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This paper is aimed at constructing analytical solution for both linear and nonlinear time-fractional Boussinesq equations by
an iterative method. By the iterative process, we can obtain the analytic solution of the fourth-order time-fractional Boussinesq
equation in R, R2, and R𝑛, the sixth-order time-fractional Boussinesq equation, and the 2𝑛th-order time-fractional Boussinesq
equation in R. Through these examples, it shows that the method is simple and effective.

1. Introduction

Many phenomena in the physical, chemical, and biological
sciences as well as in technologies are governed by differential
equations.The idea of derivatives of noninteger order initially
appeared in a letter from Leibniz to L’Hospital in 1695 about
the notation 𝑑𝑛𝑦/𝑑𝑥𝑛. L’Hospital posed a question to Leibniz:
“what would the result be if 𝑛 = 1/2?” Leibniz replied [1] “it
follows that 𝑑1/2𝑥will be equal to 𝑥√𝑑𝑥 : 𝑥. This is an appar-
ent paradox, fromwhich, one day useful consequences will be
drawn.” In these words, fractional calculus was born. And so
most authors on this topic will cite a particular date (Septem-
ber 30, 1695) as the birthday of so called “fractional calculus”
[2]. However, at that time, there are few specificmodels based
on this kind of derivative, so the study of fractional calculus
attracts little attention.

Recently, fractional differential equations have been the
focus ofmany studies due to their frequent appearance in var-
ious applications in physics, biology, engineering, signal pro-
cessing, systems identification, control theory, finance, and
fractional dynamics, such as chaotic dynamics [3], mechan-
ics of non-Hamiltonian systems [4], anomalous diffusion
and transport theory [5], astrophysics [6], physical kinetics
[7], plasma physics [8, 9], mechanics of fractional media
[10], quantum mechanics [11], theory of long range interac-
tion [12].

The Boussinesq equations arise in hydrodynamics to
describe propagation of waves in nonlinear and dissipative
media [13, 14]. They are suitable for problems in the per-
colation of water in porous subsurface strata and widely
used in coastal and ocean engineering. Also, Boussinesq
equations are the basis of several models used to describe
unconfined groundwater flow and subsurface drainage prob-
lems. Recently, fractional differential equations have attracted
many researchers’ interest because of their ability to model
particle transport in heterogeneous media and complex
phenomena.The fractional Boussinesq equations are suitable
for studying the water propagation through heterogeneous
porous media. A fractional Boussinesq equation is obtained
assuming power law changes of flux in a control volume and
using a fractional Taylor series [15].The fractional differential
equations have been solved using several methods such
as Laplace transformation method, Fourier transformation
method, and operational method [16, 17]. In [18], El-Wakil
and Abulwafa used the fractional variational principles and
obtained solutions (which are described as periodic, soliton,
and explosive waves) of the fractional Boussinesq equation.
In [19], based on the finite volume and finite element
methods, Zhuang et al. gave two novel numerical methods
with a nonlocal operator (using nodal basis functions) for the
space-fractional Boussinesq equation. In this paper, we will
give a new iterative method to obtain the analytic solution of
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the fourth-, sixth- and 2𝑛th-order fractional Boussinesq
equation.

At first, we list some definitions that will be used in the
theory of fractional differential equations [2].

Definition 1. The Gamma function is as follows:

Γ (𝑥) := ∫

∞

0

𝑡
𝑥−1
𝑒
−𝑡
𝑑𝑡, (Re (𝑥) > 0) . (1)

Definition 2. The Beta function is as follows:

𝐵 (𝑝, 𝑞) := ∫

1

0

𝑡
𝑝−1

(1 − 𝑡)
𝑞−1
𝑑𝑡 =

Γ (𝑝) Γ (𝑞)

Γ (𝑝 + 𝑞)
,

(Re (𝑝) > 0, Re (𝑞) > 0) .

(2)

Definition 3. TheMittag-Leffler function is as follows:

𝐸
𝛼
(𝑥) :=

∞

∑

𝑘=0

𝑥
𝑘

Γ (𝛼𝑘 + 1)
, (𝛼 > 0) . (3)

Definition 4. The Riemann-Liouville fractional integral of
order 𝛼 (𝛼 > 0) of a function 𝑢(𝑥, 𝑡) is denoted by 𝐼𝛼

𝑡
𝑢(𝑥, 𝑡)

and defined as

𝐼
𝛼

𝑡
𝑢 (𝑥, 𝑡) :=

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑢 (𝑥, 𝜏) 𝑑𝜏, 𝑡 > 0. (4)

Definition 5. The Caputo partial fractional derivative of a
function 𝑢(𝑥, 𝑡) is denoted by𝐷𝛼

𝑡
𝑢(𝑥, 𝑡) and defined as

𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡)

:=

{{{

{{{

{

𝜕
𝑚

𝜕𝑡
𝑚
𝑢 (𝑥, 𝑡) , 𝛼 = 𝑚, 𝑚 ∈ N;

𝐼
𝑚−𝛼

𝑡

𝜕
𝑚

𝜕𝑡
𝑚
𝑢 (𝑥, 𝑡) , 𝑚 − 1 < 𝛼 < 𝑚, 𝑚 ∈ N.

