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We investigate the Dirichlet weighted eigenvalue problem of the elliptic operator in divergence form on compact Riemannian
manifolds (𝑀, 𝑔, 𝑒−𝜙𝑑V). We establish a Yang-type inequality of this problem. We also get universal inequalities for eigenvalues of
elliptic operators in divergence form on compact domains of complete submanifolds admitting special functions which include the
Hadamard manifolds with Ricci curvature bounded below and any complete manifolds admitting eigenmaps to a sphere.

1. Introduction

Let (𝑀, ⟨, ⟩) be an 𝑛-dimensional bounded compact Rieman-
nian manifold, 𝜙 ∈ 𝐶2(𝑀), and 𝑑𝜇 = 𝑒−𝜙𝑑V, where 𝑑V is the
Riemannian volumemeasure on (𝑀, ⟨, ⟩). Let Δ and ∇ be the
Laplacian and the gradient operator on𝑀, respectively. The
witten Laplacian (or the drifting Laplacian) with respect to
the weighted volume measure 𝜇 is given by

Δ
𝜙

= Δ − ⟨∇𝜙, ∇ (⋅)⟩ . (1)
In recent years, many mathematicians have paid their

attention to the eigenvalue problem of the drifting Laplacian
on Riemannian manifolds (see [1–3]). They have studied the
following eigenvalue problem:

Δ
𝜙

𝑢 = −𝜆𝑢, in Ω,

𝑢|
𝜕Ω

= 0.
(2)

In particular in [4], Xia and Xu got a Payne-Plya-Weinberger-
Yang-type inequality of the eigenvalues of this problem:
𝑘

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)
2

≤
1

𝑛

𝑘

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

) (4𝜆
𝑖

+ 4𝜙
0

𝜆
1/2

𝑖

+ 𝑛
2

𝐻
2

0

+ 𝜙
2

0

) ,

(3)

where 𝐻
0

= sup
Ω

|𝐻|, 𝐻 is the mean curvature vector, and
𝜙
0

= max
Ω

|∇𝜙|.
In this paper, we consider the following eigenvalue prob-

lem:
− div (𝐴∇𝑢) + ⟨𝐴∇𝜙, ∇𝑢⟩ + 𝑉𝑢 = 𝜆𝜌𝑢, in 𝑀,

𝑢|
𝜕𝑀

= 0,
(4)

where 𝑉 is a nonnegative potential function, 𝜌 is a positive
function continuous on𝑀, and 𝐴 is symmetric and positive
definite matrices. Through integration by part, we can find

∫
𝑀

𝑓 (− div (𝐴∇𝑔) + ⟨𝐴∇𝜙, ∇𝑔⟩ + 𝑉𝑔) 𝑑𝜇

= ∫
𝑀

𝑔 (− div (𝐴∇𝑓) + ⟨𝐴∇𝜙, ∇𝑓⟩ + 𝑉𝑓) 𝑑𝜇,

∫
𝑀

𝑓 (− div (𝐴∇𝑔) + ⟨𝐴∇𝜙, ∇𝑔⟩) 𝑑𝜇 = ∫
𝑀

⟨𝐴∇𝑔, ∇𝑓⟩ 𝑑𝜇,

(5)

where 𝑓 and 𝑔 are smooth functions on 𝑀 with 𝑓|
𝜕𝑀

=

𝑔|
𝜕𝑀

= 0. As we know (see [5]), this problem has a real and
discrete spectrum:

0 < 𝜆
1

≤ 𝜆
2

≤ ⋅ ⋅ ⋅ ≤ 𝜆
𝑟

≤↗; (6)

here each eigenvalue is repeated from its multiplicity.
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In Section 2, we get a general inequality for the eigen-
value of the operator in divergence form − div(𝐴∇(⋅)) +
⟨∇𝜙, ∇(⋅)⟩ + 𝑉 through the way of trial function. In Section
3, we obtain a Payne-Plya-Weinberger-Yang-type inequality
through defining special trial function. In Section 4, we prove
some universal inequalities for eigenvalues of the divergence
operator on manifolds admitting special functions.

2. A General Inequality

Firstly, we give a useful inequality about the eigenvalues.

Theorem 1. Let 𝜆
𝑖

be the 𝑖th eigenvalue of problem (4) and let
𝑢
𝑖

be the orthonormal eigenfunction corresponding to 𝜆
𝑖

; that
is,

− div (𝐴∇𝑢
𝑖

) + ⟨𝐴∇𝜙, ∇𝑢
𝑖

⟩ + 𝑉𝑢
𝑖

= 𝜆
𝑖

𝜌𝑢
𝑖

, 𝑖𝑛 𝑀;

∫
𝑀

𝜌𝑢
𝑖

𝑢
𝑗

𝑑𝜇 = 𝛿
𝑖𝑗

,

𝑢
𝑖

|
𝜕𝑀

= 0.

