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Previously, a formula, incorporating a 5𝐹4 hypergeometric function, for the Hilbert-Schmidt-averaged determinantal moments
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⟩ of 4 × 4 density-matrices (𝜌) and their partial transposes (|𝜌PT|), was applied with 𝑘 = 0 to the generalized two-
qubit separability probability question. The formula can, furthermore, be viewed, as we note here, as an averaging over “induced
measures in the space of mixed quantum states.” The associated induced-measure separability probabilities (𝑘 = 1, 2, . . .) are
found—via a high-precision density approximation procedure—to assume interesting, relatively simple rational values in the two-
re[al]bit (𝛼 = 1/2), (standard) two-qubit (𝛼 = 1), and two-quater[nionic]bit (𝛼 = 2) cases. We deduce rather simple companion
(rebit, qubit, quaterbit, . . .) formulas that successfully reproduce the rational values assumed for general 𝑘. These formulas are
observed to share certain features, possibly allowing them to be incorporated into a single master formula.

1. Introduction

The question of the probability that a generic quantum
system is separable/disentangled was raised in a 1998 paper
of Życzkowski et al. entitled “Volume of the set of separable
states” [1]. Certainly, any particular answer to this question
will crucially depend upon the measure that is attached to
the systems in question. A large body of literature has arisen
from the 1998 study, and we seek to make a significant
contribution to it, addressing heretofore unsolved problems.
Let us point out thework of Aubrun et al. [2], which addresses
questions of a somewhat similar nature to those examined
below while employing the same class of measures. However,
their work is set in an asymptotic framework, while we will be
concerned with obtaining exact finite-dimensional results (cf.
[3]). On the other hand, Singh et al. [4] did focus on finite-
dimensional scenarios but with a distinct form of measure,
the one originally used in [1].

We have investigated the possibility of extending to the
class of “induced measures in the space of mixed quantum
states” [5, 6] the line of analysis reported in [7, 8],

the principal separability probability findings of which most
notably the two-qubit conjecture of 8/33 ≈ 0.242424 has
recently been robustly supported, with the use of extensive
Monte-Carlo sampling by Fei and Joynt [9] as well as by Milz
and Strunz to somewhat similar effect [10, Figure 4, equations
(30), (31)] (cf. [11, Table 1]).This earlier line of work pertained
to the use of the Hilbert-Schmidt measure (the particular
symmetric case, 𝐾 = 𝑁, of the induced measures) on the
high-dimensional convex sets of generalized (real-, complex-,
quaternionic-entried) two-qubit (𝑁 = 4) states.

In [7, page 30], a central role had been played by the
(not yet formally proven) determinantal moment formula
obtained there
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on the basis of extensive computations. Here 𝜌
PT denotes

the partial transpose [12] of the density matrix 𝜌 and |𝜌|,
its determinant and generalized hypergeometric function
notation, is employed. The brackets represent averaging with
respect to Hilbert-Schmidt measure [13]. Furthermore, 𝛼 is a
random-matrix Dyson-index-like parameter [14], assuming,
in particular, the value 1 for the standard (fifteen-dimensional
convex set of) density matrices with complex-valued off-
diagonal entries.

It subsequently occurred to us that this hypergeometric-
based moment formula could be readily adapted to the
broader class of random induced measures by considering,
in the notation of [5, 6], that

𝑘 = 𝐾−𝑁, (2)

where 𝐾 is the dimension of the ancilla/environment state,
over which the tracing operation is performed.

As in the earlier work [7, 8], a high-precision density-
approximation (inverse) procedure of Provost, incorporating
the first 11,401 such determinantal moments, strongly indi-
cates that the random induced-measure separability proba-
bilities (𝑘 = 1, 2, . . .) assume interesting, relatively simple
rational values in the two-re[al]bit (𝛼 = 1/2), (standard)
two-qubit (𝛼 = 1), and two-quater[nionic]bit (𝛼 = 2) cases,
particularly so for 𝛼 = 1 (Section 2). One striking example is
that for 𝑘 = 3; the 𝛼 = 1 separability probability is found to be
27/38 = 33/(2 ⋅ 19) (to fifteen decimal places). In fact, based
on extensive calculations (𝑘 = 0, . . . , 15, . . .) of this nature,
we are able to deduce rather simple companion (rebit, qubit,
quaterbit) formulas (3)–(5) that successfully reproduce the
rational values assumed for general integer and half-integer
𝑘 (Section 3).

Further efforts along these lines have been given in a
subsequent paper [15], in which the determinantal inequality
|𝜌

PT
| > |𝜌| is now imposed rather than the broader inequality

|𝜌
PT
| > 0. Of course, |𝜌| ≥ 0, while |𝜌PT| is both a necessary

and sufficient condition for separability here [12, 16]. There,
equivalent hypergeometric- and difference-equation-based
formulas, 𝑄(𝑘, 𝛼) = 𝐺

𝑘

1(𝛼)𝐺
𝑘

2(𝛼), for 𝑘 = −1, 0, 1, . . . , 9,
were given for that (rational-valued) portion of the total
separability probability satisfying the stricter inequality. We
also preliminarily investigate this problembelow in Section 4.

Milz and Strunz [10] have recently reported a highly
interesting finding that the conjectured Hilbert-Schmidt
separability probability of 8/33 ≈ 0.242424 holds constant
along the radius of the Bloch sphere of either of the reduced
subsystems of generic two-qubit (𝛼 = 1) systems. We
are presently investigating the nature that the separability
probability is taken as a joint function of the radii of the two
single-qubit subsystems and related questions.

2. Analysis

We pursue the indicated extension of our earlier (Hilbert-
Schmidt-based) work to random induced measures, in gen-
eral. As in [7, 8], the determinantal moment formula above is
employed in the Legendre polynomial-based (Mathematica-
implemented) density approximation (inverse) procedure
of Provost [17]. This possesses a least-squares rationale.