(5)

Using Definitions 4 and 5, as in [20], we derive

𝐼
𝛼

𝑡
𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) −

𝑚−1

∑

𝑘=0

(
𝜕
𝑘
𝑢 (𝑥, 𝑡)

𝜕𝑡
𝑘

|
𝑡=0
)
𝑡
𝑘

𝑘!
,

𝑥 ∈ R
𝑛
, 𝑡 > 0,

(6)

where𝑚 − 1 < 𝛼 ⩽ 𝑚,𝑚 ∈ N.

Lemma 6. According to Definition 4, one has

𝐼
𝛼

𝑡
𝑡
𝛽
=

Γ (𝛽 + 1)

Γ (𝛼 + 𝛽 + 1)
𝑡
𝛼+𝛽
. (7)

Proof. Consider

𝐼
𝛼

𝑡
𝑡
𝛽
=

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝜏
𝛽
𝑑𝜏

=
1

Γ (𝛼)
∫

𝑡

0

(1 − (
𝜏

𝑡
))

𝛼−1

(
𝜏

𝑡
)

(𝛽+1)−1

𝑑 (
𝜏

𝑡
) 𝑡
𝛼+𝛽

=
1

Γ (𝛼)
∫

1

0

𝑥
𝛼−1

(1 − 𝑥)
(𝛽+1)−1

𝑑𝑥𝑡
𝛼+𝛽

=
1

Γ (𝛼)
𝐵 (𝛼, 𝛽 + 1) 𝑡

𝛼+𝛽

=
1

Γ (𝛼)

Γ (𝛼) Γ (𝛽 + 1)

Γ (𝛼 + 𝛽 + 1)
𝑡
𝛼+𝛽

=
Γ (𝛽 + 1)

Γ (𝛼 + 𝛽 + 1)
𝑡
𝛼+𝛽
.

(8)

Wewill give an iterativemethod for the general functional
differential equation [21]. Using this iterative process, we can
construct the solution of the fractional differential equation.

Theorem 7. Consider the functional equation

𝑢 (𝑥, 𝑡) = 𝑓 (𝑥, 𝑡) + 𝐿 (𝑢 (𝑥, 𝑡)) + 𝑁 (𝑢 (𝑥, 𝑡)) , (9)

where 𝑓(𝑥, 𝑡) is a known function, (𝑥, 𝑡) ∈ 𝐷 = {(𝑥, 𝑡) : 𝑥 ∈

R𝑛, 𝑛 ∈ N, 𝑡 ∈ (0, +∞)}, and 𝐿 and𝑁 are linear and nonlinear
operators from a Banach space 𝐵 to itself. When 𝑢(𝑥, 𝑡) is ana-
lytical about 𝑡, the solution of the functional equation (9) can be
written into the series form:

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=0

𝑢
𝑛
(𝑥, 𝑡) = 𝑢

0
+ 𝑢
1
+ 𝑢
2
+ ⋅ ⋅ ⋅ , (10)

where

𝑢
0
= 𝑓,

𝑢
1
= 𝐿 (𝑢

0
) + 𝑁 (𝑢

0
) ,

𝑢
𝑚+1

= 𝐿 (𝑢
𝑚
) + (𝑁(

𝑚

∑

𝑛=0

𝑢
𝑛
) − 𝑁(

𝑚−1

∑

𝑛=0

𝑢
𝑛
)) ,

(𝑚 = 1, 2 ⋅ ⋅ ⋅ ) .

(11)

If the operators 𝐿 and 𝑁 are contractive, then the series
∑
∞

𝑛=0
𝑢
𝑛
(𝑥, 𝑡) converges absolutely and uniformly.

Proof. Since 𝑢(𝑥, 𝑡) = ∑∞
𝑛=0
𝑢
𝑛
(𝑥, 𝑡) = 𝑢

0
+ 𝑢
1
+ 𝑢
2
+ ⋅ ⋅ ⋅ and

operator𝑁 is a nonlinear operator,𝑁 can be decomposed as
follows:

𝑁(𝑢 (𝑥, 𝑡)) = 𝑁(

∞

∑

𝑛=0

𝑢
𝑛
(𝑥, 𝑡))

= 𝑁 (𝑢
0
)

+

∞

∑

𝑛=1

(𝑁(

𝑛

∑

𝑗=0

𝑢
𝑗
) −𝑁(

𝑛−1

∑

𝑗=0

𝑢
𝑗
)) .

