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This study investigates the anisotropic characteristics of turbulent energy dissipation rate in a rotating jet flow via direct numerical
simulation.The turbulent energy dissipation tensor, including its eigenvalues in the swirling flows with different rotating velocities,
is analyzed to investigate the anisotropic characteristics of turbulence and dissipation. In addition, the probability density function
of the eigenvalues of turbulence dissipation tensor is presented. The isotropic subrange of PDF always exists in swirling flows
relevant to small-scale vortex structure. Thus, with remarkable large-scale vortex breakdown, the isotropic subrange of PDF is
reduced in strongly swirling flows, and anisotropic energy dissipation is proven to exist in the core region of the vortex breakdown.
More specifically, strong anisotropic turbulence dissipation occurs concentratively in the vortex breakdown region, whereas nearly
isotropic turbulence dissipation occurs dispersively in the peripheral region of the strong swirling flows.

1. Introduction

Vortex breakdown is an intriguing and important phe-
nomenon that occurs in a variety of natural and technological
swirling flows, for example, swirling combustor, cyclone,
bathtub vortex, hurricanes and tornadoes, and spiral galaxies.
In general, the appearance of swirl is caused by the impart-
ment of rotating motion upon the jet which makes the flow
more complicated and has been widely studied in the litera-
ture [1–10]. The scope of this study does not include summa-
rizing existing vast literature of swirling flow investigation;
thus, only a few investigations on this topic were covered.

For example, Chen and Sun [1] addressed the nonlinear
3D instability of a specific type of viscous swirling flow, the
Ossen vortex, by using direct numerical simulation at Re =
5000.They considered the global optimal perturbation as the
initial perturbation and characterized different flow regimes
in axisymmetric cases. Wang and Chen [2] studied vortex

breakdown by solving 3D unsteady Navier-Stokes equations
for swirling pipe flows, including the flow structures in
the bubble domain and the tails behind the breakdown
vortex.Moreover, Shtern et al. [4] studied symmetry breaking
in a meridional steady motion of viscous incompressible
fluids using the laminar axisymmetric “vortex dynamo.”They
demonstrated the feasibility of a supercritical pitchfork bifur-
cation from an initially nonswirling flow to a steady swirling
regime, as Re exceeds a critical value. In addition, with regard
to model study, di Pierro and Abid [5] investigated modeled
inviscid swirling flows, addressing the weak variation of
axial and azimuthal velocities. They checked the asymptotic
results using numerically computed growth rates of linearized
Euler equations for a family of variable-density Batchelor-like
vortices as base flows and so forth.

Turbulent flows are well known to have scientific and
practical importance. However, the full spectrums of the
length and time scales of turbulent flows are impossible to
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solve via computer simulation.Thus, some types of modeling
for Reynolds stresses are needed to simulate high Reynolds
turbulence. For example, the turbulent kinetic energy and
dissipation are involved in the standard form of the two-
equation Reynolds stress turbulence model based on the
Boussinesq-type approximation [11]:
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where 𝐾 is the turbulent kinetic energy, 𝑈
𝑖
is the time-

averaged velocity, and ]
𝑇
is the isotropic turbulent viscosity.

However, this turbulence model is fairly ineffective in simu-
lating anisotropic turbulence due to the theoretical deficiency
for anisotropic nature of turbulent motions, although it is
widely applied in engineering. Thus, numerous studies have
been carried out to further understand the physical aspects of
anisotropic turbulent flows and vortex dynamics [12–14].

In conclusion, swirling flow is present in anisotropic
turbulent flows and is a striking and intriguing case of the
generation and breakdown of strong vortices. However, the
characteristics of the anisotropic nature of turbulent motion
and energy dissipation are not clear, especially in strong
swirling turbulent jet flows. Thus, the present study carried
out a numerical study on the characteristics of energy dissi-
pation tensor in a rotating jet flow. Three swirling numbers
are used, corresponding to weak, intermediate, and strong
swirling levels. The relations of the components of energy
dissipation corresponding to normal and shearing turbulent
fluctuations are explored, including their probability den-
sity function. The specific locations in the swirling flows,
corresponding to the regions of extremely anisotropic and
nearly isotropic turbulent dissipation, are also presented.The
locations indicate the correlation of anisotropic turbulence
dissipation to the large-scale structure of vortex breakdown
and the correlation of isotropic turbulence dissipation to
small-scale vortices.