The program as originally presented is speeded by incor-
porating the well-known recursion formula for Legendre
polynomials so that successive polynomials do not have to be
computed ab initio. The computations are all exact, in nature,
rather than numerical. Provost advises that the procedure
should be regarded as an “approximation” rather than an
“estimation” scheme [17]. Let us note that the implementation
of the procedure requires considerable caution and an adap-
tive strategy when the term (𝑘 − 𝑗 + 1)

𝑛−𝑗
[7, Section D.2] in

the underlying summation formula for the hypergeometric-
based determinantal moments is zero. It is zero if 𝑘 − 𝑗 + 1 ≤

0 ≤ 𝑘 + 𝑛 − 2𝑗, that is, if values 𝑗 for which 𝑘 + 1 ≤ 𝑗 and
2𝑗 ≤ 𝑘 + 𝑛 occur in the summation 𝑗 = 0, . . . , 𝑛.

Now, with the use of an unprecedentedly large number
(11,401) of the determinantal moments, we found, (to ten
decimal places) for 𝑘 = 1, the separability probability of the
standard, complex (𝛼 = 1) 15-dimensional convex set of two-
qubit states to be (61/143) = 61/(11 ⋅13) ≈ 0.4265734. On the
other hand, for the Hilbert-Schmidt case (𝑘 = 𝐾 − 𝑁 = 0),
a very compelling body of evidence of a number of types
(though yet no formal proof) has been adduced that the
corresponding separability probability, as has been already
noted, is 8/33 = 23/(3 ⋅ 11) ≈ 0.242424 [7–10].

For the quaternionic (𝛼 = 2) case, the induced-measure
(𝑘 = 1) separability probability (now to thirteen decimal
places) was 3736/22287 = (23 ⋅ 467)/(3 ⋅ 17 ⋅ 19 ⋅ 23) ≈

0.16763135, while the Hilbert-Schmidt counterpart strongly
appears to be 26/323 = (2 ⋅ 13)/(17 ⋅ 19) ≈ 0.0804953 [7–9].

Let us further note, though any immediate quantum-
mechanical random-matrix division-algebra interpretation
does not seem at hand for 𝛼 = 3, that for 𝑘 = 1, we
obtain a “separability-probability” approximant, based on
the 11,401 moments, that, to a remarkable sixteen decimal
places equaled 8159/124062 = (41 ⋅ 199)/(2 ⋅ 3 ⋅ 23 ⋅ 29 ⋅

31) ≈ 0.0657655. This particularly high accuracy appears to
essentially be an artifact of the Legendre polynomial-based
procedure that commences with a uniform distribution over
the interval |𝜌| ∈ [−1/16, 1/256]. For such a distribution, the
probability over the “separability” interval of [0, 1/256] is the
ratio of 1/256 to (1/16 + 1/256), that is, 1/17 ≈ 0.0588235,
quite near to 0.0657655. So as separability probability approx-
imants increasingly deviate from the uniform-based one of
1/17, at least for specific 𝑘, we can expect convergence of the
density-approximation procedure to relatively weaken.

For the two-rebit scenario (𝛼 = 1/2), the associated
Hilbert-Schmidt separability probability strongly appears to
be 29/64 = 29/26 ≈ 0.453125 [7, 8], while in the random
induced-measure 𝑘 = 1 counterpart, we obtain (to almost
nine decimal places) a value once again larger than that for the
Hilbert-Schmidt case of 𝑘 = 0, that is, 515/768 = (5⋅103)/(28 ⋅
3) ≈ 0.670573. Note the powers of 2 in both denominators,
a phenomenon that will continue to be observed for rebit-
related results.

In Tables 1, 2, and 3, we present our conclusions, based on
such high-precision calculations, as to the rational values (𝑘 =

0, 1, . . . , 8) assumed by these induced-measure separability
probabilities. Let us note that with the sole exception of 𝑘 =

7, the rational values assumed by the (standard) two-qubit
(𝛼 = 1) induced states have both smaller denominators and
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Table 1: Two-rebit (𝛼 = 1/2) separability probabilities.

𝑘 = 0 29
64

29
26

0.453125

𝑘 = 1 515
768

5 ⋅ 103
28 ⋅ 3

0.670573

𝑘 = 2 1645
2048

5 ⋅ 7 ⋅ 47
211

0.803222

𝑘 = 3 31641
35840

3 ⋅ 53 ⋅ 199
210 ⋅ 5 ⋅ 7

0.882840

𝑘 = 4 274373
294912

11 ⋅ 24943
215 ⋅ 32

0.930355

𝑘 = 5 439777
458752

13 ⋅ 33829
216 ⋅ 7

0.958638

𝑘 = 6 11251151
11534336

11251151
220 ⋅ 11

0.975448

𝑘 = 7 30224045
30670848

5 ⋅ 17 ⋅ 53 ⋅ 6709
218 ⋅ 32 ⋅ 13

0.985432

𝑘 = 8 10395147
10485760

3 ⋅ 7 ⋅ 19 ⋅ 26053
221 ⋅ 5

0.991358

numerators than the other two cases tabulated, indicative,
presumably, in some manner, of their greater “naturalness.”

3. Three Companion Separability
Probability Formulas

Further extending the entries of the two-qubit table (Table 2)
but not explicitly showing the results here, to 𝑘 = 17, appli-
cation of the Mathematica command FindSequenceFunction
to the sequence of length eighteen obtained plus subsequent
simplification procedures yielded the governing rule
𝑃
qubit
𝑘

= 1

−
3 4𝑘+3 (2𝑘 (𝑘 + 7) + 25) Γ (𝑘 + 7/2) Γ (2𝑘 + 9)

√𝜋Γ (3𝑘 + 13)
.

