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The extended Jacobi elliptic function expansionmethod is used for solving fractional differential equations in the sense of Jumarie’s
modified Riemann-Liouville derivative. By means of this approach, a few fractional differential equations are successfully solved.
As a result, some new Jacobi elliptic function solutions including solitary wave solutions and trigonometric function solutions are
established. The proposed method can also be applied to other fractional differential equations.

1. Introduction

Fractional differential equations attracted attention in phys-
ics, biology, engineering, signal processing, systems identifi-
cation, control theory, finance, and fractional dynamics [1–
3]. Also, they are employed in social sciences such as food
supplement, climate, finance, and economics.

Finding approximate and exact solutions to fractional
differential equations is an important task. Various analytical
and numerical methods have been introduced to obtain
solutions of fractional differential equations, such as the
Adomian decomposition method [4, 5], the variational iter-
ation method [6–8], the homotopy analysis method [9–12],
the homotopy perturbation method [13–15], the Lagrange
characteristic method [16], the finite difference method [17],
the finite elementmethod [18], the differential transformation
method [19], the fractional subequation method [20–24], the
first integralmethod [25], the (𝐺/𝐺)-expansionmethod [26–
29], the fractional complex transform method [30], and the
modified simple equation method [31–33].

In [34], Jumarie proposed a modified Riemann-Liouville
derivative. With this kind of fractional derivative and some
useful formulas, we can convert fractional differential equa-
tions into integer-order differential equations by variable
transformation.

In this paper, we used extended Jacobi elliptic func-
tion expansion method [35–37] to establish exact solu-
tions for three nonlinear space-time fractional differential
equations in the sense of Jumarie’s modified Riemann-
Liouville derivative, namely, the space-time fractional gen-
eralized reaction duffing equation, the space-time fractional
bidirectional wave equations, and the space-time fractional
symmetric regularized long wave (SRLW) equation. Also,
we included figures to show the properties of some Jacobi
elliptic function solutions of these fractional differential
equations.

2. Jumarie’s Modified
Riemann-Liouville Derivative and
the Extended Jacobi Elliptic Function
Expansion Method

In this section, we first give the definition and some proper-
ties of the modified Riemann-Liouville derivative which are
used further in this paper.

The Jumarie modified Riemann-Liouville derivative of
order 𝛼 is defined by the expression [34]
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where 𝑓 : 𝑅 → 𝑅, 𝑥 → 𝑓(𝑥) denote a continuous (but not
necessarily differentiable) function.

Some properties of the fractional modified Riemann-
Liouville derivative were summarized and three useful for-
mulas of them are [34]
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.
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Next, let us consider nonlinear partial fractional differen-
tial equation
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𝛼
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𝛽
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𝛽
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(3)

where 𝑢 is an unknown function and 𝑃 is a polynomial of 𝑢.
In this equation, the partial fractional derivatives involving
the highest order derivatives and the nonlinear terms are
included.

Li and He [38] presented a fractional complex transform
to convert fractional differential equations into ordinary dif-
ferential equations (ODEs), so all analytical methods devoted
to the advanced calculus can be easily applied to the fractional
calculus. By using the traveling wave variable

𝑢 (𝑥, 𝑦, 𝑡) = 𝑈 (𝜉) ,

𝜉 =
𝛿𝑥
𝛽

Γ (1 + 𝛽)
+

𝜁𝑦𝛾

Γ (1 + 𝛾)
+

𝜆𝑡
𝛼

Γ (1 + 𝛼)
,

(4)

where 𝛿, 𝜁 are nonzero arbitrary constants and 𝜆 is the wave
speed, we can rewrite (3) as the following nonlinear ODE:

𝑄(𝑈,𝑈

, 𝑈

, 𝑈

, . . .) = 0, (5)

where the prime denotes the derivation with respect to 𝜉. If
possible, we should integrate (5) term by term one or more
times.

Our main goal is to derive exact or at least approximate
solutions, if possible, for this ODE. For this purpose, using
the extended Jacobi elliptic function expansionmethod,𝑈(𝜉)

can be expressed as a finite series of Jacobi elliptic functions,
sn 𝜉, that is, the ansatz:

𝑢 (𝑥, 𝑦, 𝑡) = 𝑈 (𝜉) =

𝑛

∑
𝑗=0
𝑎
𝑗
sn𝑗 𝜉 +

𝑛

∑
𝑗=1
𝑏
𝑗
sn−𝑗 𝜉. (6)

The parameter 𝑛 is determined by balancing the linear
term(s) of highest order with the nonlinear one(s). And

cn2 𝜉 = 1− sn2 𝜉,

dn2 𝜉 = 1−𝑚2sn2 𝜉,

𝑑

𝑑𝜉
sn 𝜉 = cn 𝜉dn 𝜉,

𝑑

𝑑𝜉
cn 𝜉 = − sn 𝜉dn 𝜉,

𝑑

𝑑𝜉
dn 𝜉 = −𝑚2sn 𝜉cn 𝜉,

(7)

where cn 𝜉 and dn 𝜉 are the Jacobi elliptic cosine function and
the Jacobi elliptic function of the third kind, respectively, with
the modulus𝑚 (0 < 𝑚 < 1). Therefore, the highest degree of
𝑑
𝑝𝑈/𝑑𝜉𝑝 is taken as