2. Numerical Description

2.1. Governing Equations. For incompressible Newtonian
fluids, the governing equations can be expressed in dimen-
sionless form as follows:

∇ ⋅ u = 0 (2)

𝜕
𝑡
u + u ⋅ ∇u = −∇𝑝 +

1

Re
Δu, (3)

where u and𝑝 are the velocity and pressure, respectively. Re =
𝑈
0
⋅ 𝑑/] is the Reynolds number, in which 𝑈

0
is the inflow

velocity,𝑑 is the jet diameter at the inlet, and ] is the kinematic
viscosity.

Equations (2) and (3) deal with a three-dimensional time-
dependent flow problem without body force. To solve them,
the finite difference method is applied, where the convec-
tion term is discretized by upwind compact schemes [15],
and the space derivatives and pressure-gradient terms are
discretized by fourth-order compact difference schemes [16],
respectively.The third-order explicit schemes are used to deal

Table 1: Typical real values of variables used in the numerical
simulation.

Scales of the flow domain (mm) 20 ∗ 10 ∗ 10
Scale of jet diameter 𝑑 (mm) 1.0
Grids number𝑁

𝑥
∗ 𝑁
𝑦
∗ 𝑁
𝑧

512 ∗ 256 ∗ 256
Scale of resolution Δ (𝜇m) 39
Mean inlet axial velocity 𝑈

0
(m/s) 71.71

Fluid density (kg/m3) 1.29
Fluid viscosity (Pa⋅s) 1.85 ∗ 10−5

Inflow momentum thickness 𝜆 (/d) 1/20
Reynolds number Re 5000

Swirl number S
Case 1: 0.28;
Case 2: 0.45;
Case 3: 0.59;

Time step Δ𝑡 0.001
Number of simulation step𝑁

𝑠
20000

with the boundary points and to maintain the global fourth-
order spatial accuracy.The time stepping process is integrated
by using the fourth-order Runge-Kutta schemes [17]. The
pressure-Poisson equation is solved to obtain pressure via the
fourth-order finite difference method [18]. The validation of
the codes has been done in a recently published work on
swirling flows [19].

2.2. Boundary Conditions. As shown in Figure 1(a), the flow
configuration contains a rectangular flow domain of 20𝑑 ×

10𝑑 × 10𝑑, where 𝑑 is the diameter of the jet inlet and the
jets are injected from the inlet with a mean velocity 𝑈

0
.

The entire flow domain is discretized by 512 × 256 × 256

Cartesian mesh grids, and the mesh scale is not larger than
Δ𝑥 = 15.625 𝜇m. The Kolmogorov length scale is estimated
in the same order of the finest mesh scale, namely, 𝜂 ∼ 𝑂(Δ𝑥)

[19, 20]. According to the suggestion by Moin and Mahesh
[21], the mesh scale in the same order of the Kolmogorov
scale is fine enough to capture the smallest scale of turbulence.
Thus, the grid testing procedure is omitted here.The time step
is Δ𝑡 = 0.001, and 20000 time steps are simulated for each
case.The nonreflecting boundary condition is utilized for the
outlet condition [22], and the sidewalls are set as nonslipping
wall boundaries.

For axial inflow velocity, a hyperbolic tangent profile is
used within the range of |𝑟 − 𝑟𝑐| < 𝑑/2:
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)] , (4)

where 𝑟𝑐 is the center position of the jet.The reference system
is centered at the inlet with 𝑟𝑐 = 0. 𝜆 is the inflowmomentum
thickness (Table 1) and the ratio of the jet width to the inflow
momentum thickness is 𝑑/𝜆 = 20. For azimuthal inflow
velocity, a polynomial expression is used; that is,