(7)

Then, for any ℎ ∈ 𝐶3(𝑀)∩𝐶2(𝜕𝑀) and any integer 𝑘, we have

𝑘

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)
2

∫
𝑀

𝑢
2

𝑖

⟨∇ℎ, ∇ℎ⟩ 𝑑𝜇

≤ 𝜖

𝑘

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)
2

∫
𝑀

𝑢
2

𝑖

⟨𝐴∇ℎ, ∇ℎ⟩ 𝑑𝜇

+

𝑘

∑
𝑖=1

𝜆
𝑘+1

− 𝜆
𝑖

𝜖
∫
𝑀

1

𝜌
(⟨∇𝑢
𝑖

, ∇ℎ⟩ +
1

2
𝑢
𝑖

Δℎ)
2

𝑑𝜇,

(8)

where 𝜖 is any positive constant.

Proof. We define a trial function

𝜑
𝑖

= ℎ𝑢
𝑖

−

𝑘

∑
𝑗=1

𝑎
𝑖𝑗

𝑢
𝑗

, (9)

where 𝑎
𝑖𝑗

= ∫
𝑀

𝜌ℎ𝑢
𝑖

𝑢
𝑗

𝑑𝜇 = 𝑎
𝑗𝑖

, and then we have

∫
𝑀

𝜌𝜑
𝑖

𝑢
𝑗

𝑑𝜇 = 0, 𝜑
𝑖

|
𝜕𝑀

= 0, for ∀𝑖, 𝑗 = 1, . . . , 𝑘. (10)

If we set 𝐿 = − div(𝐴∇(⋅)) + ⟨𝐴∇𝜙, ∇(⋅)⟩ + 𝑉, then through
direct calculation, we have

𝐿𝜑
𝑖

= (− div (𝐴∇ (⋅)) + ⟨𝐴∇𝜙, ∇ (⋅)⟩ + 𝑉) 𝜑
𝑖

= ℎ𝐿𝑢
𝑖

+ 𝑢
𝑖

𝐿ℎ − 𝑉ℎ𝑢
𝑖

− 2 ⟨𝐴∇ℎ, ∇𝑢
𝑖

⟩ −

𝑘

∑
𝑗=1

𝑎
𝑖𝑗

𝜆
𝑗

𝑢
𝑗

.
(11)

Substituting (11) into the well knownRayleigh-Ritz inequality

𝜆
𝑘+1

≤
∫
𝑀

𝜑
𝑖

𝐿𝜑
𝑖

∫
𝑀

𝜌𝜑2
𝑖

𝑑𝜇
, (12)

we can get

(𝜆
𝑘+1

− 𝜆
𝑖

) ∫
𝑀

𝜌𝜑
2

𝑖

𝑑𝜇

≤ ∫
𝑀

𝜑
𝑖

(𝑢
𝑖

𝐿ℎ − 𝑉ℎ𝑢
𝑖

+ 2 ⟨𝐴∇ℎ, ∇𝑢
𝑖

⟩) 𝑑𝜇.

(13)

We set

𝑏
𝑖𝑗

= ∫
𝑀

(𝑢
𝑖

𝐿ℎ − 𝑉ℎ𝑢
𝑖

− 2 ⟨𝐴∇ℎ, ∇𝑢
𝑖

⟩) 𝑢
𝑗

𝑑𝜇. (14)

Through direct calculation, we have

𝑏
𝑖𝑗

= −𝑏
𝑗𝑖

, 𝑏
𝑖𝑗

= (𝜆
𝑖

− 𝜆
𝑗

) 𝑎
𝑖𝑗

. (15)

Combining with (13), we get

(𝜆
𝑘+1

− 𝜆
𝑖

) ∫
𝑀

𝜌𝜑
2

𝑖

𝑑𝜇

≤ −∫
𝑀

ℎ𝑢
𝑖

(𝑢
𝑖

(div (𝐴∇ℎ) − ⟨𝐴∇𝜙, ∇ℎ⟩)

− 2 ⟨∇𝑢
𝑖

, 𝐴∇ℎ⟩)𝑑𝜇

+

𝑘

∑
𝑗=1

(𝜆
𝑖

− 𝜆
𝑗

) 𝑎
2

𝑖𝑗

.

(16)

Setting

𝑐
𝑖𝑗

= ∫
𝑀

𝑢
𝑗

(⟨∇𝑢
𝑖

, ∇ℎ⟩ +
1

2
𝑢
𝑖

Δℎ)𝑑𝜇, (17)

then through direct calculation, we have

𝑐
𝑖𝑗

= −𝑐
𝑗𝑖

, (18)

∫
𝑀

(−2) 𝜑
𝑖

(⟨∇𝑢
𝑖

, ∇ℎ⟩ +
1

2
𝑢
𝑖

Δℎ)𝑑𝜇

= −2∫
𝑀

ℎ𝑢
𝑖

(⟨∇𝑢
𝑖

, ∇ℎ⟩ +
1

2
𝑢
𝑖

Δℎ)𝑑𝜇 + 2

𝑘

∑
𝑗=1

𝑎
𝑖𝑗

𝑐
𝑖𝑗

= ∫
𝑀

𝑢
2

𝑖

⟨∇ℎ, ∇ℎ⟩ 𝑑𝜇 + 2

𝑘

∑
𝑗=1

𝑎
𝑖𝑗

𝑐
𝑖𝑗

.