(3)

Here 𝑃
qubit
𝑘

is the separability probability of the (15-
dimensional) standard, complex two-qubit systems endowed
with the induced measure 𝑘 = 𝐾 − 4. This formula, thus,
successfully reproduces the entries of Table 2, as well as the
subsequent ones (𝑘 = 9, . . . , 17) we have approximated to
high precision, making use of the 11,401 moments in the
Provost Legendre polynomial-based algorithm. For 𝑘 = 0,
formula (3) does, in fact, yield the apparent Hilbert-Schmidt
separability probability of 8/33 [7–9] (Table 2).

Similarly, employing a somewhat longer sequence 𝑘 =

0, . . . , 21, we obtained the quaternionic (𝛼 = 2) counterpart

𝑃
quaterbit
𝑘

= 1− 4𝑘+6 (𝑘 (𝑘 (2𝑘 (𝑘 + 21) + 355) + 1452) + 2430) Γ (𝑘 + 13/2) Γ (2𝑘 + 15)
3√𝜋Γ (3𝑘 + 22)

, (4)

yielding the 𝑘 = 0 (Hilbert-Schmidt) value of 26/323.
Furthermore, for the rebit (𝛼 = 1/2) scenario, making
analogous use of the sequence 𝑘 = 0, . . . , 15, we found

𝑃
rebit
𝑘

= 1− 4𝑘+1 (8𝑘 + 15) Γ (𝑘 + 2) Γ (2𝑘 + 9/2)
√𝜋Γ (3𝑘 + 7)

, (5)

yielding for 𝑘 = 0, the result 29/64.
In Figure 1, we show a joint plot of these three separability

probability formulas, with the rebit one (𝛼 = 1/2) dominating
the qubit one (𝛼 = 1), which in turn dominates the
quaterbit (𝛼 = 2) curve. In the limit 𝑘 → ∞, the three
curves/probabilities all approach 1 (cf. [2]). We have found
[15, Section III] through analytic means that, for each of
𝛼 = 1, 2, 3, 4 and 1/2, 3/2, 5/2, 9/2, as 𝑘 → ∞, the ratio
of the logarithm of the (𝑘 + 1)st separability probability to
the logarithm of the 𝑘th separability probability is 16/27.
Presumably, the pattern continues for larger 𝛼, but the
required computations have, so far, proved too challenging.

It is interesting to observe, additionally, that, for 𝑘 =

−1 (i.e., 𝐾 = 3), a value not apparently susceptible to use
of the principal 5𝐹4-hypergeometric determinantal moment

formula and the density approximation (inverse) procedure
of Provost [17], the three basic formulas yield the (now smaller
than Hilbert-Schmidt) further simple rational values 1/8,
1/14 and 11/442 for the rebit, qubit, and quaterbit cases,
respectively (cf. [2, page 130]). Furthermore, for 𝑘 = −2 (𝐾 =

2), the rebit formula has a singularity, the qubit formula yields
0, and the quaterbit one gives 1/429 = 1/(3 × 11 × 13) ≈

0.002331.
We have been able to formally extend this series of

three formulas to other values of 𝛼 as well including 𝛼 =

3/2, 5/2, 3, 7/2, 4, 9/2, 5, 6, . . . , 13 obtaining similarly struc-
tured (increasingly larger) formulas. A major challenge that
we are continuing to address is to find a single master formula
that encompasses these several results and can itself yield
the formula for any specific half-integer or integer value of
𝛼 (Appendix A).

4. Division of Separability Probabilities
Based on Determinantal Inequalities

We have also begun to investigate related aspects of the
geometry of random-induced generalized two-qubit states,
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Table 2: Two-qubit (𝛼 = 1) separability probabilities.

𝑘 = 0 8
33

23

3 ⋅ 11
0.242424

𝑘 = 1 61
143

61
11 ⋅ 13

0.426573

𝑘 = 2 259
442

7 ⋅ 37
2 ⋅ 13 ⋅ 17

0.585973

𝑘 = 3 27
38

33

2 ⋅ 19
0.710526

𝑘 = 4 5960
7429

23 ⋅ 5 ⋅ 149
17 ⋅ 19 ⋅ 23

0.802261

𝑘 = 5 379
437

379
19 ⋅ 23

0.867277

𝑘 = 6 63881
70035

127 ⋅ 503
3 ⋅ 5 ⋅ 7 ⋅ 23 ⋅ 29

0.912129

𝑘 = 7 1169237
1240620

37 ⋅ 31601
22 ⋅ 3 ⋅ 5 ⋅ 23 ⋅ 29 ⋅ 31

0.942461

𝑘 = 8 25963
26970

7 ⋅ 3709
2 ⋅ 3 ⋅ 5 ⋅ 29 ⋅ 31

0.962662

Table 3: Two-quaterbit (𝛼 = 2) separability probabilities.