𝑢
𝜃
= 𝑎
0
+ 𝑎
1
𝑟 + 𝑎
2
𝑟
2
+ 𝑎
3
𝑟
3
+ 𝑎
4
𝑟
4
+ 𝑎
5
𝑟
5
, (5)

where the coefficients 𝑎
𝑖
are listed in Table 2. The combined

profiles of axial and azimuthal velocities are shown in



Advances in Mathematical Physics 3

20

16

12

8

0

4

Velocity
inflow

boundary

10
d

10
d

20d Wall boundary

Nonreflecting
outflow
boundary

5

4

3

2

1

0

−1

−2

−3

−4

−5
0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

x
y

z

𝜃

5

4

3

2

1

0

−1

−2

−3

−4

−5

Case 1 Case 3

(a)

1.5

1.0

0.5

0.0

−0.5

−1.0

−1.5

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

r/R

In
flo

w
 v

elo
ci

tie
s

ux
u𝜃 , S1 = 0.28

u𝜃 , S2 = 0.45

u𝜃 , S3 = 0.59

(b)

Figure 1: Sketch of simulation setup: typical vortex streets (a) and inflow velocity profiles (b).

Table 2: Coefficients of the expressions for inflow velocity 𝑢
𝜃
.

𝑆
𝑀

𝑎
0

𝑎
1

𝑎
2

𝑎
3

𝑎
4

𝑎
5

0.28 0 0.72 0.24 16.72 −1.40 −62.38
0.45 0 1.14 0.38 26.56 −2.22 −99.07
0.59 0 1.20 0.50 34.92 −2.92 −130.26

Figure 1(b). In addition, no initial turbulence is introduced to
show the intrinsic full evolution of coherent vortex structures
and interactions.

In addition, swirl number 𝑆 is defined as the ratio of the
axial flux of angular momentum to the axial momentum; that
is,

𝑆 =

2 ∫

𝑑/2

0
2𝜋𝑟
2
𝑢
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𝑢
𝜃
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𝑑 ∫

𝑑/2

0
2𝜋𝑟𝑢
2

𝑥
𝑑𝑟

. (6)

Based on (4) and (5), three swirl numbers are used (Table 2).
From the engineering viewpoint, 𝑆 = 0.28 is considered
as low swirl jets, whereas 𝑆 > 0.59 is considered as strong
swirling flows and 𝑆 = 0.45 is intermediate.

2.3. Reynolds Stress Transport Equation. The Reynolds-aver-
aged Navier-Stokes equation [23] is usually used to solve the
turbulent flows in industrial scales:
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where ⟨⋅⟩ is the time-averaged operator. ⟨𝑢
󸀠

𝑖
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⟩ is the

Reynolds stress tensor, which can be solved through the
Reynolds stress transport equation and is given by

𝜕 ⟨𝑢
󸀠

𝑖
𝑢
󸀠

𝑗
⟩

𝜕𝑡

+ ⟨𝑢
𝑘
⟩

𝜕 ⟨𝑢
󸀠

𝑖
𝑢
󸀠

𝑗
⟩

𝜕𝑥
𝑘

= −⟨𝑢
󸀠

𝑖
𝑢
󸀠

𝑘
⟩

𝜕 ⟨𝑢
󸀠

𝑗
⟩

𝜕𝑥
𝑘

− ⟨𝑢
󸀠

𝑗
𝑢
󸀠

𝑘
⟩

𝜕 ⟨𝑢
󸀠

𝑖
⟩

𝜕𝑥
𝑘

+⟨𝑝
󸀠
(

𝜕𝑢
󸀠

𝑖

𝜕𝑥
𝑗

+

𝜕𝑢
󸀠

𝑗

𝜕𝑥
𝑖

)⟩

−

𝜕

𝜕𝑥
𝑘

(⟨𝑝
󸀠
𝑢
󸀠

𝑖
⟩ 𝛿
𝑗𝑘
+ ⟨𝑝
󸀠
𝑢
󸀠

𝑗
⟩𝛿
𝑖𝑘
+ ⟨𝑢
󸀠

𝑖
𝑢
󸀠

𝑗
𝑢
󸀠

𝑘
⟩

−

1

Re
𝜕 ⟨𝑢
󸀠

𝑖
𝑢
󸀠

𝑗
⟩

𝜕𝑥
𝑘

)

− 2

1

Re
⟨

𝜕𝑢
󸀠

𝑖

𝜕𝑥
𝑘

𝜕𝑢
󸀠

𝑗

𝜕𝑥
𝑘

⟩,

(8)
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energy dissipation tensor. The Reynolds stress tensor
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is relevant to the dissipation of turbulent kinetic energy and
is a symmetric positive definite tensor. Thus, it corresponds
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Figure 2: Cross-sectional visualization of isovortex cores (𝜆
2
= −50, flood by axial velocity 𝑢