𝑂(
𝑑
𝑝
𝑈

𝑑𝜉𝑝
) = 𝑛+𝑝, 𝑝 = 1, 2, 3, . . . ,

𝑂 (𝑈
𝑞 𝑑
𝑝𝑈

𝑑𝜉𝑝
) = (𝑞 + 1) 𝑛 + 𝑝,

𝑞 = 0, 1, 2, . . . , 𝑝 = 1, 2, 3, . . . .

(8)

Substituting (6)–(8) into (5) and comparing the coefficients
of each power of sn 𝜉 in both sides, we get an overdetermined
system of nonlinear algebraic equations with respect to 𝜆,
𝑎
𝑗
(𝑗 = 0, 1, . . . , 𝑛), and 𝑏

𝑗
(𝑗 = 1, 2, . . . , 𝑛). Solving

this system, with the aid of Mathematica, then 𝜆, 𝑎
𝑗
(𝑗 =

0, 1, . . . , 𝑛), and 𝑏
𝑗
(𝑗 = 1, 2, . . . , 𝑛) can be determined.

Substituting these results into (6), then some new Jacobi
elliptic function solutions of (3) can be obtained. We can get
other kinds of Jacobi doubly periodic wave solutions.
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Since

lim
𝑚→ 1

sn 𝜉 = tanh 𝜉,
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𝑚→ 1

cn 𝜉 = sech 𝜉,
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𝑚→ 1

dn 𝜉 = sech 𝜉,
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𝑚→ 0

sn 𝜉 = sin 𝜉,

lim
𝑚→ 0

cn 𝜉 = cos 𝜉,

lim
𝑚→ 0

dn 𝜉 = 1,

(9)

𝑢 degenerates, respectively, as the following form.

(1) Solitary wave solutions:

𝑢 (𝑥, 𝑦, 𝑡) =

𝑛

∑
𝑗=0
𝑎
𝑗
tanh𝑗𝜉 +

𝑛

∑
𝑗=1
𝑏
𝑗
coth𝑗𝜉. (10)

(2) Triangular function formal solution:

𝑢 (𝑥, 𝑦, 𝑡) =

𝑛

∑
𝑗=0
𝑎
𝑗
sin𝑗𝜉 +

𝑛

∑
𝑗=1
𝑏
𝑗
csc𝑗𝜉. (11)

3. Applications of the Method

In this section, we present three examples to demonstrate the
effectiveness of our approach to solve nonlinear fractional
partial differential equations.

3.1. Space-Time Fractional Generalized ReactionDuffingEqua-
tion. We have applied the extended Jacobi elliptic function
expansion method to construct the exact solutions of space-
time fractional generalized reaction duffing equation [39, 40]
in the form

𝜕
2𝛼𝑢

𝜕𝑡2𝛼
+𝑝

𝜕2𝛼𝑢

𝜕𝑥2𝛼
+ 𝑞𝑢+ 𝑟𝑢

2
+ 𝑠𝑢

3
= 0, 0 < 𝛼 < 1, (12)

where 𝑝, 𝑞, 𝑟, and 𝑠 are all constants. Equation (12) reduces
many well-known nonlinear fractional wave equations such
as the following.

(i) Fractional Klein-Gordon equation:

𝜕2𝛼𝑢

𝜕𝑡2𝛼
−
𝜕2𝛼𝑢

𝜕𝑥2𝛼
− 𝑎𝑢− 𝑏𝑢

3
= 0, 𝑡 > 0, 0 < 𝛼 < 1. (13)

(ii) Fractional Landau-Ginzburg-Higgs equation:

𝜕2𝛼𝑢
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𝜕2𝛼𝑢

𝜕𝑥2𝛼
−𝑚
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𝑢+𝑔

2
𝑢
3
= 0, 𝑡 > 0, 0 < 𝛼 < 1. (14)

(iii) Fractional 𝜑4 equation:

𝜕2𝛼𝑢

𝜕𝑡2𝛼
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𝜕2𝛼𝑢

𝜕𝑥2𝛼
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(iv) Fractional duffing equation:
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3
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(v) Fractional Sine-Gordon equation:
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1
6
𝑢
3
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For our purpose, we introduce the following transformations:

𝑢 (𝑥, 𝑡) = 𝑈 (𝜉) ,

𝜉 =
𝑙𝑥
𝛼

Γ (1 + 𝛼)
−

𝜆𝑡
𝛼

Γ (1 + 𝛼)
,

(18)

where 𝜉 is a wave variable and 𝑙 and 𝜆 are constants; all of
them are to be determined. Substituting (18) into (12), (12) is
reduced into an ODE:

𝑈


(𝜉) +
𝑞

𝜆2 + 𝑝𝑙2
𝑈 (𝜉) +

𝑟

𝜆2 + 𝑝𝑙2
𝑈

2
(𝜉)

+
𝑠

𝜆2 + 𝑝𝑙2
𝑈

3
(𝜉) = 0,

(19)

where 𝑈 = 𝑑𝑈/𝑑𝜉. Suppose that the solution of (19) can be
expressed by

𝑈 (𝜉) =

𝑛

∑
𝑗=0
𝑎
𝑗
sn𝑗𝜉 +

𝑛

∑
𝑗=1
𝑏
𝑗
sn−𝑗𝜉. (20)

Considering the homogeneous balance between the highest
order derivative𝑈 and the highest order nonlinear term 𝑈3

in (19), we obtain 𝑛 = 1. So

𝑈 (𝜉) = 𝑎0 + 𝑎1sn 𝜉 + 𝑏1sn
−1
𝜉. (21)

Substituting (21) into (19) and comparing the coefficients of
each power of sn 𝜉 in both sides, we get an overdetermined
system of nonlinear algebraic equations with respect to 𝜆, 𝑎0,
𝑎1, and 𝑏1. Solving this system with Mathematica, we get the
following results.

Case 1. Consider

𝑎0 = −
𝑟

3𝑠
,

𝑎1 = ±
√2𝑚𝑟

3√𝑠2 (1 + 𝑚2)
,

𝑏1 = 0,

𝜆 = ± 𝑖
√𝑟2 + 9𝑙2𝑝𝑠 (1 + 𝑚2)

3√𝑠 (1 + 𝑚2)
,

𝑞 =
2𝑟2

9𝑠
.

(22)
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Case 2. Consider

𝑎0 = −
𝑟

3𝑠
,

𝑎1 = 0,

𝑏1 = ±
√2𝑟

3√𝑠2 (1 + 𝑚2)
,

𝜆 = ± 𝑖
√𝑟2 + 9𝑙2𝑝𝑠 (1 + 𝑚2)

3√𝑠 (1 + 𝑚2)
,

𝑞 =
2𝑟2

9𝑠
.

(23)

Case 3. Consider

𝑎0 = −
𝑟

3𝑠
,

𝑎1 = ±
√2𝑚𝑟

3𝑠√1 + 𝑚 (6 + 𝑚)
,

𝑏1 = ±
√2𝑟

3𝑠√1 + 𝑚 (6 + 𝑚)
,

𝜆 = − 𝑖
√𝑟2 + 9𝑙2𝑝𝑠 (1 + 𝑚 (6 + 𝑚))

3√𝑠 (1 + 𝑚 (6 + 𝑚))
,

𝑞 =
2𝑟2

9𝑠
.

(24)

Thus, we obtain the following solutions of (12).

Solution 1. See Figure 1:

𝑢1 = −
𝑟

3𝑠
±

√2𝑚𝑟

3√𝑠2 (1 + 𝑚2)

⋅ sn( 𝑙𝑥𝛼

Γ (1 + 𝛼)
∓ 𝑖

√𝑟2 + 9𝑙2𝑝𝑠 (1 + 𝑚2)

3Γ (1 + 𝛼)√𝑠 (1 + 𝑚2)
𝑡
𝛼
).

(25)

Solution 2. See Figure 2:

𝑢2 = −
𝑟

3𝑠
±

√2𝑟

3√𝑠2 (1 + 𝑚2)

⋅ sn−1( 𝑙𝑥𝛼

Γ (1 + 𝛼)
∓ 𝑖

√𝑟2 + 9𝑙2𝑝𝑠 (1 + 𝑚2)

3Γ (1 + 𝛼)√𝑠 (1 + 𝑚2)
𝑡
𝛼
).

(26)

Solution 3. Consider

𝑢3 = −
𝑟

3𝑠
±

√2𝑟
3𝑠√1 + 𝑚 (6 + 𝑚)

×
[
[

[

𝑚sn( 𝑙𝑥𝛼

Γ (1 + 𝛼)

+ 𝑖
√𝑟2 + 9𝑙2𝑝𝑠 (1 + 𝑚 (6 + 𝑚))

3Γ (1 + 𝛼)√𝑠 (1 + 𝑚 (6 + 𝑚))
𝑡
𝛼
)

+ sn−1( 𝑙𝑥𝛼

Γ (1 + 𝛼)

+ 𝑖
√𝑟2 + 9𝑙2𝑝𝑠 (1 + 𝑚 (6 + 𝑚))

3Γ (1 + 𝛼)√𝑠 (1 + 𝑚 (6 + 𝑚))
𝑡
𝛼
)
]
]

]

.