(19)
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Multiplying (19) by (𝜆
𝑘+1

− 𝜆
𝑖

)
2, we get

(𝜆
𝑘+1

− 𝜆
𝑖

)
2

(∫
𝑀

𝑢
2

𝑖

⟨∇ℎ, ∇ℎ⟩ 𝑑𝜇 + 2

𝑘

∑
𝑗=1

𝑎
𝑖𝑗

𝑐
𝑖𝑗

)

= (𝜆
𝑘+1

− 𝜆
𝑖

)
2

⋅ ∫
𝑀

(−2)√𝜌𝜙
𝑖

(
1

√𝜌
(⟨∇𝑢
𝑖

, ∇ℎ⟩ +
1

2
𝑢
𝑖

Δℎ)

−

𝑘

∑
𝑗=1

𝑐
𝑖𝑗

√𝜌𝑢
𝑗

)𝑑𝜇

≤ 𝜖 (𝜆
𝑘+1

− 𝜆
𝑖

)
3

∫
𝑀

𝜌𝜙
2

𝑖

𝑑𝜇

+
𝜆
𝑘+1

− 𝜆
𝑖

𝜖
∫
𝑀

(
1

√𝜌
(⟨∇𝑢
𝑖

, ∇ℎ⟩ +
1

2
𝑢
𝑖

Δℎ)

−

𝑘

∑
𝑗=1

𝑐
𝑖𝑗

√𝜌𝑢
𝑗

)

2

𝑑𝜇

= 𝜖 (𝜆
𝑘+1

− 𝜆
𝑖

)
3

∫
𝑀

𝜌𝜙
2

𝑖

𝑑𝜇

+
𝜆
𝑘+1

− 𝜆
𝑖

𝜖
(∫
𝑀

1

𝜌
(⟨∇𝑢
𝑖

, ∇ℎ⟩ +
1

2
𝑢
𝑖

Δℎ)
2

𝑑𝜇

−

𝑘

∑
𝑗=1

𝑐
2

𝑖𝑗

)

≤ 𝜖 (𝜆
𝑘+1

− 𝜆
𝑖

)
2

(−∫
𝑀

ℎ𝑢
𝑖

(𝑢
𝑖

(div (𝐴∇ℎ)

− ⟨𝐴∇𝜙, ∇ℎ⟩)

+2 ⟨∇𝑢
𝑖

, 𝐴∇ℎ⟩ 𝑑𝜇)

+

𝑘

∑
𝑗=1

(𝜆
𝑖

− 𝜆
𝑗

) 𝑎
2

𝑖𝑗

)

+
𝜆
𝑘+1

− 𝜆
𝑖

𝜖

⋅ (∫
𝑀

1

𝜌
(⟨∇𝑢
𝑖

, ∇ℎ⟩ +
1

2
𝑢
𝑖

Δℎ)
2

𝑑𝜇 −

𝑘

∑
𝑗=1

𝑐
2

𝑖𝑗

) ,

(20)

where 𝜖 is any positive constant. Summing over 𝑖 from 1 to 𝑘,
we have
𝑘

∑
𝑗=1

(𝜆
𝑘+1

− 𝜆
𝑖

)
2

∫
𝑀

𝑢
2

𝑖

⟨∇ℎ, ∇ℎ⟩ 𝑑𝜇

− 2

𝑘

∑
𝑖,𝑗=1

(𝜆
𝑘+1

− 𝜆
𝑖

) (𝜆
𝑖

− 𝜆
𝑗

) 𝑎
𝑖𝑗

𝑐
𝑖𝑗

≤ 𝜖

𝑘

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)
2

(−∫
𝑀

ℎ𝑢
𝑖

(𝑢
𝑖

(div (𝐴∇ℎ)

− ⟨𝐴∇𝜙, ∇ℎ⟩)

+2 ⟨∇𝑢
𝑖

, 𝐴∇ℎ⟩) 𝑑𝜇)

+

𝑘

∑
𝑖=1

𝜆
𝑘+1

− 𝜆
𝑖

𝜖
(∫
𝑀

1

𝜌
(⟨∇𝑢
𝑖

, ∇ℎ⟩ +
1

2
𝑢
𝑖

Δℎ)
2

𝑑𝜇

−

𝑘

∑
𝑖,𝑗=1

(𝜆
𝑘+1

− 𝜆
𝑖

) 𝜖 (𝜆
𝑖

− 𝜆
𝑗

)
2

𝑎
2

𝑖𝑗

)

−

𝑘

∑
𝑖,𝑗=1

(𝜆
𝑘+1

− 𝜆
𝑖

)

𝜖
𝑐
2

𝑖𝑗

.

