤ 𝑠 ≤ 𝑠

1
< 1

𝑠
4
< 𝑠
3
< −1

ℎ
𝑎
≥ ℎ > ℎ

𝐿

𝑑 > 0 ObL2 (31)

𝑠
2,1

= 𝑠
𝑎

1,2
(ℎ)

𝑠
4,3

= 𝑠
𝑏

1,2
(ℎ)

−1 < 𝑠
4
≤ 𝑠 ≤ 𝑠

3
< 1

1 < 𝑠
2
< 𝑠
1

𝑑 < 0 ObL3 (32)

Rotation

𝑠
4,2

= 𝑠
𝑎

1,2
(ℎ)

𝑠
3,1

= 𝑠
𝑏

1,2
(ℎ)

−1 < 𝑠
2
≤ 𝑠 ≤ 𝑠

1
< 1

𝑠
4
< 𝑠
3
< −1

ℎ
𝐿
> ℎ > ℎ

𝑅

𝑑 > 0 ObR1 (31)

𝑠
3,1

= 𝑠
𝑎

1,2
(ℎ)

𝑠
4,2

= 𝑠
𝑏

1,2
(ℎ)

−1 < 𝑠
4
≤ 𝑠 ≤ 𝑠

3
< 1

1 < 𝑠
2
< 𝑠
1

𝑑 < 0 ObR2 (32)

Table 3: The exact solutions for the oblate-intermediate gyrostats.

Subtype Motion
type Roots of 𝐹

4
(𝑠) Intervals for 𝑠 Intervals for the

constant ℎ
Add.

condition
Index of the region
in phase space Solution

Oi

Libration

𝑠
1,2

= 𝑠
𝑏

2,1
(ℎ)

𝑠
3
=

1

𝑑
(
1

2
− ℎ)

𝑠
2
≤ 𝑠 ≤ 𝑠

1

ℎ
𝑏
≥ ℎ > ℎ

𝐿

𝑑 > 0 OiL1 (40)
𝛾 = 𝑏

𝑠
1
=

1

𝑑
(
1

2
− ℎ)

𝑠
2,3

= 𝑠
𝑏

2,1
(ℎ)

𝑠
3
≤ 𝑠 ≤ 𝑠

2 𝑑 < 0 OiL2 (41)
𝛾 = 𝑏

Rotation
𝑠
1,3

= 𝑠
𝑏

2,1
(ℎ)

𝑠
2
=

1

𝑑
(
1

2
− ℎ)

𝑠
2
≤ 𝑠 ≤ 𝑠

1

ℎ
𝐿
> ℎ > ℎ

𝑅

𝑑 > 0 OiR1 (40)
𝛾 = 𝑏

𝑠
3
≤ 𝑠 ≤ 𝑠

2 𝑑 < 0 OiR2 (41)
𝛾 = 𝑏

We denote the roots (39) so that the roots are located in the
following sequence: 𝑠

1
> 𝑠
2
> 𝑠
3
. The variable substitution

[31] for the integral (19) gives the solutions:

𝑠 =
𝑠
2
𝑠
31
− 𝑠
3
𝑠
21
sn2 [𝜔 (𝜏 − 𝜏

0
) , 𝑘]

𝑠
31
− 𝑠
21
sn2 [𝜔 (𝜏 − 𝜏

0
) , 𝑘]

,

𝑘
2

=
𝑠
21

𝑠
31

(𝑠
2
≤ 𝑠 ≤ 𝑠

1
) ,

(40)

𝑠 = 𝑠
3
+ 𝑠
32
sn2 [𝜔 (𝜏 − 𝜏

0
) , 𝑘] ,

𝑘
2

=
𝑠
32

𝑠
31

(𝑠
3
≤ 𝑠 ≤ 𝑠

2
) ,

(41)

where

𝜔 =
1

2
√2𝑠
31
𝑎𝑏𝑠 [𝑑 (1 − 𝛾)] (𝛾 = 𝑎, 𝑏) . (42)

The arbitrary constant 𝜏
0
is equal to zero if 𝑠

0
= 𝑠
2
for (40)

and if 𝑠
0
= 𝑠
3
for (41).

The solutions (30), (31), (32), (36), (40), and (41) describe
themotion of all subtypes of the gyrostats (Tables 2–6.We use
the following notations in the tables:

ℎ
𝛾
=

[𝛾 − 𝑑
2

/ (1 − 𝛾)]

2
, ℎ

𝐿,𝑅
=

1

2
± 𝑎𝑏𝑠 (𝑑) (𝛾 = 𝑎, 𝑏) .

(43)
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Table 4: The exact solutions for the intermediate gyrostats.