(27)

3.1.1. Soliton Solutions. When the modulus𝑚 approaches to 1
in (25), (26), and (27), we can obtain solitarywave solutions of
space-time fractional generalized reaction duffing equation,
respectively:

𝑢4 = −
𝑟

3𝑠

±
𝑟

3𝑠
tanh( 𝑙𝑥

𝛼

Γ (1 + 𝛼)
∓ 𝑖

√𝑟2 + 18𝑙2𝑝𝑠

3√2𝑠Γ (1 + 𝛼)
𝑡
𝛼
),

𝑢5 = −
𝑟

3𝑠

±
𝑟

3𝑠
coth( 𝑙𝑥

𝛼

Γ (1 + 𝛼)
∓ 𝑖

√𝑟2 + 18𝑙2𝑝𝑠

3√2𝑠Γ (1 + 𝛼)
𝑡
𝛼
),

𝑢6 = −
𝑟

3𝑠

±
𝑟

3𝑠
coth 2( 𝑙𝑥

𝛼

Γ (1 + 𝛼)
+ 𝑖

√𝑟2 + 72𝑙2𝑝𝑠

3√8𝑠Γ (1 + 𝛼)
𝑡
𝛼
).

(28)

3.1.2. Triangular Periodic Solutions. When the modulus 𝑚
approaches to zero in (26), (27), we can obtain trigonometric
function solutions of space-time fractional generalized reac-
tion duffing equation, respectively:

𝑢
7
= −

𝑟

3𝑠

±
√2𝑟

3𝑠
csc( 𝑙𝑥

𝛼

Γ (1 + 𝛼)
∓ 𝑖

√𝑟2 + 9𝑙2𝑝𝑠

3√𝑠Γ (1 + 𝛼)
𝑡
𝛼
),
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Figure 1: Profiles of |𝑢| in (25) corresponding to the values 𝑚 = 0.1, 𝛼 = 0.9, 𝑝 = 𝑟 = 𝑠 = 𝑙 = 1; 𝑚 = 0.9, 𝛼 = 0.2, 𝑝 = 𝑟 = 𝑠 = 𝑙 = 1; and
𝑚 = 𝛼 = 0.5, 𝑝 = 𝑙 = 3, 𝑟 = 𝑠 = −4 from (a) to (c).

𝑢
8
= −

𝑟

3𝑠
±
√2𝑟

3𝑠

+ csc( 𝑙𝑥𝛼

Γ (1 + 𝛼)
+ 𝑖

√𝑟2 + 9𝑙2𝑝𝑠

3√𝑠Γ (1 + 𝛼)
𝑡
𝛼
).

(29)

3.2. Space-Time Fractional Bidirectional Wave Equations. Let
us apply our method to the space-time fractional bidirec-
tional wave equations in the form [41, 42]

𝐷
𝛼

𝑡
V+𝐷𝛼
𝑥
𝑢+ 𝑢𝐷

𝛼

𝑥
V+ V𝐷𝛼

𝑥
𝑢+ 𝑎𝐷

𝛼

𝑥
𝐷
𝛼

𝑥
𝐷
𝛼

𝑥
𝑢

− 𝑏𝐷
𝛼

𝑥
𝐷
𝛼

𝑥
𝐷
𝛼

𝑡
V = 0,

𝐷
𝛼

𝑡
𝑢+𝐷
𝛼

𝑥
V+𝑢𝐷𝛼

𝑥
𝑢+ 𝑐𝐷

𝛼

𝑥
𝐷
𝛼

𝑥
𝐷
𝛼

𝑥
V

−𝑑𝐷
𝛼

𝑥
𝐷
𝛼

𝑥
𝐷
𝛼

𝑡
𝑢 = 0,

0 < 𝛼 ≤ 1,

(30)

where 𝑥 represents the distance along the channel, 𝑡 is
the elapsed time, the variable 𝑢(𝑥, 𝑡) is the dimensionless
horizontal velocity, V(𝑥, 𝑡) is the dimensionless deviation of

the water surface from its undisturbed position, and 𝑎, 𝑏,
𝑐, and 𝑑 are real constants. When 𝛼 = 1, (30) is the
generalization of bidirectional wave equations, which can be
used as a model equation for the propagation of long waves
on the surface of water with a small amplitude by Bona and
Chen [43].