𝑥
) at 𝑆
3
= 0.59 at 𝑡 = 5 (a) and 𝑡 = 15 (b) in the

central subregion.

to a diagonalizable matrix, and the anisotropic nature of
the turbulent kinetic energy dissipation is indicated from
the eigenvalues of the diagonalizable matrix. The anisotropic
tensor has three unequal eigenvalues (i.e., at least two of them
are unequal). Thus, the discrepancy between the eigenvalues,
or equivalently, their relation and distribution, can indicate
the anisotropic nature of turbulent kinetic energy dissipation
in swirling flows.

3. Results and Discussions

3.1. Coherent Vortex Structures. The typical vortex structures
are shown in Figure 1(a) when 𝑆

1
= 0.28 and 𝑆

3
= 0.59. For

𝑆
1
= 0.28, the Kelvin-Helmholtz instability dominates the

vortex evolution due to the existence of a shear layer between
the jets and ambient fluids. In contrast, the strong rotating
effect dominates the evolution of the vortex structures for
𝑆
3
= 0.59. A cone-type vortex breakdown is established, and

theK-H instability causes the breakdownof the “cone” feature
from its terminal into the turbulent vortex streets.

Figure 2 shows that the typical cross-sectional visualiza-
tions of the vortex structures are visualized for 𝑆

3
= 0.59

(referring to the jet diameter 𝑑 for the region width). The
early evolution of the vortex for 𝑡 = 5 (Figure 2(a)) has a
full ring-type structure, with a positive stream-wise velocity
(𝑢
𝑥
> 0) in the inner side of the vortex ring (flood by red

color in Figure 2(a) for 0.2 < 𝑢
𝑥
/𝑈
0
< 0.8) and a negative

stream-wise velocity (𝑢
𝑥
< 0) in the outer side of the ring

(flood by blue color in Figure 2(a) for −0.8 < 𝑢
𝑥
/𝑈
0
< −0.2).

Central recirculation then occurs in the center of the jet,
where the velocities are weakly negative.The ring structure of
vortex for 𝑡 = 15 (Figure 2(b)) evolves into more complicated
structures. The diameter of the vortex ring tube becomes
larger and starts to break down, and braid vortices are then
formed.The complex vortex structures indicate the existence
of turbulent vortex motions and dissipation of turbulent
energy.

Based on the observations of Figure 2, the intrinsic
characteristics of the vortex can be reflected by turbulent
energy dissipations. However, these characteristics need to be
explored to show the anisotropic/isotropic turbulent energy

dissipation tensor and its correlation to vortex structures,
among others.

3.2. Dissipation Tensor

3.2.1. Relation of Components of 𝜀
𝑖𝑗
. As previouslymentioned,

𝐸
𝑖𝑗
= 2(1/Re)⟨𝜕

𝑘
𝑢
󸀠

𝑖
𝜕
𝑘
𝑢
󸀠

𝑗
⟩ dissipates turbulent kinetic energy

⟨𝑢
󸀠

𝑖
𝑢
󸀠

𝑗
⟩. 𝐸
𝑖𝑗
is a symmetric positive definite tensor, which

can be diagonalized. In general, three eigenvalues and three
eigenvectors can be obtained in the diagonalization process.
The eigenvectors are orthogonal and denote the three char-
acteristic directions. The corresponding eigenvalues indicate
the magnitudes of dissipation in each direction. Thus, an
anisotropic tensor should have three (at least two) different
eigenvalues, which correspond to different levels of dissipa-
tion in the three characteristic directions. In this way, the
characteristics of anisotropic turbulent motion ⟨𝑢

󸀠

𝑖
𝑢
󸀠

𝑗
⟩ can

be reflected by the characteristics of the eigenvalues and
eigenvectors of dissipation tensor 𝐸