(21)

Because of 𝑎
𝑖𝑗

= 𝑎
𝑗𝑖

, 𝑐
𝑖𝑗

= −𝑐
𝑗𝑖

, we infer

𝑘

∑
𝑗=1

(𝜆
𝑘+1

− 𝜆
𝑖

)
2

∫
𝑀

𝑢
2

𝑖

⟨∇ℎ, ∇ℎ⟩ 𝑑𝜇

≤ 𝜖

𝑘

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)
2

⋅ (−∫
𝑀

ℎ𝑢
𝑖

(𝑢
𝑖

(div (𝐴∇ℎ)

− ⟨𝐴∇𝜙, ∇ℎ⟩) + 2 ⟨∇𝑢
𝑖

, 𝐴∇ℎ⟩) 𝑑𝜇)

+

𝑘

∑
𝑖=1

𝜆
𝑘+1

− 𝜆
𝑖

𝜖
∫
𝑀

1

𝜌
(⟨∇𝑢
𝑖

, ∇ℎ⟩ +
1

2
𝑢
𝑖

Δℎ)
2

𝑑𝜇.

(22)

Considering the property of the measure on this weighted
manifold that 𝑑𝜇 = 𝑒−𝜙𝑑V, we can refer to the fact that

∫
𝑀

ℎ𝑢
2

𝑖

div (𝐴∇ℎ) 𝑑𝜇

= ∫
𝑀

ℎ𝑢
2

𝑖

div (𝐴∇ℎ) 𝑒−𝜙𝑑V

= −∫
𝑀

⟨𝐴∇ℎ, ∇ℎ⟩ 𝑢
2

𝑖

𝑒
−𝜙

𝑑V

− ∫
𝑀

⟨𝐴∇ℎ, ∇𝑢
𝑖

⟩ 2ℎ𝑢
𝑖

𝑒
−𝜙

𝑑V + ∫
𝑀

⟨𝐴∇ℎ, ∇𝜙⟩ ℎ𝑢
2

𝑖

𝑒
−𝜙

𝑑V

= −∫
𝑀

⟨𝐴∇ℎ, ∇ℎ⟩ 𝑢
2

𝑖

𝑑𝜇 − ∫
𝑀

⟨𝐴∇ℎ, ∇𝑢
𝑖

⟩ 2ℎ𝑢
𝑖

𝑑𝜇

+ ∫
𝑀

⟨𝐴∇ℎ, ∇𝜙⟩ ℎ𝑢
2

𝑖

𝑑𝜇.

(23)

Substituting (23) into (22), we can finish the proof ofTheorem
1.
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3. The Main Theorem and the Proof

In this section, we give some estimates about the eigenvalues
of the operator in divergence form.

Lemma 2. Let𝑀 be an 𝑛-dimensional complete Riemannian
manifold and let Ω be a bounded domain with smooth
boundary and let 𝜙 be a smooth function on Ω in 𝑀; 𝐴 is a
symmetry and positive definite matrix; suppose 𝜆

𝑖

be the 𝑖th
eigenvalue of the problem:

− div (𝐴∇𝑢
𝑖

) + ⟨𝐴∇𝜙, ∇𝑢
𝑖

⟩ + 𝑉𝑢
𝑖

= 𝜆𝜌𝑢
𝑖

, 𝑖𝑛 Ω;

∫
Ω

𝜌𝑢
𝑖

𝑢
𝑗

𝑑𝜇 = 𝛿
𝑖𝑗

;

𝑢
𝑖

|
𝜕Ω

= 0.

(24)

If 𝑀 is isometrically immersed in 𝑅𝑚 with mean curvature
vector𝐻, then

𝑛

𝑘

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)
2

∫
Ω

𝑢
2

𝑖

𝑑𝜇

≤ 𝜖

𝑘

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)
2

∫
Ω

𝑢
2

𝑖

tr (𝐴) 𝑑𝜇

+

𝑘

∑
𝑖=1

𝜆
𝑘+1

− 𝜆
𝑖

𝜖
∫
Ω

1

𝜌
(
∇𝑢𝑖


2

+
1

4
𝑢
2

𝑖

𝑛
2

𝐻
2

)𝑑𝜇.