For our purpose, we use the following transformation:

𝑢 (𝑥, 𝑡) = 𝑈 (𝜉) ,

V (𝑥, 𝑡) = 𝑉 (𝜉) ,

𝜉 =
𝑅𝑥
𝛼

Γ (1 + 𝛼)
+

𝑆𝑡
𝛼

Γ (1 + 𝛼)
,

(31)

where 𝑅 and 𝑆 are nonzero constants. Substituting (31) into
(30), we obtain

𝑆𝑉

+𝑅𝑈

+𝑅𝑈𝑉


+𝑅𝑉𝑈


+ 𝑎𝑅

3
𝑈

− 𝑏𝑅

2
𝑆𝑉


= 0,

𝑆𝑈

+𝑅𝑉

+𝑅𝑈𝑈


+ 𝑐𝑅

3
𝑉

−𝑑𝑅

2
𝑆𝑈

= 0,

(32)
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Figure 2: Profiles of |𝑢| in (26) corresponding to the values𝑚 = 0.5, 𝛼 = 0.9, 𝑝 = 𝑟 = 𝑠 = 𝑙 = 1;𝑚 = 𝛼 = 0.5, 𝑝 = 𝑟 = 𝑠 = 𝑙 = 1; and𝑚 = 0.4,
𝛼 = 0.1, 𝑙 = 1, 𝑝 = 𝑟 = 𝑠 = 2 from (a) to (c).

where 𝑈 = 𝑑𝑈/𝑑𝜉. Suppose that the solutions of (32) can be
expressed by

𝑈 (𝜉) =

𝑛1

∑
𝑗=0
𝑎
𝑗
sn𝑗𝜉 +

𝑛1

∑
𝑗=1
𝑏
𝑗
sn−𝑗𝜉,

𝑉 (𝜉) =

𝑛2

∑
𝑗=0
𝑐
𝑗
sn𝑗𝜉 +

𝑛2

∑
𝑗=1
𝑑
𝑗
sn−𝑗𝜉.

(33)

Balancing the highest order derivative terms and nonlinear
terms in (32), we can obtain 𝑛1 = 𝑛2 = 2. So we have

𝑈 (𝜉) = 𝑎0 + 𝑎1sn 𝜉 + 𝑎2sn
2
𝜉 + 𝑏1sn

−1
𝜉 + 𝑏2sn

−2
𝜉,

𝑉 (𝜉) = 𝑐0 + 𝑐1sn 𝜉 + 𝑐2sn
2
𝜉 + 𝑑1sn

−1
𝜉 + 𝑑2sn

−2
𝜉.

(34)

Proceeding as in the previous case, we get the following
results.

Case 1. Consider

𝑎1 = 𝑏1 = 𝑏2 = 𝑐1 = 𝑑1 = 𝑑2 = 0,

𝑐2 = 𝑐2,

𝑎0

= 𝑖
2 (𝑐 + 𝑑) (c2 + 6𝑎𝑚2𝑅2) − 𝑏𝑐2 (1 − 4𝑐𝑅2 (1 + 𝑚2))

2𝑅√3𝑏𝑐𝑚2 (𝑏𝑐2 − 2𝑑 (𝑐2 + 6𝑎𝑚2𝑅2))
,

𝑎2 = − 𝑖
2√3𝑐𝑏𝑐2𝑚

2𝑅

√𝑏𝑚2 (𝑏𝑐2 − 2𝑑 (𝑐2 + 6𝑎𝑚2𝑅2))
,

𝑐0

= −
𝑏 (𝑐2 + 4𝑐𝑅2 (𝑐2 + 𝑚

2 (3 + 𝑐2))) − 2𝑑 (𝑐2 + 6𝑎𝑚2𝑅2)

12𝑏𝑐𝑚2𝑅2 ,

𝑆 = − 𝑖
√𝑐 (𝑐2 + 6𝑎𝑚2𝑅2)

√3𝑏𝑚2 (𝑏𝑐2 − 2𝑑 (𝑐2 + 6𝑎𝑚2𝑅2))
.

(35)
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Case 2. Consider

𝑎1 = 𝑏1 = 𝑐1 = 𝑑1 = 0,

𝑐2 = 𝑐2,

𝑎0 = 𝑖
2 (𝑐 + 𝑑) (𝑐2 + 6𝑎𝑚2𝑅2) − 𝑏𝑐2 (1 − 4𝑐𝑅2 (1 + 𝑚2))

2𝑅√3𝑏𝑐𝑚2 (𝑏𝑐2 − 2𝑑 (𝑐2 + 6𝑎𝑚2𝑅2))
,

𝑎2 = − 𝑖
2√3𝑐𝑏𝑐2𝑚

2𝑅

√𝑏𝑚2 (𝑏𝑐2 − 2𝑑 (𝑐2 + 6𝑎𝑚2𝑅2))
,

𝑐0

= −
𝑏 (𝑐2 + 4𝑐𝑅2 (𝑐2 + 𝑚

2 (3 + 𝑐2))) − 2𝑑 (𝑐2 + 6𝑎𝑚2𝑅2)

12𝑏𝑐𝑚2𝑅2 ,

𝑏2 = − 𝑖
2√3𝑐𝑏𝑐2𝑅

√𝑏𝑚2 (𝑏𝑐2 − 2𝑑 (𝑐2 + 6𝑎𝑚2𝑅2))
,

𝑆 = − 𝑖
√𝑐 (𝑐2 + 6𝑎𝑚2𝑅2)

√3𝑏𝑚2 (𝑏𝑐2 − 2𝑑 (𝑐2 + 6𝑎𝑚2𝑅2))
,

𝑑2 =
𝑐2
𝑚2 .