(12)
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For the linear operator 𝐿, it can also be written into the form

𝐿 (𝑢 (𝑥, 𝑡)) = 𝐿(

∞

∑

𝑛=0

𝑢
𝑛
(𝑥, 𝑡))

= 𝐿 (𝑢
0
)

+

∞

∑

𝑛=1

(𝑁(

𝑛

∑

𝑗=0

𝑢
𝑗
) −𝑁(

𝑛−1

∑

𝑗=0

𝑢
𝑗
)) .

(13)

Set the operator

𝑀(𝑢 (𝑥, 𝑡)) := 𝐿 (𝑢 (𝑥, 𝑡)) + 𝑁 (𝑢 (𝑥, 𝑡)) . (14)

According to (12), (13), and (14), we have

𝑀(𝑢) = 𝑀(𝑢
0
)

+

∞

∑

𝑛=1

(𝑀(

𝑛

∑

𝑗=0

𝑢
𝑗
) −𝑀(

𝑛−1

∑

𝑗=0

𝑢
𝑗
)) .

(15)

According to (11), (14), and (15), we can get

𝑢
0
= 𝑓,

𝑢
1
= 𝑀(𝑢

0
) ,

𝑢
𝑚+1

= 𝑀(

𝑚

∑

𝑛=0

𝑢
𝑛
) −𝑀(

𝑚−1

∑

𝑛=0

𝑢
𝑛
) , (𝑚 = 1, 2 ⋅ ⋅ ⋅ ) .

(16)

Since operators𝐿 and𝑁 are contractive,𝑀 is also contractive;
that is, there exists a constant 0 < 𝐾 < 1, such that

󵄩󵄩󵄩󵄩󵄩
𝑀 (V
𝑖
) − 𝑀(V

𝑗
)
󵄩󵄩󵄩󵄩󵄩
≤ 𝐾

󵄩󵄩󵄩󵄩󵄩
V
𝑖
− V
𝑗

󵄩󵄩󵄩󵄩󵄩
, ∀V

𝑖
, V
𝑗
∈ 𝐵, (17)

where ‖ ⋅ ‖ denotes the norm on Banach space 𝐵. Finally, let
us give the estimation of 𝑢

𝑚+1
:

󵄩󵄩󵄩󵄩𝑢𝑚+1
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑀(

𝑚

∑

𝑛=0

𝑢
𝑛
) −𝑀(

𝑚−1

∑

𝑛=0

𝑢
𝑛
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐾
󵄩󵄩󵄩󵄩𝑢𝑚

󵄩󵄩󵄩󵄩

≤ 𝐾
𝑚+1 󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩 .

(18)

Since 0 < 𝐾 < 1, the series ∑∞
𝑚=1

𝐾
𝑚+1

‖𝑢
0
‖ converges

absolutely as well as uniformly.
According to Weierstrass’ criterion, we show that the

series ∑∞
𝑖=0
𝑢
𝑖
converges absolutely as well as uniformly.

In fact, using (11) along with Theorem 7, a new iterative
method for constructing analytical solutions of the functional
equation (12) is given:

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=0

𝑢
𝑛
= 𝑢
0
+ 𝑢
1
+ 𝑢
2
+ ⋅ ⋅ ⋅ , (19)

where
𝑢
0
= 𝑓,

𝑢
1
= 𝐿 (𝑢

0
) + 𝑁 (𝑢

0
) ,

𝑢
2
= 𝐿 (𝑢

1
) + (𝑁 (𝑢

0
+ 𝑢
1
) − 𝑁 (𝑢

0
)) ,

𝑢
3
= 𝐿 (𝑢

2
) + (𝑁 (𝑢

0
+ 𝑢
1
+ 𝑢
2
) − 𝑁 (𝑢

0
+ 𝑢
1
)) ,

.

.

. ,

𝑢
𝑚+1

= 𝐿 (𝑢
𝑚
) + (𝑁 (𝑢

0
+ 𝑢
1
+ 𝑢
2
+ ⋅ ⋅ ⋅ + 𝑢

𝑚
)

− 𝑁 (𝑢
0
+ 𝑢
1
+ ⋅ ⋅ ⋅ + 𝑢

𝑚−1
)) ,

.

.

. .

(20)

According to Theorem 7, we know that the iterative process
is reasonable. In the following, we apply the iterative method
to the linear and nonlinear time-fractional Boussinesq equa-
tion.

2. Application to the Time-Fractional
Boussinesq Equations

In this section, using the iterative method, we will construct
the solution of the time-fractional Boussinesq equation.