𝑖𝑗
. 𝜀
𝑖𝑗
= ⟨𝜕
𝑘
𝑢
󸀠

𝑖
𝜕
𝑘
𝑢
󸀠

𝑗
⟩ was

used because Re = 5000 is a constant.
First, Figure 3 illustrates the relation of the components

of the tensor 𝜀
𝑖𝑗
. Each point in Figure 3 corresponds to the

energy dissipation characteristics at each point location in
the flow, with 𝜀

𝑖𝑖
part in the 𝑥-axis and 𝜀

𝑖𝑗,𝑖 ̸=𝑗
part in the 𝑦-

axis, because the dissipation tensor 𝜀
𝑖𝑗
has different values

for different locations in the flow domain. The magnitude of
𝜀
𝑖𝑗,𝑖 ̸=𝑗

fluctuation is almost the same as 𝜀
𝑖𝑖
, despite the swirling

levels. Thus the energy dissipation of ⟨𝑢󸀠
𝑖
𝑢
󸀠

𝑗
⟩
𝑖 ̸=𝑗

is almost the
same as that of ⟨𝑢󸀠

𝑖
𝑢
󸀠

𝑗
⟩. It is possibly caused by the transport

of turbulent kinetic energy between ⟨𝑢
󸀠

𝑖
𝑢
󸀠

𝑗
⟩
𝑖 ̸=𝑗

and ⟨𝑢
󸀠

𝑖
𝑢
󸀠

𝑗
⟩,

which results in dynamic balances of turbulent kinetic energy
and dissipation between these types of turbulent fluctuation.

3.2.2. Distribution of the Eigenvalues. Second, tensor 𝜀
𝑖𝑗
=

diag(𝜀
1
, 𝜀
2
, 𝜀
3
) was diagonalized, where 𝜀

1
, 𝜀
2
, and 𝜀

3
are

the three eigenvalues of the tensor, which were sorted as
𝜀
1
≥ 𝜀
2
≥ 𝜀
3
≥ 0 for simplicity. The distribution and

relation of 𝜀
𝑖
are illustrated in Figure 4 using 𝑆

1
= 0.28

and 𝑆
3
= 0.59 for the case study. Figure 4(a) (𝑆

1
= 0.28)
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3
= 0.59, 𝜀

1
∼ 𝜀
3
; (d) 𝑆

3
= 0.59, 𝜀

2
∼ 𝜀
3
.
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Figure 5: Probability density function 𝑝(𝜀) for 𝑆
1
= 0.28 (a), 𝑆

2
= 0.45 (b), 𝑆

3
= 0.59 (c), and the linear subrange of them (d).

shows that the distribution of (𝜀
1
, 𝜀
3
) has a widespread area

below the line of 𝜀
3
= 𝜀
1
, indicating that it has 𝜀

1
> 𝜀
3

in most regions. Similar results were obtained in Figure 4(c)
for 𝑆
1
= 0.59, and extreme discrepancies between 𝜀

3
and

𝜀
1
were observed, even as large as more than two or three

orders. This observation indicates the extreme anisotropic
characteristics of turbulent kinetic energy dissipation when
the swirling level is sufficiently strong. Moreover, for (𝜀

2
, 𝜀
3
)

(Figures 4(b) and 4(d)), although extreme events seem to
be prohibited due to the possible existence of superior
limit line, the distribution area is open and enlarged as 𝜀

2

increases. In conclusion, Figure 4 shows the validation of
the anisotropic characteristics of turbulent energy dissipation
tensor, especially for strong swirling flows where extremely
anisotropic events may occur.

3.2.3. Probability Density Functions 𝑝(𝜀
𝑖
). Based on the

combined distributions (𝜀
𝑖
, 𝜀
𝑗
) (e.g., (𝜀

1
, 𝜀
3
) and (𝜀

2
, 𝜀
3
)), the

probability density function 𝑝(𝜀
𝑖
) (PDF) of one eigenvalue

𝜀
𝑖
can be obtained by integration of the other eigenvalue

throughout the flow domain; that is, 𝑝(𝜀
𝑖
) = ∫ 𝑝(𝜀

𝑖
, 𝜀
𝑗
)𝑑𝜀
𝑗
. In

general, PDF is defined as the concentration or density 𝛿𝑛(𝜀
𝑖
)

of 𝜀
𝑖
located within the range of (𝜀

𝑖
, 𝜀
𝑖
+ 𝛿𝜀
𝑖
); that is,

𝑝 (𝜀
𝑖
) =

𝛿𝑛 (𝜀
𝑖
)