𝑘 = 0 26
323

2 ⋅ 13
17 ⋅ 19

0.080495

𝑘 = 1 3736
22287

23 ⋅ 467
3 ⋅ 17 ⋅ 19 ⋅ 23

0.167631

𝑘 = 2 1807
6555

13 ⋅ 139
3 ⋅ 5 ⋅ 19 ⋅ 23

0.275667

𝑘 = 3 3919
10005

3919
3 ⋅ 5 ⋅ 23 ⋅ 29

0.391704

𝑘 = 4 104379
206770

3 ⋅ 11 ⋅ 3163
2 ⋅ 5 ⋅ 23 ⋅ 29 ⋅ 31

0.504807

𝑘 = 5 16387
26970

7 ⋅ 2341
2 ⋅ 3 ⋅ 5 ⋅ 29 ⋅ 31

0.607601

𝑘 = 6 69475
99789

52 ⋅ 7 ⋅ 397
3 ⋅ 29 ⋅ 31 ⋅ 37

0.696219

𝑘 = 7 203123
263958

229 ⋅ 887
2 ⋅ 3 ⋅ 29 ⋅ 37 ⋅ 41

0.769527

𝑘 = 8 1674746
2022161

2 ⋅ 837373
31 ⋅ 37 ⋅ 41 ⋅ 43

0.828196

making use of a second hypergeometric-based determinantal
moment formula [18, Section II]:

⟨
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Figure 1: Two-rebit > two-qubit > two-quaterbit separability prob-
abilities, given by (5), (3), and (4), respectively, as functions of 𝑘 =

𝐾 − 4.

The range of the determinant difference variable (|𝜌PT| − |𝜌|)

is [−1/16, 1/432], and we shall approximate the contributions
over [0, 1/432] to the total separability probabilities given in
Tables 1, 2, and 3.

In [18], employing the first 9,451 of these moments
(having set 𝑘 to zero) in the density approximation procedure
of Provost [17], we obtained highly convincing numeri-
cal evidence that the basic set of three Hilbert-Schmidt
separability probabilities (29/64, 8/33, 26/323) was evenly
(symmetrically) split (i.e., 29/128, 4/33, 13/323) between the
two scenarios |𝜌PT| > |𝜌| and |𝜌| > |𝜌

PT
| > 0. Now, with

the use of 14,051 such determinantal moments, with 𝑘 = 1,
𝛼 = 1, we obtained an approximant equal to eight decimal
places to 45/286 = (32 ⋅ 5)/(2 ⋅ 11 ⋅ 13) ≈ 0.157342657 for the
case |𝜌PT| > |𝜌|. Employing the total separability probability
𝑘 = 1 result of 61/143 in Table 2, we find a complementary
(larger) approximant of 7/26 = 7/(2 ⋅ 13) ≈ 0.269230769;
so the symmetry present in the Hilbert-Schmidt case (e.g.,
8/33 = 4/33 + 4/33) is lost for 𝑘 ̸= 0.

Similarly, for the 𝑘 = 1, 𝛼 = 2 counterpart, we obtain
an approximant equal, to almost twelve decimal places, to
2056/37145 = (23 ⋅ 257)/(5 ⋅ 17 ⋅ 19 ⋅ 23) ≈ 0.0553506528470,
when |𝜌

PT
| > |𝜌|, and thus, 32/285 = 25/(3 ⋅ 5 ⋅

19) ≈ 0.1122807017544 for the complementary (larger)
approximant.

To complete the basic triad, that is, 𝑘 = 1 and 𝛼 = 1/2
(for which convergence is typically weakest), for |𝜌PT| > |𝜌|,
we have an approximant equal, to more than six decimal
places, to 281/1024 = 281/210 ≈ 0.2744140625 and a
complementary (larger, again) approximant of 1217/3072 =

1217/(210 ⋅3) ≈ 0.3961588542. Note, again, the occurrence of
powers of 2 in the 𝛼 = 1/2 case.

For 𝑘 = −1, 𝛼 = 2, it is interesting to note that the
approximation of the probability |𝜌

PT
| > |𝜌| is 11/442 to

ten decimal places. This is the same rational value we found
above for the total separability probability. It, thus, appears
thatwe can conclude that the complementary probability (i.e.,
for |𝜌| > |𝜌

PT
| > 0) is now smaller, in fact, zero, in contrast to

the 𝑘 = 1 case. The complementary probability also appears
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Table 4: Proportions of total separability probabilities |𝜌PT| > |𝜌|.

𝛼
1
2

1 2

𝑘 = 0 1
2

1
2

1
2

𝑘 = 1 843
2060

45
122

771
2335

𝑘 = 2 9949
26320

1553
4921

26503
104806

𝑘 = 3 — 3073
10557

51585
242978

𝑘 = 4 — 2087
7450

2195945
11586069

𝑘 = 5 — — 4390079
24859079

𝑘 = 6 — — 8310451
48993770
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Figure 2: Proportion of the total random-induced separability
probabilities, based on 9,201 moments, accounted for by the region
|𝜌

PT
| > |𝜌|. The two-rebit (𝛼 = 1/2) curve is dominant, the two-

qubit (𝛼 = 1) is intermediate, and the two-quaterbit (𝛼 = 2) curve is
subordinate.

to be zero for the two companion cases of 𝑘 = −1, 𝛼 = 1, and
𝛼 = 1/2.

In Figure 2, we show, based on numerical results using
9,201 moments, the proportion of the three basic total
random induced separability probabilities (Tables 1, 2, and 3),
as a function of 𝑘, accounted for by the region |𝜌PT| > |𝜌|. We
have been investigating the possibility of obtaining explicit
formulas, as we have been able to do above ((3), (4), and (5))
for the total separability probabilities (i.e., independently of
whether |𝜌| > |𝜌

PT
| > 0 or |𝜌PT| > |𝜌|), for these sets of

complementary probabilities. To even hope to achieve such a
goal, it seems necessary to fill in considerably more rows of
Table 4 than we have so far been able to do (cf. [15]).