2.1. Fourth-Order Time-Fractional Boussinesq Equation in R.
Consider the general fourth-order time-fractional Boussi-
nesq equation with one-dimensional space variable

𝐷
(𝛼)

𝑡
𝑢 (𝑥, 𝑡) = 𝛽𝐷

(4)

𝑥
𝑢 (𝑥, 𝑡) + 𝛾𝐷

(2)

𝑥
𝑢 (𝑥, 𝑡)

+ 𝜃𝐷
(2)

𝑥
𝑢
2
(𝑥, 𝑡) − 4𝜃𝑢

2
(𝑥, 𝑡) ,

(21)

with the initial conditions
𝑢 (𝑥, 0) = 𝑒

𝑥
,

𝑢
𝑡
(𝑥, 0) = 0,

𝑥 ∈ R, 𝑡 > 0,

(22)

where 1 < 𝛼 ≤ 2 describing the order of the fractional
time derivative, 𝑢(𝑥, 𝑡) is a field function, and 𝛽, 𝛾, and 𝜃 are
constant coefficients.

Applying 𝐼𝛼
𝑡
to both sides of (21), we derive

𝐼
𝛼

𝑡
𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡) = 𝛽𝐼

𝛼

𝑡
𝐷
(4)

𝑥
𝑢 (𝑥, 𝑡) + 𝛾𝐼

𝛼

𝑡
𝐷
(2)

𝑥
𝑢 (𝑥, 𝑡)

+ 𝜃𝐼
𝛼

𝑡
𝐷
(2)

𝑥
𝑢
2
(𝑥, 𝑡) − 4𝜃𝐼

𝛼

𝑡
𝑢
2
(𝑥, 𝑡) .

(23)

Denoting

𝐿 (𝑢 (𝑥, 𝑡)) = 𝛽𝐼
𝛼

𝑡
𝐷
(4)

𝑥
𝑢 (𝑥, 𝑡) + 𝛾𝐼

𝛼

𝑡
𝐷
(2)

𝑥
𝑢 (𝑥, 𝑡) ,

𝑁 (𝑢 (𝑥, 𝑡)) = 𝜃𝐼
𝛼

𝑡
𝐷
(2)

𝑥
𝑢
2
(𝑥, 𝑡) − 4𝜃𝐼

𝛼

𝑡
𝑢
2
(𝑥, 𝑡)

(24)

and using (9), we can get

𝐼
𝛼

𝑡
𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡) = 𝐿 (𝑢 (𝑥, 𝑡)) + 𝑁 (𝑢 (𝑥, 𝑡)) . (25)
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According to the iterative method (19)-(20), we obtain

𝑢
0
= 𝑒
𝑥
,

𝑢
1
= 𝑒
𝑥
(𝛽 + 𝛾) 𝑡

𝛼

Γ (𝛼 + 1)
,

𝑢
2
= 𝑒
𝑥
((𝛽 + 𝛾) 𝑡

𝛼
)
2

Γ (2𝛼 + 1)
, . . . .

(26)

Generally,

𝑢
𝑚
= 𝑒
𝑥
((𝛽 + 𝛾) 𝑡

𝛼
)
𝑚

Γ (𝑚𝛼 + 1)
. (27)

So the solution of (21) is

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=0

𝑢
𝑛
(𝑥, 𝑡) =

∞

∑

𝑛=0

𝑒
𝑥
((𝛽 + 𝛾) 𝑡

𝛼
)
𝑛

Γ (𝑛𝛼 + 1)

= 𝑒
𝑥
𝐸
𝛼
((𝛽 + 𝛾) 𝑡

𝛼
) .

(28)

Remark 8. Particularly, if 𝛼 = 2, then the fourth-order time-
fractional Boussinesq equation is the regular Boussinesq
equation. The solution is 𝑢(𝑥, 𝑡) = 𝑒𝑥𝐸

2
((𝛽 + 𝛾)𝑡

2
), which is

consistent with the solutions in [22].

Remark 9. If 𝛽 = 0, 𝛾 ̸= 0, then the fourth-order time-
fractional Boussinesq equation becomes fractional wave
equation, and the solution is 𝑢(𝑥, 𝑡) = 𝑒𝑥𝐸

𝛼
(𝛾𝑡
𝛼
).

Remark 10. If 𝜃 = 0, then the fourth-order time-fractional
Boussinesq equation becomes fractional linear beam equa-
tion, and the solution is 𝑢(𝑥, 𝑡) = 𝑒𝑥𝐸

𝛼
((𝛽 + 𝛾)𝑡

𝛼
).