(25)

Proof. Let 𝑥
𝛼

, 𝛼 = 1, 2, . . . , 𝑚 be the standard coordinate
functions of 𝑅𝑚. Taking ℎ = 𝑥

𝛼

in (8), summing over 𝛼 from
1 to𝑚, we have
𝑘

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)
2

𝑚

∑
𝛼=1

∫
Ω

𝑢
2

𝑖

⟨∇𝑥
𝛼

, ∇𝑥
𝛼

⟩ 𝑑𝜇

≤ 𝜖

𝑘

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)
2

∫
Ω

𝑢
2

𝑖

𝑚

∑
𝛼=1

⟨𝐴∇𝑥
𝛼

, ∇𝑥
𝛼

⟩ 𝑑𝜇

+

𝑘

∑
𝑖=1

𝜆
𝑘+1

− 𝜆
𝑖

𝜖
∫
Ω

1

𝜌

𝑚

∑
𝛼=1

(⟨∇𝑢
𝑖

, ∇𝑥
𝛼

⟩ +
1

2
𝑢
𝑖

Δ𝑥
𝛼

)
2

𝑑𝜇

= 𝜖

𝑘

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)
2

∫
Ω

𝑢
2

𝑖

𝑚

∑
𝛼=1

⟨𝐴∇𝑥
𝛼

, ∇𝑥
𝛼

⟩ 𝑑𝜇

+

𝑘

∑
𝑖=1

𝜆
𝑘+1

− 𝜆
𝑖

𝜖
∫
Ω

1

𝜌

𝑚

∑
𝛼=1

(⟨∇𝑢
𝑖

, ∇𝑥
𝛼

⟩)
2

+
1

4
𝑢
2

𝑖

(Δ𝑥
𝛼

)
2

+ ⟨𝑢
𝑖

∇𝑢
𝑖

, Δ𝑥
𝛼

∇𝑥
𝛼

⟩ 𝑑𝜇.

(26)

Since𝑀 is isometrically immersed in 𝑅𝑚, we have
𝑚

∑
𝛼=1

∇𝑥𝛼

2

= 𝑛, (27)

and then,

∫
Ω

𝑢
2

𝑖

𝑚

∑
𝛼=1

∇𝑥𝛼

2

𝑑𝜇 = 𝑛∫
Ω

𝑢
2

𝑖

𝑑𝜇. (28)

Also, we have

Δ (𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑚

) ≡ (Δ𝑥
1

, Δ𝑥
2

, . . . , Δ𝑥
𝑚

) = 𝑛𝐻. (29)

Let 𝑒
1

, . . . , 𝑒
𝑛

be orthonormal tangent vector fields locally
defined on𝑀; we have
𝑛+1

∑
𝛼=1

⟨𝐴∇𝑥
𝛼

, ∇𝑥
𝛼

⟩

=

𝑛+1

∑
𝛼=1

⟨𝐴(

𝑛

∑
𝑖=1

⟨∇𝑥
𝛼

, 𝑒
𝑖

⟩ 𝑒
𝑖

) ,

𝑛

∑
𝑗=1

⟨∇𝑥
𝛼

, 𝑒
𝑗

⟩ 𝑒
𝑗

⟩

=

𝑛

∑
𝑖,𝑗=1

𝑛+1

∑
𝛼=1

(𝑒
𝑖

𝑥
𝛼

) (𝑒
𝑗

𝑥
𝛼

) ⟨𝐴𝑒
𝑖

, 𝑒
𝑗

⟩

=

𝑛

∑
𝑖,𝑗=1

⟨𝑒
𝑖

, 𝑒
𝑗

⟩ ⟨𝐴𝑒
𝑖

, 𝑒
𝑗

⟩ =

𝑛

∑
𝑖

⟨𝐴𝑒
𝑖

, 𝑒
𝑖

⟩

= tr (𝐴) ,

(30)

and then,
𝑚

∑
𝛼=1

∫
Ω

𝑢
2

𝑖

⟨𝐴∇𝑥
𝛼

, ∇𝑥
𝛼

⟩ 𝑑𝜇 ≤ ∫
Ω

𝑢
2

𝑖

tr (𝐴) 𝑑𝜇,

𝑚

∑
𝛼=1

Δ𝑥
𝛼

⟨∇𝑥
𝛼

, ∇𝑢
𝑖

⟩ =

𝑚

∑
𝛼=1

Δ𝑥
𝛼

∇𝑢
𝑖

(𝑥
𝛼

) = ⟨𝑛𝐻, ∇𝑢
𝑖

⟩ = 0.

(31)

Substituting (28), (29), and (31) into (26), we can finish the
proof of Lemma 2.

Theorem 3. Under the same assumption of Lemma 2, let 𝜏 =
(sup
Ω

𝜌)
−1, 𝜎 = (inf

Ω

𝜌)
−1,𝑉
0

= min
Ω

𝑉, |∇𝜙| ≤ 𝐶
0

, |𝐻| ≤ 𝐻
0

,
𝜉
1

𝐼 ≤ 𝐴 ≤ 𝜉
2

𝐼, and then one has

𝑘

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)
2

≤
4𝜉
2

𝜎2

𝑛𝜏2

⋅

𝑛

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)

⋅ {
1

2𝜉
1

[𝜉
2

𝐶
0

𝜎

+ (𝜉
2

2

𝐶
2

0

𝜎 − 4𝜉
1

𝑉
0

𝜏 + 4𝜉
1

𝜆
𝑖

)
1/2

]

+
1

4
𝜎𝑛
2

𝐻
2

0

} .