5. Alternative Density
Approximation Procedure

In pursuit of such a goal, we have developed an alternative
(Appendix B) to the Legendre polynomial-based density
approximation procedure of Provost [17], of which we have

made abundant use above and in our earlier work [7, 8,
18]. Though well-conditioned, it perhaps is relatively slow to
converge for our purposes, since it is taken as the baseline
(starting) distribution, the uniform one, which is far from
the sharply-peaked ones, with vanishing endpoints, we have
encountered in our separability probability investigations.
The approach outlined in Appendix B uses base functions
of the form ((𝑥 − 𝑎)(𝑏 − 𝑥))

𝛼 where 𝛼 is a small positive
integer. Provost does present a number of codes other than
the Legendre polynomial one including one based on Jacobi
polynomials [17, pages 15, 24]. It employs an adaptive strategy
of matching the first and second given moments to those of
a beta distribution; but we have found this algorithm to be
highly ill-conditioned in our specific applications.

6. Conclusions

We have reported above some considerable successes in our
effort to extend to random induced measures [5, 6], earlier
separability probability work [7, 8] based on the Hilbert-
Schmidt measure (the particular symmetric 𝑁 = 𝐾 case of
the random induced measures), and the inequality |𝜌PT| > 0.
Further efforts using the more restrictive inequality |𝜌PT| >
|𝜌|utilized in Section 4 have been given in a subsequent paper
[15]. These equivalences between certain hypergeometric-
based formulas and difference equations have been noted.

Let us importantly note that in the recent study [19] the
(random inducedmeasure) separability probability problems
posed above, have, in fact, been exhaustively formally solved
for the “toy” seven-dimensional𝑋-states model [20] of 4 × 4
density matrices. Here, contrastingly, we have concentrated
on the more general cases of 4 × 4 density matrices with
none of the off-diagonal entries a priori nullified (as they
are in the 𝑋-states model). Although we have developed
certain formulas here, for which the evidentiary support is
quite considerable, we still lack formal proofs in this higher-
dimensional venue.

We continue to investigate these problems in search of
a still more definitive (“master formula”) resolution of them
(Appendix A). As a possible tool in such research, we have
developed (Appendix B), an alternative density approxima-
tion procedure to that of Provost [17], on which we have
strongly relied to this point in obtaining exact separability
probability results.

Appendices

A. Master Formula Investigation

This appendix is based on the random induced measure
separability probability formulas we have obtained for 𝛼 =

1/2, 3/2, 5/2, 7/2, 1, . . . 13.
The purpose is to find 𝑃{|𝜌

PT
| > 0} with respect to the

normalized measure |𝜌|𝑘 with parameter 𝛼. The values 𝛼 =

1/2, 1, 2 correspond to the real, complex, quaternion cases,
respectively. The obtained formulas have the form

𝑃 {
󵄨󵄨󵄨󵄨󵄨
𝜌
PT󵄨󵄨󵄨󵄨󵄨 > 0} = 1−𝐹 (𝛼, 𝑘) . (A.1)



6 Advances in Mathematical Physics

Define

𝐺 (𝛼, 𝑘) := 4𝑘 Γ (𝑘 + 3𝛼 + 3/2) Γ (2𝑘 + 5𝛼 + 2)
Γ (1/2) Γ (3𝑘 + 10𝛼 + 2)

. (A.2)

The first observation is that when 𝛼 is integer or half-
integer 𝐹(𝛼, 𝑘)/𝐺(𝛼, 𝑘) is a rational function of 𝑘, that is, a
ratio of polynomials.

The second observation is that when 𝛼 is an integer then

𝐹 (𝛼, 𝑘) = 𝑝
𝛼
(𝑘) 𝐺 (𝛼, 𝑘) , (A.3)

where 𝑝
𝛼
(𝑘) is a polynomial of degree 4𝛼 − 2 with leading

coefficient 28𝛼+1/(2𝛼 − 1)!, and 𝑝
𝛼
can be factored as (𝑘 +

𝑔1(𝛼))(𝑘 + 𝑔1(𝛼) + 1) ⋅ ⋅ ⋅ (𝑘 + 𝑔2(𝛼))𝑝𝛼(𝑘), where 𝑝
𝛼
(𝑘) is

irreducible in general; furthermore

𝑔1 (𝛼) := 2𝛼+ 1+ ⌊
𝛼 + 1
2

⌋ ,

𝑔2 (𝛼) := 3𝛼+ ⌊
𝛼 + 1
3

⌋ .

(A.4)

The sequence of values [𝑔1(𝛼), 𝑔2(𝛼)] for 𝛼 = 2, . . . , 14 is

[6, 7] , [9, 10] , [11, 13] , [14, 17] , [16, 20] , [19, 23] ,

[21, 27] , [24, 30] , [26, 33] , [29, 37] , [31, 40] ,

[34, 43] , [36, 47] .

(A.5)

These conjectures imply that the degree of 𝑝
𝛼
(𝑘) is

4𝛼− 2− (𝑔2 (𝛼) + 1−𝑔1 (𝛼))

= 3𝛼+ ⌊
𝛼 + 1
2

⌋ − ⌊
𝛼 + 1
3

⌋ − 2.
(A.6)

The coefficient of 𝑘4𝛼−3 in (28𝛼+1/(2𝛼 − 1)!)−1𝑝
𝛼
(𝑘) (note

that this is monic, coefficient of 𝑘4𝛼−2 is 1) is given by

𝑐2 (𝛼) := − 3+ 3
2
𝛼+

17
2
𝛼
2

+(⌊
𝛼 − 1
4

⌋ − ⌊
𝛼

4
⌋) (1+ 5

2
𝛼) ,

(A.7)

equivalently

𝑐2 (𝛼) =
{{

{{

{

−4 − 𝛼 +
17
2
𝛼
2
, 𝛼 ≡ 0 mod 4,

−3 + 3
2
𝛼 +

17
2
𝛼
2
, 𝛼 ̸= 0 mod 4.