2.2. Fourth-Order Time-Fractional Boussinesq Equation inR2.
Consider the fourth-order time-fractional Boussinesq equa-
tion with two-dimensional space variables

𝐷
(𝛼)

𝑡
𝑢 (x, 𝑡) = 𝛽

1
𝐷
(4)

𝑥
1

𝑢 (x, 𝑡) + 𝛽
2
𝐷
(4)

𝑥
2

𝑢 (x, 𝑡)

+ 𝛾
1
𝐷
(2)

𝑥
1

𝑢 (x, 𝑡) + 𝛾
2
𝐷
(2)

𝑥
2

𝑢 (x, 𝑡)

+ 𝜃
1
𝐷
(2)

𝑥
1

𝑢
2
(x, 𝑡) + 𝜃

2
𝐷
(2)

𝑥
2

𝑢
2
(x, 𝑡)

− 4𝜃
1
𝑢
2
(x, 𝑡) − 4𝜃

2
𝑢
2
(x, 𝑡) ,

x = (𝑥
1
, 𝑥
2
) ∈ R
2
, 𝑡 > 0,

(29)

with the initial conditions

𝑢 (𝑥
1
, 𝑥
2
, 0) = 𝑒

𝑥
1
+𝑥
2
,

𝑢
𝑡
(𝑥
1
, 𝑥
2
, 0) = 0,

(30)

where 1 < 𝛼 ≤ 2 and the coefficients 𝛽
𝑖
, 𝛾
𝑖
, and 𝜃

𝑖
∈ R,

(𝑖 = 1, 2).

Applying 𝐼𝛼
𝑡
to both sides of (29), we derive

𝐼
𝛼

𝑡
𝐷
𝛼

𝑡
𝑢 (x, 𝑡) = 𝛽

1
𝐼
𝛼

𝑡
𝐷
(4)

𝑥
1

𝑢 (x, 𝑡) + 𝛽
2
𝐼
𝛼

𝑡
𝐷
(4)

𝑥
2

𝑢 (x, 𝑡)

+ 𝛾
1
𝐼
𝛼

𝑡
𝐷
(2)

𝑥
1

𝑢 (x, 𝑡) + 𝛾
2
𝐼
𝛼

𝑡
𝐷
(2)

𝑥
2

𝑢 (x, 𝑡)

+ 𝜃
1
𝐼
𝛼

𝑡
𝐷
(2)

𝑥
1

𝑢
2
(x, 𝑡) + 𝜃

2
𝐼
𝛼

𝑡
𝐷
(2)

𝑥
2

𝑢
2
(x, 𝑡)

− 4𝜃
1
𝐼
𝛼

𝑡
𝑢
2
(x, 𝑡) − 4𝜃

2
𝐼
𝛼

𝑡
𝑢
2
(x, 𝑡) .

(31)

Now, let us denote that

𝐿 (𝑢 (x, 𝑡)) := 𝛽
1
𝐼
𝛼

𝑡
𝐷
(4)

𝑥
1

𝑢 (x, 𝑡) + 𝛽
2
𝐼
𝛼

𝑡
𝐷
(4)

𝑥
2

𝑢 (x, 𝑡)

+ 𝛾
1
𝐼
𝛼

𝑡
𝐷
(2)

𝑥
1

𝑢 (x, 𝑡)

+ 𝛾
2
𝐼
𝛼

𝑡
𝐷
(2)

𝑥
2

𝑢 (x, 𝑡) ,

𝑁 (𝑢 (x, 𝑡)) := 𝜃
1
𝐼
𝛼

𝑡
𝐷
(2)

𝑥
1

𝑢
2
(x, 𝑡) + 𝜃

2
𝐼
𝛼

𝑡
𝐷
(2)

𝑥
2

𝑢
2
(x, 𝑡)

− 4𝜃
1
𝐼
𝛼

𝑡
𝑢
2
(x, 𝑡) − 4𝜃

2
𝐼
𝛼

𝑡
𝑢
2
(x, 𝑡) .

(32)

So we can get

𝐼
𝛼

𝑡
𝐷
𝛼

𝑡
𝑢 (x, 𝑡) = 𝐿 (𝑢 (x, 𝑡)) + 𝑁 (𝑢 (x, 𝑡)) . (33)

According to the iterative method (19)-(20), we can get

𝑢
0
= 𝑒
𝑥
1
+𝑥
2
,

𝑢
1
= 𝑒
𝑥
1
+𝑥
2

(𝛽
1
+ 𝛽
2
+ 𝛾
1
+ 𝛾
2
) 𝑡
𝛼

Γ (𝛼 + 1)
,

𝑢
2
= 𝑒
𝑥
1
+𝑥
2

((𝛽
1
+ 𝛽
2
+ 𝛾
1
+ 𝛾
2
) 𝑡
𝛼
)
2

Γ (2𝛼 + 1)
, . . . .