(32)

Proof. Obviously, we have

𝜎 = 𝜎∫
Ω

𝜌𝑢
2

𝑖

𝑑𝜇 ≥ ∫
Ω

𝑢
2

𝑖

𝑑𝜇 ≥ 𝜏∫
Ω

𝜌𝑢
2

𝑖

𝑑𝜇 = 𝜏. (33)
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Multiplying the equation

− div (𝐴∇𝑢
𝑖

) + ⟨𝐴∇𝜙, ∇𝑢
𝑖

⟩ + 𝑉𝑢
𝑖

= 𝜆
𝑖

𝜌𝑢
𝑖

(34)

by 𝑢
𝑖

and integrating onΩ, we have

𝜆
𝑖

= ∫
Ω

⟨𝐴∇𝑢
𝑖

, ∇𝑢
𝑖

⟩ 𝑑𝜇 + ∫
Ω

𝑢
𝑖

⟨𝐴∇𝜙, ∇𝑢
𝑖

⟩ 𝑑𝜇 + ∫
Ω

𝑉𝑢
2

𝑖

𝑑𝜇

≥ 𝜉
1

∫
Ω

∇𝑢𝑖

2

𝑑𝜇 + ∫
Ω

𝑢
𝑖

⟨𝐴∇𝜙, ∇𝑢
𝑖

⟩ 𝑑𝜇 + ∫
Ω

𝑉𝑢
2

𝑖

𝑑𝜇.

(35)

Considering

∫
Ω

𝑢
𝑖

⟨𝐴∇𝜙, ∇𝑢
𝑖

⟩ 𝑑𝜇


≤ 𝜉
2

∫
Ω

𝑢𝑖

∇𝜙


∇𝑢𝑖

 𝑑𝜇

≤ 𝜉
2

𝐶
0

(∫
Ω

𝑢
2

𝑖

𝑑𝜇)
1/2

(∫
Ω

∇𝑢𝑖

2

𝑑𝜇)
1/2

≤ 𝜉
2

𝐶
0

𝜎(∫
Ω

∇𝑢𝑖

2

𝑑𝜇)
1/2

,

(36)

then we can obtain

𝜆
𝑖

≥ 𝜉
1

∫
Ω

∇𝑢𝑖

2

𝑑𝜇 + ∫
Ω

𝑢
𝑖

⟨𝐴∇𝜙, ∇𝑢
𝑖

⟩ 𝑑𝜇 + ∫
Ω

𝑉𝑢
2

𝑖

𝑑𝜇

≥ 𝜉
1

∫
Ω

∇𝑢𝑖

2

𝑑𝜇 − 𝜉
2

𝐶
0

𝜎(∫
Ω

∇𝑢𝑖

2

𝑑𝜇)
1/2

+ 𝑉
0

𝜏.

(37)

Solving this inequality, we have

∫
Ω

∇𝑢𝑖

2

𝑑𝜇

≤
1

2𝜉
1

{𝜉
2

𝐶
0

𝜎 + (𝜉
2

2

𝐶
2

0

𝜎
2

− 4𝜉
1

𝑉
0

𝜏 + 4𝜉
1

𝜆
𝑖

)
1/2

} .

(38)

Substituting (33) and (38) into (25) and taking

𝜖 = (
𝐴

𝐵
)
1/2

, (39)

where

𝐴 =

𝑛

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

) 𝜎

⋅ {
1

2𝜉
1

[𝜉
2

𝐶
0

𝜎

+ (𝜉
2

2

𝐶
2

0

𝜎 − 4𝜉
1

𝑉
0

𝜏 + 4𝜉
1

𝜆
𝑖

)
1/2

]

+
1

4
𝜎𝑛
2

𝐻
2

0

} ,

𝐵 =

𝑛

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)
2

𝑛𝜉
2

𝜎,

(40)

we can finish the proof of Theorem 3.

Remark 4. If we set 𝜙 = constant,𝐴 = 𝐼, 𝜌 = 1 and𝑉 = 0, the
divergence operator becomes the usual laplace operator on
Riemannian manifolds and we can find our result is sharper
than the result in [4, 6].

Remark 5. For some of the recent developments about uni-
versal inequalities for eigenvalues on Riemannian manifolds,
we refer to [6–12] and the references therein.

4. Eigenvalues on Manifolds Admitting
Special Functions

In this section, we get some universal inequalities for eigen-
values of the divergence operator on manifolds admitting
special functions.