(A.8)

To determine the second coefficient of 𝑝
𝛼
, note that the

second coefficient of (𝑘𝑛 + 𝑎2𝑘
𝑛−1

+ ⋅ ⋅ ⋅ )(𝑘
𝑚

+ 𝑏2𝑘
𝑚−1

+ ⋅ ⋅ ⋅ ) =

𝑘
𝑛+𝑚

+(𝑎2+𝑏2)𝑘
𝑛+𝑚−1

+⋅ ⋅ ⋅ is 𝑎2+𝑏2, so the second coefficient

of (𝑘 + 𝑔1(𝛼))(𝑘 + 𝑔1(𝛼) + 1) ⋅ ⋅ ⋅ (𝑘 + 𝑔2(𝛼)) is subtracted from
𝑐2(𝛼). This coefficient is

𝑐
󸀠

2 (𝛼) :=

𝑔2(𝛼)

∑

𝑖=𝑔1(𝛼)

𝑖 =
1
2
(𝑔1 (𝛼) + 𝑔2 (𝛼))

⋅ (𝑔2 (𝛼) − 𝑔1 (𝛼) + 1)

=
1
2
(5𝛼+ 1+ ⌊

𝛼 + 1
2

⌋ + ⌊
𝛼 + 1
3

⌋)

⋅ (𝛼 + ⌊
𝛼 + 1
3

⌋ − ⌊
𝛼 + 1
2

⌋) .

(A.9)

The second coefficient of 𝑝
𝛼
is 𝑐2(𝛼) − 𝑐

󸀠

2(𝛼); the sequence of
values for 𝛼 = 1, . . . , 14 is

[7, 21, 59, 92, 155, 222, 319, 364, 510, 626, 745, 853, 1068, 1186] . (A.10)

Denote the coefficient of 𝑘4𝛼−4 in (28𝛼+1/(2𝛼−1)!)−1𝑝
𝛼
(𝑘)

by 𝑐3(𝛼), and then from the calculated values (𝛼 = 1, . . . , 13)
we find for 𝛼 ̸= 0mod 4 that

𝑐3 (𝛼) = 11− 389
24

𝛼−
333
16

𝛼
2
+
115
48

𝛼
3
+
289
8

𝛼
4
. (A.11)

The third observation is that when 𝛼 is a half-integer then

𝐹 (𝛼, 𝑘) =
𝑝
𝛼
(𝑘)

(𝑘 + 2𝛼 + 1)
𝛼+1/2

𝐺 (𝛼, 𝑘) , (A.12)

where 𝑝
𝛼
(𝑘) is a polynomial of degree 5𝛼 − 3/2 with leading

coefficient 28𝛼+1/(2𝛼 − 1)!.

B. A Modification of the Provost-Legendre
Method Using Gegenbauer Polynomials

Weconsider the problemof approximating a density function
with given moments using Jacobi polynomials for some
choice of parameters. The technique uses a construction of
Provost [17, Section 4] which is adapted for a specific aspect
of the unknown probability density, namely, Pr{𝑋 > 0}.

Suppose the density 𝑓(𝑥) is supported on the inter-
val [𝑎, 𝑏] with given (i.e., computable) moments 𝜇

𝑛
:=

∫
𝑏

𝑎

𝑥
𝑛

𝑓(𝑥) 𝑑𝑥, and {𝑝
𝑛
(𝑥)} is a family of orthogonal polyno-

mials with weight function 𝑤(𝑥) also on [𝑎, 𝑏]; the structure
constants are

ℎ
𝑛
:= ∫

𝑏

𝑎

𝑝
𝑛
(𝑥)

2
𝑤 (𝑥) 𝑑𝑥, 𝑛 = 0, 1, 2, . . . (B.1)

The aim is to (implicitly) determine the expansion

𝑓 (𝑥) =

∞

∑

𝑛=0
𝜆
𝑛
𝑝
𝑛
(𝑥) 𝑤 (𝑥) (B.2)

and to apply it to the approximation of (where 𝑎 < 0 < 𝑏)

Pr {𝑋> 0} = ∫

𝑏

0
𝑓 (𝑥) 𝑑𝑥

=

∞

∑

𝑛=0
𝜆
𝑛
∫

𝑏

0
𝑝
𝑛
(𝑥)𝑤 (𝑥) 𝑑𝑥.

(B.3)
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By orthogonality, for𝑚 = 0, 1, 2, . . .

∫

𝑏

𝑎

𝑝
𝑚
(𝑥) 𝑓 (𝑥) 𝑑𝑥

=

∞

∑

𝑛=0
𝜆
𝑛
∫

𝑏

𝑎

𝑝
𝑛
(𝑥) 𝑝
𝑚
(𝑥) 𝑤 (𝑥) 𝑑𝑥 = 𝜆

𝑚
ℎ
𝑚
.

(B.4)

To evaluate the left hand side compute the coefficients {𝑎
𝑛𝑖

:

0 ≤ 𝑖 ≤ 𝑛} in the expansions

𝑝
𝑛
(𝑥) =

𝑛

∑

𝑖=0
𝑎
𝑛𝑖
𝑥
𝑖

, (B.5)

when {𝑝
𝑛
(𝑥)} are shifted Jacobi polynomials (this requires

extra computation since the shortest expansions are in pow-
ers of (𝑥 − 𝑎) or (𝑏 − 𝑥)); then

𝜆
𝑚
ℎ
𝑚
= ∫

𝑏

𝑎

𝑚

∑

𝑖=0
𝑎
𝑚𝑖
𝑥
𝑖

𝑓 (𝑥) 𝑑𝑥 =

𝑚

∑

𝑖=0
𝑎
𝑚𝑖
𝜇
𝑖
,

𝜆
𝑚
=

1
ℎ
𝑚

𝑚

∑

𝑖=0
𝑎
𝑚𝑖
𝜇
𝑖
.

