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We investigate the relationship between focal surfaces and surfaces at a constant distance from the edge of regression on a surface.
We show that focal surfaces F

1
and F

2
of the surface M can be obtained by means of some special surfaces at a constant distance

from the edge of regression on the surfaceM.

1. Introduction

Surfaces at a constant distance from the edge of regression on
a surface were firstly defined by Tarakci in 2002 [1]. These
surfaces were obtained by taking a surface instead of a
curve in the study suggested by Hans Vogler in 1963. In the
mentioned study, Hans Vogler asserted notion of curve at a
constant distance from the edge of regression on a curve.
Also, Tarakci and Hacisalihoglu calculated some properties
and theorems which known for parallel surfaces for surfaces
at a constant distance from the edge of regression on a surface
[2]. Later, various authors became interested in surfaces at a
constant distance from the edge of regression on a surface and
investigated Euler theorem and Dupin indicatrix, conjugate
tangent vectors, and asymptotic directions for this surface [3]
and examined surfaces at a constant distance from the edge
of regression on a surface in 𝐸3

1
Minkowski space [4].

Another issue that we will use in this paper is the focal
surface. Focal surfaces are known in the field of line con-
gruence. Line congruence has been introduced in the field of
visualization by Hagen et al. in 1991 [5]. They can be used to
visualize the pressure and heat distribution on an airplane,
temperature, rainfall, ozone over the earth’s surface, and
so forth. Focal surfaces are also used as a surface interrogation
tool to analyse the “quality” of the surface before further
processing of the surface, for example, in a NC-milling oper-
ation [6]. Generalized focal surfaces are related to hedgehog

diagrams. Instead of drawing surface normals proportional
to a surface value, only the point on the surface normal
proportional to the function is drawing. The loci of all these
points are the generalized focal surface. This method was
introduced byHagen andHahmann [6, 7] and is based on the
concept of focal surface which is known from line geometry.
The focal surfaces are the loci of all focal points of special
congruence, the normal congruence. In later years, focal
surfaces have been studied by various authors in different
fields.

In this paper, we have discovered a new method to con-
stitute focal surfaces by means of surfaces at a constant
distance from the edge of regression on a surface. Focal
surfaces 𝐹

1
and 𝐹

2
of the surface𝑀 in 𝐸3 are associated with

surfaces at a constant distance from the edge of regression
on 𝑀 that formed along directions of 𝑍

𝑃
lying in planes

𝑆𝑝{𝜙
𝑢
, 𝑁} and 𝑆𝑝{𝜙V, 𝑁}, respectively.

2. Surfaces at a Constant Distance from
the Edge of Regression on a Surface

Definition 1. Let𝑀 and𝑀𝑓 be two surfaces in 𝐸3 Euclidean
space and let 𝑁

𝑃
be a unit normal vector and let 𝑇

𝑃
𝑀 be

tangent space at point 𝑃 of surface 𝑀 and let {𝑋
𝑃
, 𝑌
𝑃
} be

orthonormal bases of 𝑇
𝑃
𝑀. Take a unit vector 𝑍

𝑃
= 𝑑
1
𝑋
𝑃
+

Hindawi Publishing Corporation
Advances in Mathematical Physics
Volume 2015, Article ID 397126, 6 pages
http://dx.doi.org/10.1155/2015/397126



2 Advances in Mathematical Physics

𝑑
2
𝑌
𝑃
+𝑑
3
𝑁
𝑃
, where 𝑑

1
, 𝑑
2
, 𝑑
3
∈ R are constant and 𝑑2

1
+𝑑
2

2
+

𝑑
2

3
= 1. If there is a function 𝑓 defined by

𝑓 : 𝑀 → 𝑀
𝑓
, 𝑓 (𝑃) = 𝑃 + 𝑟𝑍

𝑃
, (1)

where 𝑟 ∈ R, then the surface 𝑀𝑓 is called the surface at a
constant distance from the edge of regression on the surface
𝑀.