(34)

Generally,

𝑢
𝑚
= 𝑒
𝑥
1
+𝑥
2

((𝛽
1
+ 𝛽
2
+ 𝛾
1
+ 𝛾
2
) 𝑡
𝛼
)
𝑚

Γ (𝑚𝛼 + 1)
. (35)

So the solution of (29) is

𝑢 (x, 𝑡) =
∞

∑

𝑛=0

𝑢
𝑛
(x, 𝑡)

=

∞

∑

𝑛=0

𝑒
𝑥
1
+𝑥
2

((𝛽
1
+ 𝛽
2
+ 𝛾
1
+ 𝛾
2
) 𝑡
𝛼
)
𝑛

Γ (𝑛𝛼 + 1)

= 𝑒
𝑥
1
+𝑥
2
𝐸
𝛼
((𝛽
1
+ 𝛽
2
+ 𝛾
1
+ 𝛾
2
) 𝑡
𝛼
) .

(36)

2.3. Fourth-Order Time-Fractional Boussinesq Equation in
R𝑛. Consider the fourth-order time-fractional Boussinesq
equation with 𝑛-dimensional space variables

𝐷
(𝛼)

𝑡
𝑢 (x, 𝑡) =

𝑛

∑

𝑖=0

𝛽
𝑖
𝐷
(4)

𝑥
𝑖

𝑢 (x, 𝑡) +
𝑛

∑

𝑖=0

𝛾
𝑖
𝐷
(2)

𝑥
𝑖

𝑢 (x, 𝑡)

+

𝑛

∑

𝑖=0

𝜃
𝑖
𝐷
(2)

𝑥
𝑖

𝑢
2
(x, 𝑡) −

𝑛

∑

𝑖=0

4𝜃
𝑖
𝑢
2
(x, 𝑡) ,

(37)
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with the initial conditions

𝑢 (x, 0) = exp(
𝑛

∑

𝑖=0

𝑥
𝑖
) ,

𝑢
𝑡
(x, 0) = 0,

(38)

where 1 < 𝛼 ≤ 2, 𝛽
𝑖
, 𝛾
𝑖
, 𝜃
𝑖
∈ R, (𝑖 = 1, 2, . . . , 𝑛), and x =

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ R𝑛, 𝑡 > 0.

Applying 𝐼𝛼
𝑡
to both sides of (37), we have

𝐼
𝛼

𝑡
𝐷
𝛼

𝑡
𝑢 (x, 𝑡) =

𝑛

∑

𝑖=0

𝛽
𝑖
𝐼
𝛼

𝑡
𝐷
(4)

𝑥
𝑖

𝑢 (x, 𝑡) +
𝑛

∑

𝑖=0

𝛾
𝑖
𝐼
𝛼

𝑡
𝐷
(2)

𝑥
𝑖

𝑢 (x, 𝑡)

+

𝑛

∑

𝑖=0

𝜃
𝑖
𝐼
𝛼

𝑡
𝐷
(2)

𝑥
𝑖

𝑢
2
(x, 𝑡)

− 4

𝑛

∑

𝑖=0

𝜃
𝑖
𝐼
𝛼

𝑡
𝑢
2
(x, 𝑡) .

(39)

Denoting

𝐿 (𝑢 (x, 𝑡)) =
𝑛

∑

𝑖=0

𝛽
𝑖
𝐼
𝛼

𝑡
𝐷
(4)

𝑥
𝑖

𝑢 (x, 𝑡) +
𝑛

∑

𝑖=0

𝛾
𝑖
𝐼
𝛼

𝑡
𝐷
(2)

𝑥
𝑖

𝑢 (𝑥, 𝑡) ,

𝑁 (𝑢 (x, 𝑡)) =
𝑛

∑

𝑖=0

𝜃
𝑖
𝐼
𝛼

𝑡
𝐷
(2)

𝑥
𝑖

𝑢
2
(x, 𝑡) − 4

𝑛

∑

𝑖=0

𝜃
𝑖
𝐼
𝛼

𝑡
𝑢
2
(x, 𝑡) ,

(40)

we can get

𝐼
𝛼

𝑡
𝐷
𝛼

𝑡
𝑢 (x, 𝑡) = 𝐿 (𝑢 (x, 𝑡)) + 𝑁 (𝑢 (x, 𝑡)) . (41)

According to the iterative method (19)-(20), we obtain

𝑢
0
= exp(

𝑛

∑

𝑖=0

𝑥
𝑖
) ,

𝑢
1
= exp(

𝑛

∑

𝑖=0

𝑥
𝑖
)
(∑
𝑛

𝑖=0
𝛽
𝑖
+ ∑
𝑛

𝑖=0
𝛾
𝑖
) 𝑡
𝛼

Γ (𝛼 + 1)
,

𝑢
2
= exp(

𝑛

∑

𝑖=0

𝑥
𝑖
)
((∑
𝑛

𝑖=0
𝛽
𝑖
+ ∑
𝑛

𝑖=0
𝛾
𝑖
) 𝑡
𝛼
)
2

Γ (2𝛼 + 1)
, . . . .