Subtype Motion
type

Roots of 𝐹
4
(𝑠) Intervals for 𝑠 Intervals for the

constant ℎ
Add.

condition
Index of the region
in phase space

Solution

Ia

Libration
𝑠
1,4

= 𝑠
𝑎

1,2
(ℎ)

𝑠
3,2

= 𝑠
𝑏

1,2
(ℎ)

ℎ
𝑏
≥ ℎ > ℎ

𝐿
IaL

(36)
Rotation

𝑠
3
≤ 𝑠 ≤ 𝑠

2

𝑠
1,3

= 𝑠
𝑎

1,2
(ℎ)

𝑠
4,2

= 𝑠
𝑏

1,2
(ℎ)

ℎ
𝐿
> ℎ > ℎ

𝑅

𝑑 > 0 IaR1
𝑠
2,4

= 𝑠
𝑎

1,2
(ℎ)

𝑠
3,1

= 𝑠
𝑏

1,2
(ℎ)

𝑑 < 0 IaR2

Ib

Libration
𝑠
1,4

= 𝑠
𝑎

1,2
(ℎ)

𝑠
3,2

= 𝑠
𝑏

1,2
(ℎ)

ℎ
𝑏
≥ ℎ > ℎ

𝐿 IbL1
(36)

𝑠
3
≤ 𝑠 ≤ 𝑠

2

𝑠
2,3

= 𝑠
𝑎

1,2
(ℎ)

𝑠
4,1

= 𝑠
𝑏

1,2
(ℎ)

ℎ
𝑅
> ℎ ≥ ℎ

𝑎 IbL2

Rotation

𝑠
1,3

= 𝑠
𝑎

1,2
(ℎ)

𝑠
4,2

= 𝑠
𝑏

1,2
(ℎ)

ℎ
𝐿
> ℎ > ℎ

𝑅

𝑑 > 0 IbR1
(36)

𝑠
2,4

= 𝑠
𝑎

1,2
(ℎ)

𝑠
3,1

= 𝑠
𝑏

1,2
(ℎ)

𝑑 < 0 IbR2

Ic

Libration
𝑠
2,3

= 𝑠
𝑎

1,2
(ℎ)

𝑠
4,1

= 𝑠
𝑏

1,2
(ℎ)

ℎ
𝑅
> ℎ ≥ ℎ

𝑎
IcL

(36)
Rotation

𝑠
3
≤ 𝑠 ≤ 𝑠

2

𝑠
1,3

= 𝑠
𝑎

1,2
(ℎ)

𝑠
4,2

= 𝑠
𝑏

1,2
(ℎ)

ℎ
𝐿
> ℎ > ℎ

𝑅

𝑑 > 0 IcR1

𝑠
2,4

= 𝑠
𝑎

1,2
(ℎ)

𝑠
3,1

= 𝑠
𝑏

1,2
(ℎ)

𝑑 < 0 IcR2

Table 5: The exact solutions for the prolate-intermediate gyrostats.

Subtype Motion type Roots of 𝐹
4
(𝑠) Intervals for 𝑠 Intervals for the

constant ℎ
Add.

condition
Index of the region
in phase space Solution

Pi

Libration

𝑠
1
=

1

𝑑
(
1

2
− ℎ)

𝑠
2,3

= 𝑠
𝑎

1,2
(ℎ)

𝑠
3
≤ 𝑠 ≤ 𝑠

2

ℎ
𝑅
> ℎ ≥ ℎ

𝑎

𝑑 > 0 PiL1 (41)
𝛾 = 𝑎

𝑠
1,2

= 𝑠
𝑎

1,2
(ℎ)

𝑠
3
=

1

𝑑
(
1

2
− ℎ)

𝑠
2
≤ 𝑠 ≤ 𝑠

1 𝑑 < 0 PiL2 (40)
𝛾 = 𝑎

Rotation
𝑠
1,3

= 𝑠
𝑎

1,2
(ℎ)

𝑠
2
=

1

𝑑
(
1

2
− ℎ)

𝑠
3
≤ 𝑠 ≤ 𝑠

2

ℎ
𝐿
> ℎ > ℎ

𝑅

𝑑 > 0 PiR1 (41)
𝛾 = 𝑎

𝑠
2
≤ 𝑠 ≤ 𝑠

1 𝑑 < 0 PiR2 (40)
𝛾 = 𝑎

5. A Complete Set of the Phase
Trajectories and the Exact Solutions

In this section the phase portraits are shown in the case 𝑑 > 0

only. Keeping in mind that at 𝑑 < 0 the stationary points are
obtained as a mirror image relative to abscissa axis according
to the solutions (11)–(14), we use the following values of the
gyrostat’s parameters for the numerical calculations

𝐴 = 0.85 kg ×m2, 𝐵 = 0.65 kg ×m2, 𝑑 = 0.05 𝑐
−1

.