(B.6)

Themain problem is to approximate ∫𝑏
𝜉

𝑓(𝑥) 𝑑𝑥 for some
given 𝜉: so

∫

𝜉

𝑎

𝑓 (𝑥) 𝑑𝑥 =

∞

∑

𝑛=0
𝜆
𝑛
∫

𝑏

𝜉

𝑝
𝑛
(𝑥) 𝑤 (𝑥) 𝑑𝑥. (B.7)

Compute

𝑞
𝑛
:= ∫

𝑏

𝜉

𝑝
𝑛
(𝑥) 𝑤 (𝑥) 𝑑𝑥, (B.8)

and then

∫

𝑏

𝜉

𝑓 (𝑥) 𝑑𝑥 =

∞

∑

𝑛=0
𝜆
𝑛
𝑞
𝑛
=

∞

∑

𝑛=0

1
ℎ
𝑛

𝑛

∑

𝑖=0
𝑎
𝑛𝑖
𝜇
𝑖
𝑞
𝑛

=

∞

∑

𝑖=0
𝜇
𝑖

∞

∑

𝑛=𝑖

𝑞
𝑛

ℎ
𝑛

𝑎
𝑛𝑖
,

(B.9)

and now we observe that the sum over 𝑛 is the coefficient of
𝑥
𝑖 in

∞

∑

𝑛=0

𝑞
𝑛

ℎ
𝑛

𝑝
𝑛
(𝑥) . (B.10)

Truncate the infinite series to obtain an approximation.

Jacobi Polynomials. We start with background information
about general parameters and then specialize to equal param-
eters. The family {𝑃(𝛼,𝛽)

𝑛
(𝑡)} is orthogonal for (1 − 𝑡)

𝛼

(1 + 𝑡)
𝛽;

consider

𝑃
(𝛼,𝛽)

𝑛
(𝑡) =

(𝛼 + 1)
𝑛

𝑛!

⋅
2
𝐹1 (

−𝑛, 𝑛 + 𝛼 + 𝛽 + 1
𝛼 + 1

;
1 − 𝑡

2
) ,

𝑑

𝑑𝑡
{(1− 𝑡)

𝛼+1
(1+ 𝑡)

𝛽+1
𝑃
(𝛼+1,𝛽+1)
𝑛−1 (𝑡)}

= − 2𝑛 (1− 𝑡)
𝛼

(1+ 𝑡)
𝛽

𝑃
(𝛼,𝛽)

𝑛
(𝑡) ,

ℎ
𝑛
= 2𝛼+𝛽+1𝐵 (𝛼+ 1, 𝛽 + 1)

⋅
(𝛼 + 1)

𝑛
(𝛽 + 1)

𝑛
(𝛼 + 𝛽 + 𝑛 + 1)

𝑛! (𝛼 + 𝛽 + 2)
𝑛
(𝛼 + 𝛽 + 2𝑛 + 1)

.

(B.11)

Equation (B.11) is from [21, 18.9.16]. To shift to the interval
[𝑎, 𝑏] set

𝑥 =
1
2
((𝑏 − 𝑎) 𝑡 + 𝑎 + 𝑏) , 𝑡 =

2𝑥 − 𝑎 − 𝑏

𝑏 − 𝑎
,

𝑤 (𝑥) = (
2

𝑏 − 𝑎
)

𝛼+𝛽+1
(𝑏 − 𝑥)

𝛼

(𝑥 − 𝑎)
𝛽

,

𝑝
𝑛
(𝑥) = 𝑃

(𝛼,𝛽)

𝑛
(
2𝑥 − 𝑎 − 𝑏

𝑏 − 𝑎
) ,

(B.12)

and the key quantities 𝑞
𝑛
are found by

∫

𝑏

𝜉

𝑝
𝑛
(𝑥) 𝑤 (𝑥) 𝑑𝑥 = (

2
𝑏 − 𝑎

)

𝛼+𝛽+1

⋅ ∫

𝑏

𝜉

𝑃
(𝛼,𝛽)

𝑛
(
2𝑥 − 𝑎 − 𝑏

𝑏 − 𝑎
) (𝑏 − 𝑥)

𝛼

(𝑥 − 𝑎)
𝛽

𝑑𝑥

= ∫

1

𝜁

𝑃
(𝛼,𝛽)

𝑛
(𝑡) (1− 𝑡)

𝛼

(1+ 𝑡)
𝛽

𝑑𝑡 = −
1
2𝑛

⋅ ∫

1

𝜁

𝑑

𝑑𝑡
{(1− 𝑡)

𝛼+1
(1+ 𝑡)

𝛽+1
𝑃
(𝛼+1,𝛽+1)
𝑛−1 (𝑡)} 𝑑𝑡

=
1
2𝑛

(1− 𝜁)
𝛼+1

(1+ 𝜁)
𝛽+1

𝑃
(𝛼+1,𝛽+1)
𝑛−1 (𝜁) ,

𝑛 ≥ 1; 𝜁 = 2𝜉 − 𝑎 − 𝑏

𝑏 − 𝑎
,

(B.13)

and 𝑞0 = ∫
1
𝜁

(1 − 𝑡)
𝛼

(1 + 𝑡)
𝛽

𝑑𝑡.
In the case 𝑎 = −1/16, 𝑏 = 1/432, 𝜉 = 0 the transforma-

tions are

𝑡 =
216
7

𝑥+
13
14

,

𝜁 =
13
14

,

𝑝
𝑛
(𝑥) = 𝑃

(𝛼,𝛽)

𝑛
(
216
7

𝑥+
13
14

) .