(36)

Thus, we obtain the following solutions of (30).

Solution 1. Consider

𝑢1 = 𝑖
2 (𝑐 + 𝑑) (𝑐2 + 6𝑎𝑚2𝑅2) − 𝑏𝑐2 (1 − 4𝑐𝑅2 (1 + 𝑚2))

2𝑅√3𝑏𝑐𝑚2 (𝑏𝑐2 − 2𝑑 (𝑐2 + 6𝑎𝑚2𝑅2))

− 𝑖
2√3𝑐𝑏𝑐2𝑚

2𝑅

√𝑏𝑚2 (𝑏𝑐2 − 2𝑑 (𝑐2 + 6𝑎𝑚2𝑅2))

⋅ sn2 ( 𝑅𝑥𝛼

Γ (1 + 𝛼)
+

𝑆

Γ (1 + 𝛼)
𝑡
𝛼
) ,

V1 = −
𝑏 (𝑐2 + 4𝑐𝑅2 (𝑐2 + 𝑚

2 (3 + 𝑐2))) − 2𝑑 (𝑐2 + 6𝑎𝑚2𝑅2)

12𝑏𝑐𝑚2𝑅2

+ 𝑐2sn
2
(

𝑅𝑥𝛼

Γ (1 + 𝛼)
+

𝑆

Γ (1 + 𝛼)
𝑡
𝛼
) .

(37)

Solution 2. Consider

𝑢2 = 𝑖
2 (𝑐 + 𝑑) (𝑐2 + 6𝑎𝑚2𝑅2) − 𝑏𝑐2 (1 − 4𝑐𝑅2 (1 + 𝑚2))

2𝑅√3𝑏𝑐𝑚2 (𝑏𝑐2 − 2𝑑 (𝑐2 + 6𝑎𝑚2𝑅2))

− 𝑖
2√3𝑐𝑏𝑐2𝑅

√𝑏𝑚2 (𝑏𝑐2 − 2𝑑 (𝑐2 + 6𝑎𝑚2𝑅2))
[𝑚

2sn2 ( 𝑅𝑥𝛼

Γ (1 + 𝛼)

+
𝑆

Γ (1 + 𝛼)
𝑡
𝛼
)+ sn−2 ( 𝑅𝑥𝛼

Γ (1 + 𝛼)
+

𝑆

Γ (1 + 𝛼)
𝑡
𝛼
)] ,

V2 = −
𝑏 (𝑐2 + 4𝑐𝑅2 (𝑐2 + 𝑚

2 (3 + 𝑐2))) − 2𝑑 (𝑐2 + 6𝑎𝑚2𝑅2)

12𝑏𝑐𝑚2𝑅2

+ 𝑐2sn
2
(

𝑅𝑥𝛼

Γ (1 + 𝛼)
+

𝑆

Γ (1 + 𝛼)
𝑡
𝛼
)+

𝑐2
𝑚2 sn
−2
(

𝑅𝑥𝛼

Γ (1 + 𝛼)

+
𝑆

Γ (1 + 𝛼)
𝑡
𝛼
) ,

(38)

where

𝑆 = − 𝑖
√𝑐 (𝑐2 + 6𝑎𝑚2𝑅2)

√3𝑏𝑚2 (𝑏𝑐2 − 2𝑑 (𝑐2 + 6𝑎𝑚2𝑅2))
. (39)

3.2.1. Soliton Solutions. When the modulus 𝑚 approaches
to 1 in (37), (38), we can obtain solitary wave solutions
of the space-time fractional bidirectional wave equations,
respectively:

𝑢3 = 𝑖
2 (𝑐 + 𝑑) (𝑐2 + 6𝑎𝑅2) − 𝑏𝑐2 (1 − 8𝑐𝑅2)

2𝑅√3𝑏𝑐 (𝑏𝑐2 − 2𝑑 (𝑐2 + 6𝑎𝑅2))
− 𝑖

⋅
2√3𝑐𝑏𝑐2𝑅

√𝑏 (𝑏𝑐2 − 2𝑑 (𝑐2 + 6𝑎𝑅2))

⋅ tanh2 ( 𝑅𝑥𝛼

Γ (1 + 𝛼)
+

𝑆

Γ (1 + 𝛼)
𝑡
𝛼
) ,

V3 = −
𝑏 (𝑐2 + 4𝑐𝑅2 (3 + 2𝑐2)) − 2𝑑 (𝑐2 + 6𝑎𝑅2)

12𝑏𝑐𝑅2 + 𝑐2

⋅ tanh2 ( 𝑅𝑥𝛼

Γ (1 + 𝛼)
+

𝑆

Γ (1 + 𝛼)
𝑡
𝛼
) ,

𝑢4 = 𝑖
2 (𝑐 + 𝑑) (𝑐2 + 6𝑎𝑅2) − 𝑏𝑐2 (1 − 8𝑐𝑅2)