(44)

5.1. Phase Space Structure for the Oblate Gyrostats. The
solutions for the oblate gyrostats are given in Table 2. Figure 4

illustrates the case when the saddles are on verticals 𝑙
𝑠
= ±𝜋/2

(|𝑠
𝑠
| < 1). The saddles can reach the horizontal 𝑠

𝑠
= 1 as

shown in Figure 5.

5.2. Phase Space Structure for the Oblate-Intermediate Gyro-
stats. Table 3 shows the solutions for the oblate-intermediate
gyrostats (𝑎 = 1). The corresponding phase structure is
shown on Figure 6.

5.3. Phase Space Structure for the Intermediate Gyrostats.
Other solutions for this type of the gyrostats are presented
in Table 4 and the phase structures are shown in Figures 6–
8. The phase structure for the Subtype Ia is similar to the
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Table 6: The exact solutions for the prolate gyrostats.

Subtype Motion
type Roots of 𝐹

4
(𝑠) Intervals for 𝑠 Intervals for the

constant ℎ
Add.

condition
Index of the region
in phase space

Solution

Pa

Libration

𝑠
1,2

= 𝑠
𝑏

1,2
(ℎ)

𝑠
3,4

= 𝑠
𝑎

1,2
(ℎ)

−1 < 𝑠
4
≤ 𝑠 ≤ 𝑠

3
< 1

1 < 𝑠
2
< 𝑠
1 ℎ

𝑅
> ℎ ≥ ℎ

𝑏

𝑑 > 0 PaL1 (32)

𝑠
1,2

= 𝑠
𝑎

1,2
(ℎ)

𝑠
3,4

= 𝑠
𝑏

1,2
(ℎ)

−1 < 𝑠
2
≤ 𝑠 ≤ 𝑠

1
< 1

𝑠
4
< 𝑠
3
< −1

𝑑 < 0 PaL2 (31)

𝑠
1,2

= 𝑠
𝑎

1,2

𝑠
3,4

= 𝑠
𝑠
± 𝑖𝑠
𝑘

𝑠
𝑠
= 𝑑/(1 − 𝑏)

𝑠
𝑘
= √−𝐷

𝑏
(ℎ)/(1 − 𝑏)

𝑠
2
≤ 𝑠 ≤ 𝑠

1

𝑠
3,4

= 𝑠
𝑠
± 𝑖𝑠
𝑘

ℎ
𝑏
≥ ℎ ≥ ℎ

𝑎
𝑑 ∈ R PaL3 (30)

Rotation

𝑠
2,4

= 𝑠
𝑎

1,2
(ℎ)

𝑠
1,3

= 𝑠
𝑏

1,2
(ℎ)

−1 < 𝑠
4
≤ 𝑠 ≤ 𝑠

3
< 1

1 < 𝑠
2
< 𝑠
1

ℎ
𝐿
> ℎ > ℎ

𝑅

𝑑 > 0 PaR1 (32)

𝑠
2,4

= 𝑠
𝑏

1,2
(ℎ)

𝑠
1,3

= 𝑠
𝑎

1,2
(ℎ)

−1 < 𝑠
2
≤ 𝑠 ≤ 𝑠

1
< 1

𝑠
4
< 𝑠
3
< −1

𝑑 < 0 PaR2 (31)

Pb

Libration

𝑠
1,2

= 𝑠
𝑎

1,2

𝑠
3,4

= 𝑠
𝑠
± 𝑖𝑠
𝑘

𝑠
𝑠
= 𝑑/(1 − 𝑏)

𝑠
𝑘
= √−𝐷

𝑏
(ℎ)/(1 − 𝑏)

𝑠
2
≤ 𝑠 ≤ 𝑠

1

𝑠
3,4

= 𝑠
𝑠
± 𝑖𝑠
𝑘

ℎ
𝑏
≥ ℎ ≥ ℎ

𝑎
𝑑 ∈ R PbL (30)

Rotation

𝑠
3,2

= 𝑠
𝑎

1,2
(ℎ)

𝑠
4,1

= 𝑠
𝑏

1,2
(ℎ)

𝑠
2
≤ 𝑠 ≤ 𝑠

1

ℎ
𝑅
> ℎ > ℎ

𝑏
𝑑 > 0 PbR1 (31)