(B.14)
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Thus, the strategy is to choose appropriate parameters 𝛼, 𝛽
(small integer values appear toworkwell) and then determine
the coefficients of {𝑥𝑖} in the truncated series

∞

∑

𝑛=0

𝑞
𝑛

ℎ
𝑛

𝑃
(𝛼,𝛽)

𝑛
(
2𝑥 − 𝑎 − 𝑏

𝑏 − 𝑎
) . (B.15)

Computational Details. Given [𝑎, 𝑏] with 𝑎 < 0 < 𝑏, let
𝑐0 := −(𝑎 + 𝑏)/(𝑏 − 𝑎), 𝑐1 := 2/(𝑏 − 𝑎) and specialize to
𝛼 = 𝛽 = 𝜆 − 1/2 ≥ 0, so that the weight is (1 − 𝑡

2
)
𝛼 and

the Gegenbauer polynomials 𝑃𝜆
𝑛
form the orthogonal basis.

We use the normalized polynomials with 𝑃
𝜆

𝑛
(1) = 1. (Note

that 𝑃𝜆
𝑛
(𝑡) = (𝑛!/(𝜆 + 1/2)

𝑛
)𝑃
(𝜆−1/2,𝜆−1/2)
𝑛

(𝑡).) The recurrence
is 𝑃𝜆0 (𝑡) = 1, 𝑃𝜆1 (𝑡) = 𝑡,

𝑃
𝜆

𝑛+1 (𝑡) =
2𝑛 + 2𝛼 + 1
𝑛 + 2𝛼 + 1

𝑡𝑃
𝜆

𝑛
(𝑡) −

𝑛

𝑛 + 2𝛼 + 1
𝑃
𝜆

𝑛−1 (𝑡) ,

𝑛 ≥ 1,

ℎ
𝑛
=
Γ (1/2) Γ (𝛼 + 1)

Γ (𝛼 + 3/2)
𝑛! (2𝛼 + 1)

(2𝛼 + 1)
𝑛
(2𝑛 + 2𝛼 + 1)

= ℎ0𝜂𝑛,

(B.16)

where

𝜂0 = 1,

𝜂
𝑛
=

𝑛 (2𝑛 + 2𝛼 − 1)
(2𝑛 + 2𝛼 + 1) (𝑛 + 2𝛼)

𝜂
𝑛−1, 𝑛 ≥ 1.

(B.17)

See [22, Section 1.4.3]. In the recurrence replace 𝑡 by 𝑐0 + 𝑦,
where 𝑦 = 𝑐1𝑥 (this takes the scaling factor out of the
computations). Let

𝑃
𝜆

𝑛
(𝑐0 +𝑦) =

𝑛

∑

𝑗=0
𝐵
𝑛𝑗
𝑦
𝑗

, (B.18)

and then (with the convention 𝐵
𝑛,−1 = 0)

𝐵00 = 1,

𝐵1,0 = 𝑐0,

𝐵1,1 = 1,

𝐵
𝑛𝑗
=
2𝑛 + 2𝛼 − 1
𝑛 + 2𝛼

(𝑐0𝐵𝑛−1,𝑗 +𝐵
𝑛−1,𝑗−1)

−
𝑛 − 1
𝑛 + 2𝛼

𝐵
𝑛−2,𝑗, 𝑛 ≥ 2, 0 ≤ 𝑗 ≤ 𝑛.

(B.19)

Furthermore,

𝑑

𝑑𝑡
{(1− 𝑡

2
)
𝛼+1

𝑃
𝜆+1
𝑛−1 (𝑡)}

= − 2 (𝛼 + 1) (1− 𝑡
2
)
𝛼

𝑃
𝜆

𝑛
(𝑡) ,

𝑞
𝑛

= ∫

1

𝑐0

(1− 𝑡
2
)
𝛼

𝑃
𝜆

𝑛
(𝑡) 𝑑𝑡

=
1

2 (𝛼 + 1)
(1− 𝑐

2
0 )
𝛼+1

𝑃
𝜆+1
𝑛−1 (𝑐0) , 𝑛 ≥ 1,

𝑞0 = ∫

1

𝑐0

(1− 𝑡
2
)
𝛼

𝑑𝑡,

(B.20)

and 𝑃
𝜆+1
𝑛−1 (𝑐0) = 𝑔

𝑛
can be computed with the recurrence

𝑔1 = 1,

𝑔2 = 𝑐0,

𝑔
𝑛
=
2𝑛 + 2𝛼 − 1
𝑛 + 2𝛼 + 1

𝑐0𝑔𝑛−1 −
𝑛 − 2

𝑛 + 2𝛼 + 1
𝑔
𝑛−2;

(B.21)

thus 𝑞1 = (1/2(𝛼 + 1))(1 − 𝑐
2
0 )
𝛼+1 and 𝑞

𝑛
= 𝑔
𝑛
𝑞1. Note that if

𝛼 and 𝑐0 are rational then the quantities {𝐵
𝑛𝑗
}, {𝜂
𝑛
}, and {𝑔

𝑛
}

can be computed in exact arithmetic.
Suppose the process is terminated at some 𝑚; then

(approximate values)

𝐴0 =
𝑞0
ℎ0

+
𝑞1
ℎ0

𝑚

∑

𝑗=1

𝑔
𝑗

𝜂
𝑗

𝐵
𝑗,0,

𝐴
𝑖
= 𝑐
𝑖

1
𝑞1
ℎ0

𝑚

∑

𝑗=𝑖

𝑔
𝑗

𝜂
𝑗

𝐵
𝑗,𝑖
, 1 ≤ 𝑖 ≤ 𝑚.

(B.22)

Since polynomial interpolation tends to be not numerically
well-conditioned (a lot of cancellation), it is suggested to
compute the quantities {𝑞

𝑗
} and {𝐵

𝑗,𝑖
} to high precision, or

even better, in exact arithmetic for 𝛼 = 0, 1, 2, . . ..
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