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Abstract. 
We prove the existence of infinitely many solutions of the nonlinear Chern-Simons-Schrödinger
equations under a wide class of nonlinearities. This class includes the standard power-type nonlinearity with exponent . This extends the previous result which covers the exponent .



1. Introduction
In [1, 2], Jackiw and Pi introduce a nonrelativistic model that the nonlinear Schrödinger dynamics is coupled with the Chern-Simons gauge terms as follows:Here,  denotes the imaginary unit, , ,  for ,  is a complex scalar field,  is a component of gauge potential and  is a covariant derivative for  running over , and  is a parameter. The Chern-Simons gauge theory appears in the 1980s to explain electromagnetic phenomena of anyon physics such as the high temperature superconductivity or the fractional quantum Hall effect. In this paper, we are interested in standing wave solutions of (1). In [3], the authors introduce a standing wave ansatz of the following form:where  is a phase frequency and  are real valued functions on  such that . Inserting (2) into (1), one may check from direct computation that (1) is reduced to the following nonlinear nonlocal elliptic equation:where . See [3] for its derivation. It is shown in [3] that (3) is an Euler-Lagrange equation of a  functional,where  denotes the set of radially symmetric functions in standard Sobolev space . Investigating the structure of , the authors of [3] obtain several existence and nonexistence results for (3), depending on the range of  and . Recently, Pomponio and Ruiz [4] improve the results in [3] for the case . They find a threshold for the behavior of , depending on . They also study (3) on bounded domain in [5].
In this paper, we are concerned with the existence of infinitely many solutions of (3). It is proved in [6] that if ,  enjoys the symmetric mountain pass geometry and satisfies the (PS) condition so that the well-known symmetric mountain pass lemma (see [7]) applies to show there exist infinitely many critical points of . For , it turns out that  still enjoys the symmetric mountain pass geometry although checking the (PS) condition is not easy job. One aim of this paper is to show nevertheless  still admits infinitely many critical points for . Moreover, we will replace the power-type nonlinearity  of (3) with more general one as follows:The structure conditions for  are given by the following:(V1)Consider  such that .(V2)Consider ,  for some .(V3)There exists some  such that  is monotonically increasing to  as .Observe that assumptions (V1)–(V3) include the power-type nonlinearity , .
Theorem 1.  Assume . Then, (5) admits infinitely many solutions.
We refer to the work of Cunha et al. [8] that if we insert a sufficiently small parameter  into (5) as inthen much more general assumptions for , the so-called Berestycki-Lions conditions [9], are sufficient for guaranteeing the existence and multiplicity of solutions of (6). In our work, we assume further than the Berestycki-Lions conditions but we do not need small parameter . See also [10] in which Tan and Wan consider asymptotically linear nonlinearities.
To prove Theorem 1, we will apply the method employed in author’s former paper [11] in which the Schrödinger-Poisson equation, another nonlocal field equation similar to (5), is dealt with. Instead of generating (PS) sequences, we will show the existence and compactness of the so-called approximate solution sequences of  which may be considered as more refined version of (PS) sequences. In Section 2, we give a definition of the approximate solution sequences of . Some auxiliary lemmas are also prepared in Section 2. In Section 3, we prove the compactness of approximate solution sequences. In Section 4, we construct infinitely many approximate solution sequences whose energy levels go to infinity and complete the proof of Theorem 1.
2. Mathematical Settings and Preliminaries
Let  be the completion of  with respect to the normThe dual space of  is denoted by . Arguing similarly to [3], it is easy to show (5) is an Euler-Lagrange equation of the  functionalIn this paper, we search for infinitely many critical points of  to prove Theorem 1. To do this, we insert parameter  into  as follows:Here  ranges over . For a sequence  which converges to  as , we say  is an approximate solution sequence of  if  for all . In the following subsection, we state a variant of the famous Struwe’s monotonicity trick [12], which plays a crucial role in constructing approximate solution sequences.