Here, if 𝑑
1
= 𝑑
2
= 0, then𝑍

𝑃
= 𝑁
𝑃
and so𝑀 and𝑀𝑓 are

parallel surfaces. Now, we represent parametrization of sur-
faces at a constant distance from the edge of regression on𝑀.
Let (𝜙, 𝑈) be a parametrization of𝑀, so we can write that

𝜙 : 𝑈 ⊂ 𝐸
2
→ 𝑀

(𝑢, V) 𝜙 (𝑢, V) .
(2)

In case {𝜙
𝑢
, 𝜙V} is a basis of 𝑇

𝑃
𝑀, then we can write that

𝑍
𝑃
= 𝑑
1
𝜙
𝑢
+𝑑
2
𝜙V+𝑑3𝑁𝑃, where𝜙𝑢, 𝜙V are, respectively, partial

derivatives of 𝜙 according to 𝑢 and V. Since 𝑀𝑓 = {𝑓(𝑃) :

𝑓(𝑃) = 𝑃 + 𝑟𝑍
𝑃
}, a parametric representation of𝑀𝑓 is

𝜓 (𝑢, V) = 𝜙 (𝑢, V) + 𝑟𝑍 (𝑢, V) . (3)

Thus, it is obtained that

𝑀
𝑓
= {𝜓 (𝑢, V) : 𝜓 (𝑢, V)

= 𝜙 (𝑢, V)

+ 𝑟 (𝑑
1
𝜙
𝑢
(𝑢, V)

+ 𝑑
2
𝜙V (𝑢, V)

+ 𝑑
3
𝑁(𝑢, V))}

(4)

and if we get 𝑟𝑑
1
= 𝜆
1
, 𝑟𝑑
2
= 𝜆
2
, 𝑟𝑑
3
= 𝜆
3
, then we have

𝑀
𝑓
= {𝜓 (𝑢, V) : 𝜓 (𝑢, V)

= 𝜙 (𝑢, V) + 𝜆
1
𝜙
𝑢
(𝑢, V)

+ 𝜆
2
𝜙V (𝑢, V) + 𝜆3𝑁(𝑢, V) ,

𝜆
2

1
+ 𝜆
2

2
+ 𝜆
2

3
= 𝑟
2
} .

(5)

Calculation of 𝜓
𝑢
and 𝜓V gives us that

𝜓
𝑢
= 𝜙
𝑢
+ 𝜆
1
𝜙
𝑢𝑢
+ 𝜆
2
𝜙V𝑢 + 𝜆3𝑁𝑢,

𝜓V = 𝜙V + 𝜆1𝜙𝑢V + 𝜆2𝜙VV + 𝜆3𝑁V.
(6)

Here, 𝜙
𝑢𝑢
, 𝜙V𝑢, 𝜙𝑢V, 𝜙VV, 𝑁𝑢, 𝑁V are calculated as in [1]. We

choose curvature lines instead of parameter curves of𝑀 and
let 𝑢 and V be arc length of these curvature lines. Thus, the
following equations are obtained:

𝜙
𝑢𝑢
= − 𝜅

1
𝑁,

𝜙VV = − 𝜅
2
𝑁,

𝜙
𝑢V = 𝜙V𝑢 = 0,

𝑁
𝑢
= 𝜅
1
𝜙
𝑢
,

𝑁V = 𝜅
2
𝜙V.

(7)

From (6) and (7), we find

𝜓
𝑢
= (1 + 𝜆

3
𝜅
1
) 𝜙
𝑢
− 𝜆
1
𝜅
1
𝑁,

𝜓V = (1 + 𝜆
3
𝜅
2
) 𝜙V − 𝜆2𝜅2𝑁

(8)

and {𝜓
𝑢
, 𝜓V} is a basis of 𝜒(𝑀𝑓). If we denote by 𝑁𝑓 unit

normal vector of𝑀𝑓, then𝑁𝑓 is

𝑁
𝑓
=

[𝜓
𝑢
, 𝜓V]

[𝜓𝑢, 𝜓V]