Theorem6. Let𝑀 be an 𝑛-dimensional complete Riemannian
manifold and let Ω be a bounded domain with smooth
boundary and let 𝜙 be a smooth function on Ω in 𝑀; 𝐴 is a
symmetry and positive definite matrix; let 𝜏 = (sup

Ω

𝜌)
−1, 𝜎 =

(inf
Ω

𝜌)
−1, 𝑉
0

= min
Ω

𝑉, |∇𝜙| ≤ 𝐶
0

, |𝐻| ≤ 𝐻
0

, 𝜉
1

𝐼 ≤ 𝐴 ≤ 𝜉
2

𝐼;
suppose 𝜆

𝑖

be the 𝑖th eigenvalue of the problem:

− div (𝐴∇𝑢
𝑖

) + ⟨𝐴∇𝜙, ∇𝑢
𝑖

⟩ + 𝑉𝑢
𝑖

= 𝜆𝜌𝑢
𝑖

, 𝑖𝑛 Ω;

∫
Ω

𝜌𝑢
𝑖

𝑢
𝑗

𝑑𝜇 = 𝛿
𝑖𝑗

;

𝑢
𝑖

|
𝜕Ω

= 0;

(41)

if there exists a function 𝜃 : Ω → 𝑅 and a constant 𝐴
0

such
that

|∇𝜃| = 1, |Δ𝜃| ≤ 𝐴
0

, 𝑜𝑛 Ω, (42)

then

𝑘

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)
2

≤
8𝜉
2

𝜎2

𝑛𝜏2

𝑛

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)

⋅ {
1

2𝜉
1

[𝜉
2

𝐶
0

𝜎

+ (𝜉
2

2

𝐶
2

0

𝜎 − 4𝜉
1

𝑉
0

𝜏 + 4𝜉
1

𝜆
𝑖

)
1/2

]

+
1

4
𝜎𝐴
2

0

} .

(43)
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Proof. Taking ℎ = 𝜃 in (8) and considering (38), (42), and
⟨∇𝜃, 𝐴∇𝜃⟩ ≤ 𝜉

2

|∇𝜃|2, we have

𝜏

𝑘

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)
2

≤

𝑘

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)
2

∫
Ω

𝑢
2

𝑖

𝑑𝜇

≤ 𝜖

𝑘

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)
2

∫
Ω

𝑢
2

𝑖

⟨∇𝜃, 𝐴∇𝜃⟩ 𝑑𝜇

+

𝑘

∑
𝑖=1

𝜆
𝑘+1

− 𝜆
𝑖

𝜖
∫
Ω

1

𝜌
(⟨∇𝑢
𝑖

, ∇𝜃⟩ +
1

2
𝑢
𝑖

Δ𝜃)
2

𝑑𝜇

≤ 𝜖𝜎𝜉
2

𝑘

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)
2

+ 2𝜎

𝑘

∑
𝑖=1

𝜆
𝑘+1

− 𝜆
𝑖

𝜖
∫
Ω

∇𝑢𝑖

2

+
𝐴2
0

𝑢2
𝑖

4
𝑑𝜇

≤ 𝜖𝜎𝜉
2

𝑘

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)
2

+ 2𝜎

𝑘

∑
𝑖=1

𝜆
𝑘+1

− 𝜆
𝑖

𝜖

⋅ (
1

2𝜉
1

(𝜉
2

𝐶
0

𝜎

+ (𝜉
2

2

𝐶
2

0

𝜎
2

− 4𝜉
1

𝑉
0

𝜏 + 4𝜉
1

𝜆
𝑖

)
1/2

)

+ 𝜎
𝐴2
0

4
) .

(44)

Taking

𝜖 =
{

{

{

(2

𝑘

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)

⋅ (
1

2𝜉
1

(𝜉
2

𝐶
0

𝜎

+ (𝜉
2

2

𝐶
2

0

𝜎
2

− 4𝜉
1

𝑉
0

𝜏 + 4𝜉
1

𝜆
𝑖

)
1/2

) + 𝜎
𝐴2
0

4
))

⋅(𝜉
2

𝑘

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)
2

)

−1

}

}

}

1/2

,

(45)

we can complete the proof of Theorem 6.

Remark 7. Let 𝑀 be an 𝑛-dimensional connected complete
Riemannian manifold; suppose its Ricci curvature satisfies
Ric
𝑚

≥ −(𝑛 − 1)𝑐2, 𝑐 ≥ 0. If there exists a smooth func-
tion 𝜃 satisfying |∇𝜃| = 1, then |Δ𝜃| ≤ (𝑛 − 1)𝑐2. So
the Bussemann functions on Cartan-Hadamard manifolds
with Ricci curvature bounded below satisfy the condition in
Theorem 6.