2.1. A Variant of Struwe’s Monotonicity Trick
Let  be Banach space. We say a subset  is symmetric if  for every . Let  be a compact subset of  and  a closed subset of . We denote by  the set of every continuous odd function  such that  on . Let  be a closed interval in  and  one parameter family of even  functional on . We define a minimax level byThe following theorem is a variant of so-called Struwe’s monotonicity trick [12]. A more general version of it is given in [11]. The property  below is first proposed by Jeanjean and Toland in [13].
Theorem 2 (see [11]).  Suppose that, for all , Then, for almost every , there exists a norm-bounded (PS) sequence of  at level , provided the following property  for  holds: (H)For given , let  be a sequence strictly increasing to  and  a sequence in  such that are all uniformly bounded above for . Then the following holds:(i) is norm-bounded in .(ii)For given , there exists  such that
2.2. Some Auxiliary Lemmas
Here, we prepare some lemmas which will be necessarily used for proving the main result. Define
Lemma 3 (Lemma  3.2 in [3]).  Let  be a sequence weakly converging to some  in  as . Then, for each , it holds that , , and  as , up to a subsequence.
Lemma 4 (Pohozaev identity).  Let  be a critical point of . Then one has 
For each  and , we define one parameter family of functions  byFor fixed , we define a map  by . It is easy to see that  is a continuous and linear map with the inverse . Thus  is a linear isomorphism.
For each  and , let  be a function defined by
Lemma 5.  For any  and ,  admits a unique critical point  on ; that is, , such that  is increasing on , attains its maximum at , and is decreasing to  on .
Proof. By the change of variable, one can computeWe differentiate it with respect to  to getObserve from assumption (V3) that  is strictly monotonically decreasing from infinity to the positive number  on  and  is monotonically increasing to infinity on . Therefore there is  such that  on , , and  on . Also from assumption (V3), we deduce  as . This proves the proposition.
We define a function  by assigning a positive number  satisfying  for any nonzero . The value  is defined by .
Lemma 6.  The function  is well-defined and continuous even map on .
Proof. To show the well-definedness of , we have to show that there exists unique  satisfying  for given nonzero . We note that this is equivalent to prove there is a unique solution  of the equationArguing similarly to the proof of Lemma 5, we are able to see that  is monotonically decreasing on  for some , attains its unique local minimum at , and is monotonically increasing to infinity on . Therefore there is a unique positive zero of  since . Also, the implicit function theorem says that  is continuous on  because . The evenness of  follows from the fact that each coefficient of (20) is even. This completes the proof.
3. Compactness of Approximate Solution Sequences
In this section, we prove the compactness of an approximate solution sequence  of  when its energy  is bounded above.
Proposition 7.  Let  be such that  as . Let  be a sequence of critical points of ; that is, . Suppose that  for some , independent of . Then  in  for some critical point  of  up to a subsequence.
Proof. We divide the proof into two steps.
Step 1 (boundedness of ). We first prove that  is bounded in . Arguing indirectly, suppose that  is unbounded. Let , where the function  is defined in Section 2. Equation (20) says  is unbounded. Let  so that . Then, up to a subsequence,  converges weakly in  and strongly in  for all  to some . Since  is a critical point of , we see thatCombining this with the Pohozaev identity (15), we obtainThen, from the change of variable and dividing by , (22) transforms toSince  and  is unbounded,  is bounded for  but the structure assumption (V3) implies that  tends to infinity as  provided  is not identically zero. We claim that  is nonzero. Suppose  is identically zero. From (19) and (22), we see thatThen, Lemma 5 implies that  is the global maximum of  on . Thus we see that, for each ,The last equality follows from , the convergence of  to  in  for all , and the structure conditions (V1)-(V2). However, taking large , this makes a contradiction and shows  is not identically zero. This proves the boundedness of  in .