= (𝜆
1
𝜅
1
(1 + 𝜆

3
𝜅
2
) 𝜙
𝑢
+ 𝜆
2
𝜅
2
(1 + 𝜆

3
𝜅
1
) 𝜙V

+ (1 + 𝜆
3
𝜅
1
) (1 + 𝜆

3
𝜅
2
)𝑁)

× (𝜆
2

1
𝜅
2

1
(1 + 𝜆

3
𝜅
2
)
2

+ 𝜆
2

2
𝜅
2

2
(1 + 𝜆

3
𝜅
1
)
2

+ (1 + 𝜆
3
𝜅
1
)
2

(1 + 𝜆
3
𝜅
2
)
2

)
−1/2

,

(9)

where 𝜅
1
, 𝜅
2
are principal curvatures of the surface𝑀. If

𝐴 = (𝜆
2

1
𝜅
2

1
(1 + 𝜆

3
𝜅
2
)
2

+ 𝜆
2

2
𝜅
2

2
(1 + 𝜆

3
𝜅
1
)
2

+(1 + 𝜆
3
𝜅
1
)
2

(1 + 𝜆
3
𝜅
2
)
2

)
1/2

(10)

we can write

𝑁
𝑓
=
𝜆
1
𝜅
1
(1 + 𝜆

3
𝜅
2
)

𝐴
𝜙
𝑢
+
𝜆
2
𝜅
2
(1 + 𝜆

3
𝜅
1
)

𝐴
𝜙V

+
(1 + 𝜆

3
𝜅
1
) (1 + 𝜆

3
𝜅
2
)

𝐴
𝑁.

(11)

Here, in case of 𝜅
1
= 𝜅
2
and 𝜆

3
= −1/𝜅

1
= −1/𝜅

2
since𝜓

𝑢
and

𝜓V are not linearly independent,𝑀
𝑓 is not a regular surface.

We will not consider this case [1].

3. Focal Surfaces

The differential geometry of smooth three-dimensional sur-
faces can be interpreted from one of two perspectives: in
terms of oriented frames located on the surface or in terms
of a pair of associated focal surfaces. These focal surfaces
are swept by the loci of the principal curvatures radii.
Considering fundamental facts from differential geometry, it
is obvious that the centers of curvature of the normal section
curves at a particular point on the surface fill out a certain
segment of the normal vector at this point.The extremities of
these segments are the centers of curvature of two principal
directions. These two points are called the focal points of
this particular normal [8]. This terminology is justified by
the fact that a line congruence can be considered as the
set of lines touching two surfaces, the focal surfaces of the
line congruence. The points of contact between a line of the
congruence and the two focal surfaces are the focal points
of this line. It turns out that the focal points of a normal
congruence are the centers of curvature of the two principal
directions [9, 10].
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We represent surfaces parametrically as vector-valued
functions 𝜙(𝑢, V). Given a set of unit vectors 𝑍(𝑢, V), a line
congruence is defined:

𝐶 (𝑢, V) = 𝜙 (𝑢, V) + 𝐷 (𝑢, V) 𝑍 (𝑢, V) , (12)

where 𝐷(𝑢, V) is called the signed distance between 𝜙(𝑢, V)
and 𝑍(𝑢, V) [8]. Let 𝑁(𝑢, V) be unit normal vector of the
surface. If 𝑍(𝑢, V) = 𝑁(𝑢, V), then 𝐶 = 𝐶

𝑁
is a normal

congruence. A focal surface is a special normal congruence.
The parametric representation of the focal surfaces of 𝐶

𝑁
is

given by

𝐹
𝑖
(𝑢, V) = 𝜙 (𝑢, V) −

1

𝜅
𝑖
(𝑢, V)

𝑁 (𝑢, V) ; 𝑖 = 1, 2, (13)

where 𝜅
1
, 𝜅
2
are the principal curvatures. Except for parabolic

points and planar points where one or both principal curva-
tures are zero, each point on the base surface is associated
with two focal points. Thus, generally, a smooth base surface
has two focal surface sheets, 𝐹

1
(𝑢, V) and 𝐹

2
(𝑢, V) [11].