ℎ
𝐿
> ℎ > ℎ

𝑏
𝑑 < 0 PbR2

𝑠
1,4

= 𝑠
𝑎

1,2
(ℎ)

𝑠
2,3

= 𝑠
𝑏

1,2
(ℎ)

𝑠
4
≤ 𝑠 ≤ 𝑠

3

ℎ
𝐿
> ℎ > ℎ

𝑏
𝑑 > 0 PbR3 (32)

ℎ
𝑅
> ℎ > ℎ

𝑏
𝑑 < 0 PbR4

OaR1
OaR3
OaL

0−𝜋 −𝜋/2 𝜋/2 𝜋

−0.5

−1.0

1.0

0.5

0s

l

Center
SaddleSaddle

Figure 4: Phase space structure for the oblate gyrostat, indexes of
the region in phase space: OaR1, OaR3, and OaL (𝑎 = 1.17647, 𝑏 =

1.53846, 𝑙
𝑐
= 0, 𝑠

𝑐
= −0.093, 𝑙

𝑠
= 𝜋/2, 𝑠

𝑠
= −0.283). Here and further

the separatrices are denoted by a dashed line.

phase portrait in Figure 6. We see a doubling of centers and
saddles (“old” and “new”) for the Subtype Ib (Figure 7). The
“old” centers and “old” saddles disappear for the Subtype Ic
(Figure 8).

5.4. Phase Space Structure for the Prolate-Intermediate
Gyrostats. The exact solutions for the prolate-intermediate

SaddleSaddle

OaR1
ObL1

1.0

0.5

0

−0.5

−1.0

0−𝜋 −𝜋/2 𝜋/2 𝜋

l

s

Center

Figure 5: Phase space structure for the oblate gyrostat, indexes of
the region in phase space: OaR1, ObL1, and OaL (𝑎 = 1.05, 𝑏 =

1.3731, 𝑙
𝑐
= 0, 𝑠

𝑐
= −0.134, 𝑙

𝑠
= 𝜋/2, 𝑠

𝑠
= −1).

gyrostats are presented in Table 5. The motions of the
gyrostats for the type Pi are qualitatively similar to the
motions of the Subtype Ic (Figure 8).

5.5. Phase Space Structure for the Prolate Gyrostats. Table 6
shows the solutions for the prolate gyrostats. We can see
the similarity between the Subtype Ic the the Subtypes Pa
(Figure 8). In case of the Subtype Pb we observe a similarity
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Figure 6: Phase space structure for the oblate-intermediate gyrostat,
indexes of the region in phase space: ObR1, ObL1 (𝑎 = 1, 𝑏 = 1.3077,
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𝑐
= 0, 𝑠

𝑐
= −0.1625, 𝑙

𝑠
= ±1.15588, 𝑠
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Figure 7: Phase space structure for the intermediate gyrostat,
indexes of the region in phase space 𝐶

𝑃
= 0.8 kg⋅m2 ⇒ 𝑎 =

0.94118, 𝑏 = 1.23077 (𝑙
𝑐
= 0, 𝑠

𝑐
= −0.21667, 𝑙

𝑐
= ±𝜋/2, 𝑠

𝑐
= 0.85,

𝑙
𝑠
= ±0.910932, 𝑠

𝑠
= −1, 𝑙

𝑠
= ±1.39534, 𝑠

𝑠
= 1).

with the Subtype Oa (Figure 4), when the phase portrait is
shifted along the horizontal axis at ±𝜋/2 (Figure 9).

Thus we have observed the evolution of the phase space,
depending on the parameters of the gyrostat.

6. Conclusion

This paper is a development of the results obtained in
Aslanov [24, 27]. Two new gyrostats types are added (oblate-
intermediate and prolate-intermediate) and the exact solu-
tions are found, including three the new solutions.The results
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Figure 8: Phase space structure for the intermediate gyrostat,
indexes of the region in phase space𝐶

𝑃
= 0.6825 kg⋅m2 ⇒ 𝑎 =

0.80294, 𝑏 = 1.05. (𝑙
𝑐
= ±𝜋/2, 𝑠

𝑐
= 0.253731, 𝑙

𝑠
= ±0.689575, 𝑠

𝑠
= 1).
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Figure 9: Phase space structure of the prolate gyrostat, indexes of
the region in phase space:𝐶

𝑃
= 0.5 kg⋅m2 ⇒ 𝑎 = 0.58823, 𝑏 =

0.76923 (𝑙
𝑐
= ±𝜋/2, 𝑠

𝑐
= 0.1214, 𝑙

𝑠
= 0, 𝑠

𝑠
= 0.21667).

of the study can be useful for the analysis of dual-spin
spacecraft dynamics.
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