Step 2 (compactness of ). Compactness of  follows from a standard procedure. Since  is bounded, there exists  such that  converges, up to a subsequence, to  weakly in  and strongly in  for all . Then it follows from Lemma 3 that  is a critical point of . Also, it is easy to see from the boundedness of  that  in . Recall thatUsing Lemma 3 once again, one can observe thatwhich shows  as . Therefore we have  in  as .
4. Construction of Approximate Solution Sequences
In this section, we construct infinitely many approximate solution sequences. Choose an orthonormal basis  of . For given , let  and  be linear subspaces of  spanned by  and , respectively. We will show that  enjoys a variant of symmetric mountain pass geometry (see [14]).
Lemma 8.  There exist a sequence  such that  as  and sequences  satisfying  for each  and (i) for all  and all ;(ii) for all  and all .
Proof. We first show (i). The structure assumptions (V1)-(V2) imply thatThen,We recall the function  and the linear isomorphism  in Section 2. Let  so that . By a change of variable, we get from (29) that, for each ,whereWe claim that, for each ,  as . To see this, suppose that  as . Choose  satisfyingSince  is the unit sphere of a linear subspace  of  with codimension , we deduce  converges to  weakly in  and strongly in , up to a subsequence. This however contradicts the fact thatand the claim is true. We take . Then, for any  satisfying ,For each , by taking sufficiently large  satisfyingwe can see that the proof of (i) is complete.
Next we show (ii). Lemma 5 says that, for each ,  as . Also, we see from Lemma 6 and (20) that the set  is closed and bounded in finite dimensional space so it is compact. Combining these two facts with the compactness of , we can deduce easily (ii) holds.
Definewith , and  given in Lemma 8. Let  be the set of continuous functions  satisfying  on . By , we denote the set .
Lemma 9 (intersection property).  For any , the intersection  for every .
Proof. Choose and fix arbitrary  and . Definewhere  denotes the interior of  in . Then  is a symmetric open neighborhood of  since  is a continuous even map by Lemma 6 and  is a continuous odd map. Equation (20) in Lemma 6 says  is bounded so that  is also bounded. We claim that . From the continuity of  and , it holds that . Suppose that there is some  such that . Then there is a neighborhood of  of  in  such that . Choose some . From the definition of , . Since , we see that . Then, from the definition of , we have , which is a contradiction. This shows the claim is true.
Now, consider a map , where  is the projection map from . Then the well-known Borsuk-Ulam theorem applies to see the continuous odd map  has a vanishing point ; that is, . This means that . Therefore . The proof is complete.
Now, we are ready to prove the existence of infinitely many approximate solution sequences of . For each , we define infinitely many minimax levels as follows:It follows from Lemmas 8 and 9 that  for all .
Proposition 10.  For every fixed , there exists an approximate solution sequence  of  such that .
Proof. We invoke Theorem 2. From Lemmas 8 and 9, it holds thatLet us check  enjoys property . Let  be a sequence strictly increasing to some  and  a sequence such thatWe need to show (i)  is bounded in  and (ii), for given , there exists  satisfyingWe first show (i). We see from (40) thatwhich shows  is bounded in . Also, for given ,if  is sufficiently large. This shows (ii). Therefore, there exists a subset  with full measure in  that, for every , there exists a bounded (PS) sequence  of  at level . Arguing similarly to Step  2 of Proposition 7, we also deduce  converges, up to a subsequence, to some critical point  of  with . Since  has full measure in , this completes the proof.
Completion of the Proof of Theorem 1. Now we complete the proof of Theorem 1. We first choose and fix arbitrary . Let  be an approximate solution sequence of , given by Proposition 10. Take  satisfyingIt follows from the compactness of  thatfor sufficiently large . Then Proposition 7 applies to see  converges, up to a subsequence, to some  which is a critical point of . Recall that . By taking a limit , we deduce . Since  is arbitrary, this shows the existence of infinitely many critical points of . This completes the proof.
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