The generalization of this classical concept leads to the
generalized focal surfaces:

𝐹 (𝑢, V) = 𝜙 (𝑢, V) + 𝑎𝑓 (𝜅
1
, 𝜅
2
)𝑁 (𝑢, V) with 𝑎 ∈ R, (14)

where the scalar function 𝑓 depends on the principal curva-
tures 𝜅

1
= 𝜅
1
(𝑢, V) and 𝜅

2
= 𝜅
2
(𝑢, V) of the surface𝑀.The real

number 𝑎 is used as a scale factor. If the curvatures are very
small you need a very large number 𝑎 to distinguish the two
surfaces 𝜙(𝑢, V) and 𝐹(𝑢, V) on the screen. Variation of this
factor can also improve the visibility of several properties of
the focal surface; for example, one can get intersections
clearer [6].

4. The Relationship between Focal Surfaces
and Surfaces at a Constant Distance from
the Edge of Regression on a Surface

Theorem 2. Let surface 𝑀 be given by parametrical 𝜙(𝑢, V).
One considers all surfaces at a constant distance from the edge
of regression on 𝑀 that formed along directions of 𝑍

𝑃
lying

in plane 𝑆𝑝{𝜙
𝑢
, 𝑁}. Normals of these surfaces at points 𝑓(𝑃)

corresponding to point 𝑃 ∈ 𝑀 generate a spatial family of line
of which top is center of first principal curvature 𝐶

1
= 𝑃−

(1/𝜅
1
(𝑃))𝑁

𝑃
at 𝑃.

Proof. Surfaces at a constant distance from the edge of reg-
ression on 𝑀 that formed along directions of 𝑍

𝑃
lying in

plane 𝑆𝑝{𝜙
𝑢
, 𝑁} are defined by

𝑓
𝑖
: 𝑀 → 𝑀

𝑓𝑖 , 𝑖 = 1, 2, . . . ,

𝑓
𝑖
(𝑃) = 𝑃 + 𝜆

1𝑖
𝜙
𝑢
(𝑃) + 𝜆

3𝑖
𝑁
𝑃
.

(15)

These surfaces and their unit normal vectors are, respectively,
denoted by𝑀𝑓𝑖 and 𝑁𝑓𝑖 . We will demonstrate that intersec-
tion point of lines which pass from the point 𝑓

𝑖
(𝑃) and are in

direction𝑁𝑓𝑖
𝑓𝑖(𝑃)

is 𝐶
1
= 𝑃 − (1/𝜅

1
(𝑃))𝑁

𝑃
.

The normal vector of the surface𝑀𝑓𝑖 at the point 𝑓
𝑖
(𝑃) is

𝑁
𝑓𝑖 = 𝜆

1𝑖
𝜅
1
(𝑃) 𝜙
𝑢
(𝑃) + (1 + 𝜆

3𝑖
𝜅
1
(𝑃))𝑁

𝑃
. (16)

Here, it is clear that 𝑁𝑓𝑖 is in plane 𝑆𝑝{𝜙
𝑢
, 𝑁}. Suppose that

line passing from the point𝑓
𝑖
(𝑃) and being in direction𝑁𝑓𝑖

𝑓𝑖(𝑃)

is 𝑑
𝑖
and a representative point of 𝑑

𝑖
is𝑄 = (𝑥, 𝑦) = 𝑥𝜙

𝑢
(𝑃) +

𝑦𝑁
𝑃
; then, the equation of 𝑑

𝑖
is

𝑑
𝑖
⋅ ⋅ ⋅

→
𝑃𝑄 =

→
𝑃𝑓
𝑖
(𝑃) + 𝜇

1
𝑁
𝑓𝑖

𝑓𝑖(𝑃)
. (17)