2𝑅√3𝑏𝑐 (𝑏𝑐2 − 2𝑑 (𝑐2 + 6𝑎𝑅2))
− 𝑖

⋅
4√3𝑐𝑏𝑐2𝑅

√𝑏 (𝑏𝑐2 − 2𝑑 (𝑐2 + 6𝑎𝑅2))
[1

+ 2csch22( 𝑅𝑥𝛼

Γ (1 + 𝛼)
+

𝑆

Γ (1 + 𝛼)
𝑡
𝛼
)] ,

V4 = −
𝑏 (𝑐2 + 4𝑐𝑅2 (3 + 2𝑐2)) − 2𝑑 (𝑐2 + 6𝑎𝑅2)

12𝑏𝑐𝑚2𝑅2

+ 2𝑐2 [1+ 2csch
22( 𝑅𝑥𝛼

Γ (1 + 𝛼)
+

𝑆

Γ (1 + 𝛼)
𝑡
𝛼
)] ,

(40)

where

𝑆 = − 𝑖
√𝑐 (𝑐2 + 6𝑎𝑅2)

√3𝑏 (𝑏𝑐2 − 2𝑑 (𝑐2 + 6𝑎𝑅2))
. (41)
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3.3. The Space-Time Nonlinear Fractional SRLW Equation.
We consider the space-time nonlinear fractional SRLW equa-
tion [44, 45]

𝐷
2𝛼
𝑡
𝑢+𝐷

2𝛼
𝑥
𝑢+ 𝑢𝐷

𝛼

𝑡
(𝐷
𝛼

𝑥
𝑢) +𝐷

𝛼

𝑡
𝑢𝐷
𝛼

𝑥
𝑢

+𝐷
2𝛼
𝑡
(𝐷

2𝛼
𝑥
𝑢) = 0, 0 < 𝛼 ≤ 1,

(42)

which arises in several physical applications including ion
soundwaves in plasma. For our purpose, we use the following
transformation:

𝑢 (𝑥, 𝑡) = 𝑈 (𝜉) ,

𝜉 =
𝑘𝑥
𝛼

Γ (1 + 𝛼)
+

𝑐𝑡𝛼

Γ (1 + 𝛼)
+ 𝜉0,

(43)

where 𝑘, 𝑐, and 𝜉0 are constants with 𝑘, 𝑐 ̸= 0. Substituting
(43) into (42), we obtain

2𝑘2𝑐2𝑈 + 2 (𝑘2 + 𝑐2)𝑈+ 𝑘𝑐𝑈
2
= 0. (44)

Suppose that the solutions of (44) can be expressed by

𝑈 (𝜉) =

𝑛

∑
𝑗=0
𝑎
𝑗
sn𝑗 𝜉 +

𝑛

∑
𝑗=1
𝑏
𝑗
sn−𝑗 𝜉. (45)

Considering the homogeneous balance between the highest
order derivative𝑈 and the highest order nonlinear term 𝑈

2

in (44), we obtain 𝑛 = 2. So we have

𝑈 (𝜉) = 𝑎0 + 𝑎1sn 𝜉 + 𝑎2sn
2
𝜉 + 𝑏1sn

−1
𝜉 + 𝑏2sn

−2
𝜉. (46)

Proceeding as in the previous cases, we get the following
results.

Case 1. Consider

𝑎1 = 𝑏1 = 𝑏2 = 0,

𝑎2 = − 12𝑐𝑘𝑚
2
,

𝑎0 = 4𝑐𝑘 (1+𝑚2
+√1 − 𝑚2 + 𝑚4) ,

(47)

where

𝑐 = 𝑖√
𝑘2

1 + 4𝑘2√1 − 𝑚2 + 𝑚4
. (48)

Case 2. Consider

𝑎1 = 𝑎2 = 𝑏1 = 0,

𝑏2 = − 12𝑐𝑘,

𝑎0 = 4𝑐𝑘 (1+𝑚2
−√1 − 𝑚2 + 𝑚4) ,

(49)

where

𝑐 = 𝑖√
𝑘2

1 − 4𝑘2√1 − 𝑚2 + 𝑚4
. (50)

Case 3. Consider

𝑎1 = 𝑏1 = 0,

𝑎2 = − 12𝑐𝑘𝑚
2
,

𝑏2 = − 12𝑐𝑘,

𝑎0 = 4𝑐𝑘 (1+𝑚2
+√1 + 14𝑚2 + 𝑚4) ,

(51)

where

𝑐 = 𝑖√
𝑘2

1 + 4𝑘2√1 + 14𝑚2 + 𝑚4
. (52)

Thus, we obtain the following solutions of (42).