(42)

Generally,

𝑢
𝑚
= exp(

𝑛

∑

𝑖=0

𝑥
𝑖
)
((∑
𝑛

𝑖=0
𝛽
𝑖
+ ∑
𝑛

𝑖=0
𝛾
𝑖
) 𝑡
𝛼
)
𝑚

Γ (𝑚𝛼 + 1)
. (43)

So the solution of (37) is

𝑢 (x, 𝑡) =
∞

∑

𝑛=0

𝑢
𝑛
(x, 𝑡)

=

∞

∑

𝑛=0

exp(
𝑛

∑

𝑖=0

𝑥
𝑖
)
((∑
𝑛

𝑖=0
𝛽
𝑖
+ ∑
𝑛

𝑖=0
𝛾
𝑖
) 𝑡
𝛼
)
𝑚

Γ (𝑚𝛼 + 1)

= exp(
𝑛

∑

𝑖=0

𝑥
𝑖
)𝐸
𝛼
((

𝑛

∑

𝑖=0

𝛽
𝑖
+

𝑛

∑

𝑖=0

𝛾
𝑖
) 𝑡
𝛼
) .

(44)

2.4. Sixth-Order Time-Fractional Boussinesq Equation in R.
Let us consider the sixth-order time-fractional Boussinesq
equation

𝐷
(𝛼)

𝑡
𝑢 (𝑥, 𝑡) = 𝐷

(6)

𝑥
𝑢 (𝑥, 𝑡) + 𝐷

(4)

𝑥
𝑢 (𝑥, 𝑡) + 𝐷

(2)

𝑥
𝑢 (𝑥, 𝑡)

+ 𝜃𝐷
(2)

𝑥
𝑢
2
(𝑥, 𝑡) − 4𝜃𝑢

2
(𝑥, 𝑡) ,

(45)

where 𝑥 ∈ R, 𝑡 > 0, 1 < 𝛼 ≤ 2, and the parameter 𝜃 ∈ R, with
the initial conditions

𝑢 (𝑥, 0) = 𝑒
𝑥
,

𝑢
𝑡
(𝑥, 0) = 0.

(46)

Applying 𝐼𝛼
𝑡
to both sides of (45), we have

𝐼
𝛼

𝑡
𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡) = 𝐼

𝛼

𝑡
𝐷
(6)

𝑥
𝑢 (𝑥, 𝑡) + 𝐼

𝛼

𝑡
𝐷
(4)

𝑥
𝑢 (𝑥, 𝑡)

+ 𝐼
𝛼

𝑡
𝐷
(2)

𝑥
𝑢 (𝑥, 𝑡) + 𝜃𝐼

𝛼

𝑡
𝐷
(2)

𝑥
𝑢
2
(𝑥, 𝑡)

− 𝐼
𝛼

𝑡
4𝜃𝑢
2
(𝑥, 𝑡) .

(47)

Denote that

𝐿 (𝑢 (𝑥, 𝑡)) = 𝐼
𝛼

𝑡
𝐷
(6)

𝑥
𝑢 (𝑥, 𝑡) + 𝐼

𝛼

𝑡
𝐷
(4)

𝑥
𝑢 (𝑥, 𝑡)

+ 𝜃𝐼
𝛼

𝑡
𝐷
(2)

𝑥
𝑢 (𝑥, 𝑡) ,

𝑁 (𝑢 (𝑥, 𝑡)) = 𝜃𝐼
𝛼

𝑡
𝐷
(2)

𝑥
𝑢
2
(𝑥, 𝑡) − 𝐼

𝛼

𝑡
4𝜃𝑢
2
(𝑥, 𝑡) .

(48)

So we can get

𝐼
𝛼

𝑡
𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡) = 𝐿 (𝑢 (𝑥, 𝑡)) + 𝑁 (𝑢 (𝑥, 𝑡)) . (49)

According to the iterative method (19)-(20), we have

𝑢
0
= 𝑒
𝑥
,

𝑢
1
= 𝑒
𝑥 3𝑡

𝛼

Γ (𝛼 + 1)
,

𝑢
2
= 𝑒
𝑥
(3𝑡
𝛼
)
2

Γ (2𝛼 + 1)
, . . . .

(50)

Generally,

𝑢
𝑚
= 𝑒
𝑥

(3𝑡
𝛼
)
𝑚

Γ (𝑚𝛼 + 1)
. (51)

So, the solution of (45) is

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=0

𝑢
𝑛
(𝑥, 𝑡) =

∞

∑

𝑛=0

𝑒
𝑥
(3𝑡
𝛼
)
𝑛

Γ (𝑛𝛼 + 1)

= 𝑒
𝑥
𝐸
𝛼
(3𝑡
𝛼
) .