Besides, suppose that line passing from the point 𝑓
𝑗
(𝑃) and

being in direction𝑁𝑓𝑗
𝑓𝑗(𝑃)

is 𝑑
𝑗
and a representative point of 𝑑

𝑗

is 𝑅 = (𝑥, 𝑦); then, equation of 𝑑
𝑗
is

𝑑
𝑗
⋅ ⋅ ⋅

→
𝑃𝑅 =

→
𝑃𝑓
𝑗
(𝑃) + 𝜇

2
𝑁
𝑓𝑗

𝑓𝑗(𝑃)
, 𝑗 = 1, 2, . . . . (18)

We find intersection point of these lines. Since it is studied
in plane of vectors {𝜙

𝑢
(𝑃),𝑁

𝑃
}, the point 𝑃 can be taken as

beginning point. If we arrange the lines 𝑑
𝑖
and 𝑑

𝑗
, then we

find

𝑑
𝑖
⋅ ⋅ ⋅ (𝑥, 𝑦) = (𝜆

1𝑖
, 𝜆
3𝑖
) + 𝜇
1
(𝜆
1𝑖
𝜅
1
, 1 + 𝜆

3𝑖
𝜅
1
) ,

𝑑
𝑖
⋅ ⋅ ⋅ 𝑦 =

1 + 𝜆
3𝑖
𝜅
1

𝜆
1𝑖
𝜅
1

𝑥 −
1

𝜅
1

,

𝑑
𝑗
⋅ ⋅ ⋅ (𝑥, 𝑦) = (𝜆

1𝑗
, 𝜆
3𝑗
) + 𝜇
2
(𝜆
1𝑗
𝜅
1
, 1 + 𝜆

3𝑗
𝜅
1
) ,

𝑑
𝑗
⋅ ⋅ ⋅ 𝑦 =

1 + 𝜆
3𝑗
𝜅
1

𝜆
1𝑗
𝜅
1

𝑥 −
1

𝜅
1

.

(19)

From here, it is clear that intersection point of 𝑑
𝑖
and 𝑑

𝑗
is

(𝑥, 𝑦) = (0, −1/𝜅
1
). So, intersection point of the lines𝑑

𝑖
and𝑑
𝑗

is the point𝐶
1
= 𝑃−(1/𝜅

1
(𝑃))𝑁

𝑃
in plane 𝑆𝑝{𝜙

𝑢
(𝑃),𝑁

𝑃
}.

Corollary 3. Directions of normals of all surfaces at a constant
distance from the edge of regression on 𝑀 that formed along
directions of 𝑍

𝑃
lying in plane 𝑆𝑝{𝜙

𝑢
, 𝑁} intersect at a single

point. This point 𝐶
1
= 𝑃 − (1/𝜅

1
(𝑃))𝑁

𝑃
which is referred in

Theorem 2 is on the focal surface 𝐹
1
.

We know that

𝐹
1
(𝑃) = 𝑃 −

1

𝜅
1

𝑁
𝑃 (20)

from definition of focal surfaces. Moreover, we can see easily
the following equations from Figure 1:

𝐹
1
(𝑃) = 𝑓

𝑖
(𝑃) − 𝜇

𝑖
𝑁
𝑓𝑖

𝑓𝑖(𝑃)
(21)

or

𝐹
1
(𝑃) = 𝑓

𝑗
(𝑃) − 𝜇

𝑗
𝑁
𝑓𝑗

𝑓𝑗(𝑃)
. (22)

These equations show us that the focal surface 𝐹
1
of the sur-

face𝑀 can be stated by surfaces at a constant distance from
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the edge of regression on𝑀 that formed along directions of
𝑍
𝑃
lying in plane 𝑆𝑝{𝜙

𝑢
, 𝑁}. If 𝜇

𝑖
= 1/𝜅

𝑓𝑖

1
or 𝜇
𝑗
= 1/𝜅

𝑓𝑗

1
, then

the focal surfaces 𝐹
1
of surfaces𝑀, 𝑀

𝑓𝑖 , and𝑀𝑓𝑗 will be the
same. This case has been expressed in following theorem.