Theorem8. Let𝑀 be an 𝑛-dimensional complete Riemannian
manifold and let Ω be a bounded domain with smooth
boundary; let 𝜙 be a smooth function on Ω in M; A is a
symmetry and positive definite matrix; let 𝜏 = (sup

Ω

𝜌)
−1, 𝜎 =

(inf
Ω

𝜌)
−1, 𝑉
0

= min
Ω

𝑉, |∇𝜙| ≤ 𝐶
0

, |𝐻| ≤ 𝐻
0

, 𝜉
1

𝐼 ≤ 𝐴 ≤ 𝜉
2

𝐼;
suppose 𝜆

𝑖

be the 𝑖th eigenvalue of the problem:

− div (𝐴∇𝑢
𝑖

) + ⟨𝐴∇𝜙, ∇𝑢
𝑖

⟩ + 𝑉𝑢
𝑖

= 𝜆𝜌𝑢
𝑖

, 𝑖𝑛 Ω;

∫
Ω

𝜌𝑢
𝑖

𝑢
𝑗

𝑑𝜇 = 𝛿
𝑖𝑗

;

𝑢
𝑖

|
𝜕Ω

= 0;

(46)

if Ω admits an eigenmap 𝑓 = (𝑓
1

, 𝑓
2

, . . . , 𝑓
𝑚+1

) : Ω → 𝑆𝑚

corresponding to an eigenvalue 𝜂, that is

Δ𝑓
𝛼

= −𝜂𝑓
𝛼

, 𝛼 = 1, . . . , 𝑚 + 1,

𝑚+1

∑
𝛼=1

𝑓
2

𝛼

= 1, (47)

then

𝑘

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)
2

≤
2𝜉
2

𝜎2

𝜏2

⋅

𝑛

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)

⋅ {
1

𝜉
1

[𝜉
2

𝐶
0

𝜎

+ (𝜉
2

2

𝐶
2

0

𝜎 − 4𝜉
1

𝑉
0

𝜏 + 4𝜉
1

𝜆
𝑖

)
1/2

] +
𝜎𝜂

2
} .

(48)

Proof. Because of (47), we obtain

𝑚+1

∑
𝛼=1

∇𝑓𝛼

2

= 𝜂. (49)
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Taking ℎ = 𝑓
𝛼

in (8) and summing over 𝛼 from 1 to𝑚+1, we
get

𝜂𝜏

𝑘

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)
2

≤

𝑘

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)
2

𝑚+1

∑
𝛼=1

∫
Ω

𝑢
2

𝑖

∇𝑓𝛼

2

𝑑𝜇

≤ 𝜖

𝑘

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)
2

∫
Ω

𝑢
2

𝑖

𝑚+1

∑
𝛼=1

⟨∇𝑓
𝛼

, 𝐴𝑓
𝛼

⟩ 𝑑𝜇

+

𝑘

∑
𝑖=1

𝜆
𝑘+1

− 𝜆
𝑖

𝜖
∫
Ω

1

𝜌

𝑚+1

∑
𝛼=1

(⟨∇𝑢
𝑖

, ∇𝑓
𝛼

⟩ −
1

2
𝜂𝑓
𝛼

𝑢
𝑖

)
2

𝑑𝜇

≤ 𝜖𝜂𝜎𝜉
2

𝑘

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)
2

+ 2𝜎

𝑘

∑
𝑖=1

𝜆
𝑘+1

− 𝜆
𝑖

𝜖
∫
Ω

𝜂
∇𝑢𝑖


2

+
𝜂2𝑢2
𝑖

4
𝑑𝜇

≤ 𝜖𝜂𝜎𝜉
2

𝑘

∑
𝑖=1

(𝜆
𝑘+1

− 𝜆
𝑖

)
2

+ 𝜎

𝑘

∑
𝑖=1

𝜆
𝑘+1

− 𝜆
𝑖

𝜖

⋅ (
𝜂

𝜉
1

(𝜉
2

𝐶
0

𝜎

+ (𝜉
2

2

𝐶
2

0

𝜎
2

− 4𝜉
1

𝑉
0

𝜏 + 4𝜉
1

𝜆
𝑖

)
1/2

)

+𝜎
𝜂2

2
) .

(50)

Taking

𝜖 =
{

{
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2
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⋅(𝜉
2

𝑘
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(𝜆
𝑘+1

− 𝜆
𝑖

)
2

)

−1

}

}

}

1/2

,

(51)

then the proof of Theorem 8 is finished.

Remark 9. Any compact homogeneous Riemannian mani-
fold admits eigenmaps to some unit sphere for the first posi-
tive eigenvalues of the Laplacian which satisfy the condition
inTheorem 8 [13].

5. Physical Interpretation

In quantum mechanics, eigenvalue is the dynamics of macro
possible values.Thewave function is superposition of a num-
ber of eigenstates. Different eigenstate is corresponding to the
specific eigenvalue (of course there may be degenerate case;
namely, the same eigenvalue corresponds to different intrinsic
state). The experimental measurement of the mechanical
quantity must be one of eigenvalues, and wave function
in the measurement is the eigenstate of the corresponding
eigenvalue. The gap between different eigenvalues means
the difference between the energy levels. That is why many
researchers paymuch attention to this problem. In this paper,
we find a relatively accurate upper bound between any two
different eigenvalues.
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