Solution 1. Consider

𝑢1 = 4𝑐𝑘 (1+𝑚2
+√1 − 𝑚2 + 𝑚4)

− 12𝑐𝑘𝑚2sn2( 𝑘𝑥𝛼

Γ (1 + 𝛼)

+
𝑖

Γ (1 + 𝛼)
√

𝑘2

1 + 4𝑘2√1 − 𝑚2 + 𝑚4
𝑡
𝛼
+ 𝜉0) .

(53)

Solution 2. Consider

𝑢2 = 4𝑐𝑘 (1+𝑚2
−√1 − 𝑚2 + 𝑚4)

− 12𝑐𝑘 sn−2( 𝑘𝑥
𝛼

Γ (1 + 𝛼)

+
𝑖

Γ (1 + 𝛼)
√

𝑘2

1 − 4𝑘2√1 − 𝑚2 + 𝑚4
𝑡
𝛼
+ 𝜉0) .

(54)

Solution 3. Consider

𝑢3 = 4𝑐𝑘 (1+𝑚2
+√1 + 14𝑚2 + 𝑚4)

− 12𝑐𝑘[

[

𝑚
2sn2( 𝑘𝑥

𝛼

Γ (1 + 𝛼)

+
𝑖

Γ (1 + 𝛼)
√

𝑘2

1 + 4𝑘2√1 + 14𝑚2 + 𝑚4
𝑡
𝛼
+ 𝜉0)

+ sn−2( 𝑘𝑥𝛼

Γ (1 + 𝛼)

+
𝑖

Γ (1 + 𝛼)
√

𝑘2

1 + 4𝑘2√1 + 14𝑚2 + 𝑚4
𝑡
𝛼
+ 𝜉0)]

]

.

(55)



Advances in Mathematical Physics 9

3.3.1. Soliton Solutions. When themodulus𝑚 approaches to 1
in (53), (54), and (55), we can obtain solitary wave solutions of
the space-time nonlinear fractional SRLW equation, respec-
tively:

𝑢4 = 12𝑐𝑘 sech2( 𝑘𝑥𝛼

Γ (1 + 𝛼)
+

𝑖

Γ (1 + 𝛼)
√ 𝑘2

1 + 4𝑘2
𝑡
𝛼

+ 𝜉0) ,

𝑢
5
= − 8𝑐𝑘 − 12𝑐𝑘 csch2( 𝑘𝑥𝛼

Γ (1 + 𝛼)

+
𝑖

Γ (1 + 𝛼)
√ 𝑘2

1 − 4𝑘2
𝑡
𝛼
+ 𝜉0) ,

𝑢
6
= − 48𝑐𝑘 csch22( 𝑘𝑥𝛼

Γ (1 + 𝛼)

+
𝑖

Γ (1 + 𝛼)
√ 𝑘2

1 + 16𝑘2
𝑡
𝛼
+ 𝜉0) .

(56)

3.3.2. Triangular Periodic Solutions. We can obtain trigono-
metric function solutions of the space-time nonlinear frac-
tional SRLW equation, when the modulus 𝑚 approaches to
zero; for example, (54), (55) give the same solution:

𝑢7 = − 12𝑐𝑘

⋅ csc2( 𝑘𝑥𝛼

Γ (1 + 𝛼)
+

𝑖

Γ (1 + 𝛼)
√ 𝑘2

1 − 4𝑘2
𝑡
𝛼
+ 𝜉0) ,

𝑢
8
= 8𝑐𝑘 − 12𝑐𝑘

⋅ csc2( 𝑘𝑥𝛼

Γ (1 + 𝛼)
+

𝑖

Γ (1 + 𝛼)
√ 𝑘2

1 + 4𝑘2
𝑡
𝛼
+ 𝜉0) .

(57)

4. Conclusion

In this paper, we used the extended Jacobi elliptic func-
tion expansion method for solving fractional differential
equations and applied it to find exact solutions of the
space-time fractional generalized reaction duffing equation,
the space-time fractional bidirectional wave equations, and
the space-time fractional symmetric regularized long wave
(SRLW) equation. With the aid of Mathematica, we success-
fully obtained some new Jacobi elliptic function solutions
including solitary wave solutions and trigonometric function
solutions for these equations.Thismethod is effective and can
also be applied to other fractional differential equations.
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[28] A. Bekir and Ö. Güner, “Exact solutions of nonlinear fractional
differential equations by (G/G)-expansion method,” Chinese
Physics B, vol. 22, no. 11, Article ID 110202, 2013.

[29] B. Zheng, “Exact solutions for some fractional partial differen-
tial equations by the (𝐺/𝐺) method,”Mathematical Problems in
Engineering, vol. 2013, Article ID 826369, 13 pages, 2013.

[30] W.-H. Su, X.-J. Yang, H. Jafari, and D. Baleanu, “Fractional
complex transform method for wave equations on cantor
sets within local fractional differential operator,” Advances in
Difference Equations, vol. 2013, article 97, 2013.

[31] A. J. M. Jawad, M. D. Petković, and A. Biswas, “Modified simple
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