Theorem 4. Focal surfaces 𝐹
1
of the surface𝑀 and surfaces at

a constant distance from the edge of regression on𝑀 that for-
med along directions of 𝑍

𝑃
lying in plane 𝑆𝑝{𝜙

𝑢
, 𝑁} are the

same if and only if first principal curvature 𝜅
1
of the surface

𝑀 is constant.

Proof. Suppose that focal surfaces 𝐹
1
of surfaces𝑀 and𝑀𝑓

formed along directions of 𝑍
𝑃

lying in plane 𝑆𝑝{𝜙
𝑢
, 𝑁}

intersect; then, 𝜇
𝑖
mentioned in (21) must be

𝜇
𝑖
=

1

𝜅
𝑓𝑖

1

. (23)

First principal curvature 𝜅𝑓
1
of𝑀𝑓 formed along directions of

𝑍
𝑃
lying in plane 𝑆𝑝{𝜙

𝑢
, 𝑁}, that is, for 𝜆

2
= 0, is calculated

by Tarakci as [1]

𝜅
𝑓

1
=

1

√𝜆
2

1
𝜅
2

1
+ (1 + 𝜆

3
𝜅
1
)
2

(
𝜆
1
(𝜕𝜅
1
/𝜕𝑢)

𝜆
2

1
𝜅
2

1
+ (1 + 𝜆

3
𝜅
1
)
2
+ 𝜅
1
) .

(24)

Besides, from Figure 1, since 𝜇
𝑖
= |

→
𝐶
1
𝑓
𝑖
(𝑃)| is distance bet-

ween points of 𝐶
1
= (0, −1/𝜅

1
) and 𝑓

𝑖
(𝑃) = (𝜆

1
, 𝜆
3
) lying in

plane 𝑆𝑝{𝜙
𝑢
, 𝑁}, we can write

𝜇
𝑖
=



→
𝐶
1
𝑓
𝑖
(𝑃)


= √𝜆
2

1
+ (𝜆
3
+
1

𝜅
1

)

2

. (25)

If we substitute (24) and (25) in (23) and make necessary
arrangements, we obtain

𝜕𝜅
1

𝜕𝑢
= 0. (26)

Thus, we have 𝜅
1
= const. The converse statement is trivial.

Hence, our theorem is proved.

Theorem 5. Let surface 𝑀 be given by parametrical 𝜙(𝑢, V).
We consider all surfaces at a constant distance from the edge
of regression on𝑀 that formed along directions of 𝑍

𝑃
lying in

plane 𝑆𝑝{𝜙V, 𝑁}. Normals of these surfaces at points 𝑓(𝑃)
corresponding to point 𝑃 ∈ 𝑀 generate a spatial family of line
of which top is center of second principal curvature 𝐶

2
= 𝑃−

(1/𝜅
2
(𝑃))𝑁

𝑃
at 𝑃.

Proof. Surfaces at a constant distance from the edge of regre-
ssion on𝑀 that formed along directions of 𝑍

𝑃
lying in plane

𝑆𝑝{𝜙V, 𝑁} are defined by

𝑓
𝑖
: 𝑀 → 𝑀

𝑓𝑖 , 𝑖 = 1, 2, . . . ,

𝑓
𝑖
(𝑃) = 𝑃 + 𝜆

2𝑖
𝜙V (𝑃) + 𝜆3𝑖𝑁𝑃.

(27)

M

F1

dj

di

C1 = F1(P)

P 𝜙u

NP
ZP𝑖

ZP𝑗

fi(P)

fj(P)

Nf𝑖

Nf𝑗Mf𝑖

Mf𝑗

1

𝜅1

Figure 1: Directions of normals of all surfaces at a constant distance
from the edge of regression on𝑀 that formed along directions of𝑍

𝑃

lying in plane 𝑆𝑝{𝜙
𝑢
, 𝑁} and their intersection point (focal point).