(52)

Remark 11. If 𝛼 = 2, the sixth-order time-fractional Boussi-
nesq equation is the regular Boussinesq equation, and the
solution is 𝑢(𝑥, 𝑡) = 𝑒𝑥𝐸

2
(3𝑡
2
).
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2.5. 2𝑛th-Order Time-Fractional Boussinesq Equation in R.
Consider the 2𝑛th-order time-fractional Boussinesq equation

𝐷
(𝛼)

𝑡
𝑢 (𝑥, 𝑡) = 𝐷

(2𝑛)

𝑡
𝑢 (𝑥, 𝑡) + 𝐷

(2𝑛−2)

𝑡
𝑢 (𝑥, 𝑡) + ⋅ ⋅ ⋅

+ 𝐷
(2)

𝑡
𝑢 (𝑥, 𝑡) + 𝜃𝐷

(2)

𝑥
𝑢
2
(𝑥, 𝑡)

− 4𝜃𝑢
2
(𝑥, 𝑡) ,

(53)

where 1 < 𝛼 ≤ 2, 𝑡 > 0, and 𝑥 ∈ R, with the initial conditions
𝑢 (𝑥, 0) = 𝑒

𝑥
,

𝑢
𝑡
(𝑥, 0) = 0.

(54)

And we apply 𝐼𝛼
𝑡
to both sides of (53):

𝐼
𝛼

𝑡
𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡) = 𝐼

𝛼

𝑡
𝐷
(2𝑛)

𝑥
𝑢 (𝑥, 𝑡) + ⋅ ⋅ ⋅ + 𝐼

𝛼

𝑡
𝐷
(2)

𝑥
𝑢 (𝑥, 𝑡)

+ 𝜃𝐼
𝛼

𝑡
𝐷
(2)

𝑥
𝑢
2
(𝑥, 𝑡) − 𝐼

𝛼

𝑡
4𝜃𝑢
2
(𝑥, 𝑡) .

(55)

Denoting

𝐿 (𝑢 (𝑥, 𝑡)) = 𝐼
𝛼

𝑡
𝐷
(2𝑛)

𝑥
𝑢 (𝑥, 𝑡) + 𝐼

𝛼

𝑡
𝐷
(2𝑛−2)

𝑥
𝑢 (𝑥, 𝑡) + ⋅ ⋅ ⋅

+ 𝐼
𝛼

𝑡
𝐷
(2)

𝑥
𝑢 (𝑥, 𝑡) ,

𝑁 (𝑢 (𝑥, 𝑡)) = 𝜃𝐼
𝛼

𝑡
𝐷
(2)

𝑥
𝑢
2
(𝑥, 𝑡) − 𝐼

𝛼

𝑡
4𝜃𝑢
2
(𝑥, 𝑡) ,

(56)

we can get
𝐼
𝛼

𝑡
𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡) = 𝐿 (𝑢 (𝑥, 𝑡)) + 𝑁 (𝑢 (𝑥, 𝑡)) . (57)

According to iterative method (19)-(20), we derive

𝑢
0
= 𝑒
𝑥
,

𝑢
1
= 𝑒
𝑥 𝑛𝑡

𝛼

Γ (𝛼 + 1)
,

𝑢
2
= 𝑒
𝑥
(𝑛𝑡
𝛼
)
2

Γ (2𝛼 + 1)
, . . . .

(58)

Generally,

𝑢
𝑚
= 𝑒
𝑥
(𝑛𝑡
𝛼
)
𝑚

Γ (𝑚𝛼 + 1)
. (59)

So, the solution of (53) is

𝑢 (𝑥, 𝑡) =

∞

∑

𝑖=0

𝑢
𝑖
(𝑥, 𝑡) =

∞

∑

𝑖=0

𝑒
𝑥
(𝑛𝑡
𝛼
)
𝑖

Γ (𝑖𝛼 + 1)
= 𝑒
𝑥
𝐸
𝛼
(𝑛𝑡
𝛼
) . (60)

Remark 12. If 𝛼 = 2, the 2𝑛th-order time-fractional Boussi-
nesq equation is the regular Boussinesq equation, and the
solution is 𝑢(𝑥, 𝑡) = 𝑒𝑥𝐸

2
(𝑛𝑡
2
).

3. Conclusion

For a given order time-fractional Boussinesq equation with
the initial value 𝑢(𝑥, 0) = 𝑒

𝑥, 𝑢
𝑡
(𝑥, 0) = 0, such as the

fourth-order time-fractional Boussinesq equation, the sixth-
order time-fractional Boussinesq equation, and the 2nth-
order time-fractional Boussinesq equation, by constructing
iterative processes, we can get the analytical solution success-
fully.Thismethod is effective and direct, which can be applied
to other kinds of nonlinear evolution equations.
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