These surfaces and their unit normal vectors are, respectively,
denoted by𝑀𝑓𝑖 and 𝑁𝑓𝑖 . We will demonstrate that intersec-
tion point of lines which pass from the point 𝑓

𝑖
(𝑃) and are in

direction𝑁𝑓𝑖
𝑓𝑖(𝑃)

is 𝐶
2
= 𝑃 − (1/𝜅

2
(𝑃))𝑁

𝑃
.

The normal vector of the surface𝑀𝑓𝑖 at the point 𝑓
𝑖
(𝑃) is

𝑁
𝑓𝑖 = 𝜆

2𝑖
𝜅
2
(𝑃) 𝜙V (𝑃) + (1 + 𝜆3𝑖𝜅2 (𝑃))𝑁𝑃. (28)

Here, it is clear that 𝑁𝑓𝑖 is in plane 𝑆𝑝{𝜙V, 𝑁}. Suppose that
line passing from the point𝑓

𝑖
(𝑃) and being in direction𝑁𝑓𝑖

𝑓𝑖(𝑃)

is 𝑑
𝑖
and a representative point of 𝑑

𝑖
is 𝑄 = (𝑥, 𝑦) = 𝑥𝜙V(𝑃) +

𝑦𝑁
𝑃
; then, equation of 𝑑

𝑖
is

𝑑
𝑖
⋅ ⋅ ⋅

→
𝑃𝑄 =

→
𝑃𝑓
𝑖
(𝑃) + 𝜇

1
𝑁
𝑓𝑖

𝑓𝑖(𝑃)
. (29)

Besides, suppose that line passing from the point 𝑓
𝑗
(𝑃) of the

surface𝑀𝑓𝑗 and being in direction𝑁𝑓𝑗
𝑓𝑗(𝑃)

is𝑑
𝑗
and a represen-

tative point of 𝑑
𝑗
is 𝑅 = (𝑥, 𝑦); then, equation of 𝑑

𝑗
is

𝑑
𝑗
⋅ ⋅ ⋅

→
𝑃𝑅 =

→
𝑃𝑓
𝑗
(𝑃) + 𝜇

2
𝑁
𝑓𝑗

𝑓𝑗(𝑃)
, 𝑗 = 1, 2, . . . . (30)

We find intersection point of these two lines. Since it is stud-
ied in plane of vectors {𝜙V(𝑃),𝑁𝑃}, the point 𝑃 can be taken
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as beginning point. If we arrange the lines 𝑑
𝑖
and 𝑑

𝑗
, then we

find

𝑑
𝑖
⋅ ⋅ ⋅ (𝑥, 𝑦) = (𝜆

2𝑖
, 𝜆
3𝑖
) + 𝜇
1
(𝜆
2𝑖
𝜅
1
, 1 + 𝜆

3𝑖
𝜅
2
) ,

𝑑
𝑖
⋅ ⋅ ⋅ 𝑦 =

1 + 𝜆
3𝑖
𝜅
2

𝜆
2𝑖
𝜅
2

𝑥 −
1

𝜅
2

,

𝑑
𝑗
⋅ ⋅ ⋅ (𝑥, 𝑦) = (𝜆

2𝑗
, 𝜆
3𝑗
) + 𝜇
2
(𝜆
2𝑗
𝜅
2
, 1 + 𝜆

3𝑗
𝜅
2
) ,

𝑑
𝑗
⋅ ⋅ ⋅ 𝑦 =

1 + 𝜆
3𝑗
𝜅
2

𝜆
2𝑗
𝜅
2

𝑥 −
1

𝜅
2

.

(31)

From here, it is clear that intersection point of 𝑑
𝑖
and 𝑑

𝑗
is

(𝑥, 𝑦) = (0, −1/𝜅
2
). So, intersection point of the lines 𝑑

𝑖
and

𝑑
𝑗
is the point 𝐶

2
= 𝑃 − (1/𝜅

2
(𝑃))𝑁

𝑃
in plane 𝑆𝑝{𝜙V(𝑃),𝑁𝑃}.

Corollary 6. Thepoint𝐶
2
= 𝑃−(1/𝜅

2
(𝑃))𝑁

𝑃
which is referred

in Theorem 5 is on the focal surface 𝐹
2
.

Similar to Figure 1, we can write equations

𝐹
2
(𝑃) = 𝑓

𝑖
(𝑃) − 𝜇

𝑖
𝑁
𝑓𝑖

𝑓𝑖(𝑃)
(32)

or

𝐹
2
(𝑃) = 𝑓

𝑗
(𝑃) − 𝜇

𝑗
𝑁
𝑓𝑗

𝑓𝑗(𝑃)
. (33)

These equations show us that the focal surface 𝐹
2
of the sur-

face𝑀 can be stated by surfaces at a constant distance from
the edge of regression on𝑀 that formed along directions of
𝑍
𝑃
lying in plane 𝑆𝑝{𝜙V, 𝑁}. If 𝜇𝑖 = 1/𝜅

𝑓𝑖

2
or 𝜇
𝑗
= 1/𝜅

𝑓𝑗

2
, then

the focal surfaces 𝐹
2
of surfaces𝑀, 𝑀

𝑓𝑖 , and𝑀𝑓𝑗 will be the
same. This case has been expressed in following theorem.

Theorem 7. Focal surfaces 𝐹
2
of the surface𝑀 and surfaces at

a constant distance from the edge of regression on𝑀 that for-
med along directions of 𝑍

𝑃
lying in plane 𝑆𝑝{𝜙V, 𝑁} are the

same if and only if second principal curvature 𝜅
2
of the surface

𝑀 is constant.

Proof. Suppose that focal surfaces 𝐹
2
of surfaces𝑀 and𝑀𝑓

formed along directions of 𝑍
𝑃

lying in plane 𝑆𝑝{𝜙V, 𝑁}

intersect; then, 𝜇
𝑖
mentioned in (32) must be

𝜇
𝑖
=

1

𝜅
𝑓𝑖

2

. (34)

Second principal curvature 𝜅𝑓
2
of𝑀𝑓 formed along directions

of𝑍
𝑃
lying in plane 𝑆𝑝{𝜙V, 𝑁}, that is, for 𝜆1 = 0, is calculated

by Tarakci as [1]

𝜅
𝑓

2
=

1

√𝜆
2

2
𝜅
2

2
+ (1 + 𝜆

3
𝜅
2
)
2

(
𝜆
2
(𝜕𝜅
2
/𝜕V)

𝜆
2

2
𝜅
2

2
+ (1 + 𝜆

3
𝜅
2
)
2
+ 𝜅
2
) .

(35)

Besides, similar to Figure 1, since𝜇
𝑖
= |
→
𝐶
2
𝑓
𝑖
(𝑃)| is the distance

between points of 𝐶
2
= (0, −1/𝜅

2
) and 𝑓

𝑖
(𝑃) = (𝜆

2
, 𝜆
3
) lying

in plane 𝑆𝑝{𝜙V, 𝑁}, we can write

𝜇
𝑖
=



→
𝐶
2
𝑓
𝑖
(𝑃)


= √𝜆
2

2
+ (𝜆
3
+
1

𝜅
2

)

2

. (36)

If we substitute (35) and (36) in (34) and make necessary
arrangements, we obtain

𝜕𝜅
2

𝜕V
= 0. (37)

Thus, we have 𝜅
2
= const. The converse statement is trivial.

Hence, our theorem is proved.

Points on the surface𝑀 can have the same curvature in all
directions. These points correspond to the umbilics, around
which local surface is sphere-like. Since normal rays of umbi-
lic points pass through a single point, the focal mesh formed
by vertices around an umbilic point can shrink into a point
[11].
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[3] N. Aktan, A. Görgülü, E. Özüsaglam, and C. Ekici, “Conjugate
tangent vectors and asymptotic directions for surfaces at a
constant distance from edge of regression on a surface,” Inter-
national Journal of Pure and Applied Mathematics, vol. 33, no. 1,
pp. 127–133, 2006.
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