𝑛𝛿𝜀
𝑖

, (10)

where 𝑛 = ∑𝛿𝑛(𝜀
𝑖
) is the total number of points within the

flow.
Figure 5 shows the PDFs for different swirling flows. For

all the cases, that is, 𝑆
1
= 0.28 (Figure 5(a)), 𝑆

2
= 0.45

(Figure 5(b)), and 𝑆
3
= 0.59 (Figure 5(c)), the following
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Table 3: Coefficients of the regression lines of 𝛽
1
, 𝛽
2
, and 𝛽

3
.

𝑎 𝑏 𝐶

𝑆
1
= 0.28 −0.823 −1.735 0.018

𝑆
2
= 0.45 −0.976 −1.257 0.055

𝑆
3
= 0.59 −0.883 −1.245 0.057

similar trends have been observed: (1) In most ranges,
𝑝(𝜀
1
)|
𝜀
1
=𝜀
0

> 𝑝(𝜀
2
)|
𝜀
2
=𝜀
0

> 𝑝(𝜀
3
)|
𝜀
3
=𝜀
0

for the same eigenvalue
of 𝜀
0
and 𝜀
1
|
𝑝
0

> 𝜀
2
|
𝑝
0

> 𝜀
3
|
𝑝
0

for the same value of PDF
𝑝
0
, which means 𝜀

1
> 𝜀
2

> 𝜀
3
is true in most ranges;

that is, the anisotropic turbulent dissipation occurs in most
ranges. (2) A subrange of 𝜀

𝑖
∈ (𝑒
𝑙
, 𝑒
ℎ
), which has 𝑝(𝜀

1
) =

𝑝(𝜀
2
) = 𝑝(𝜀

3
), always exists, except that 𝑝(𝜀

1
) for most strong

swirling flows 𝑆
3
= 0.59. This phenomenon indicates the

existence of subrange isotropic turbulent dissipation when
the swirling level is not strong. On the other hand, turbulent
energy dissipation in the major characteristic direction cor-
responding to the largest eigenvalues 𝜀

1
is always larger than

the other characteristic directions for strong swirling flows
(𝑆
3
≥ 0.59), which indicates highly anisotropic turbulent

energy dissipation characteristics in the main flow region.
Moreover, Figures 5(a) to 5(c) show that the isotropic

subrange can be characterized by a regression line, designated
as 𝛽
1
, 𝛽
2
, and 𝛽

3
for 𝑆
1
= 0.28, 𝑆

2
= 0.45, and 𝑆

3
= 0.59,

respectively. The data in these subranges are illustrated in
Figure 5(d) for clarity. Figure 5(d) shows a perfect linearity
between log𝑝(𝜀) and log(𝜀) for the isotropic subrange, which
obtained the following equation using linear regression:

log (𝑝 (𝜀)) = 𝑎 ⋅ log (𝜀) + 𝑏, namely 𝑝 (𝜀) = 𝐶 ⋅ 𝜀
𝑎
. (11)

The regression coefficients are listed in Table 3, which shows
that the power-law exits in the isotropic subrange of turbulent
energy dissipation and that the power exponent is approx-
imately −1 to −0.8. Moreover, the power-law occurs mainly
for low turbulent energy dissipations, and the width of strong
swirling flows is reduced. In other words, weak swirling
flow has wider subranges of isotropic turbulent energy
dissipation than the strong swirling flow and vice versa.
This phenomenon indicates the significant role of swirling
motion in augmenting the anisotropic characteristics of
turbulence. To speak specifically, it is possible to assume that
turbulent kinetic energy dissipation is more intensive and
more nonlinear in strongly swirling flows than in weakly
swirling flows. Therefore, the subranges of linear relations
between probability distribution functions and eigenvalues
of dissipation rates are reduced in strongly swirling flows
compared to those in weakly swirling flows.

3.2.4. Correlation to Vortex Structures. Previously mentioned
results are based on statistical analysis; thus visualizing the
locations of extremely anisotropic and nearly isotropic tur-
bulence dissipation should be helpful to further understand
anisotropic turbulent swirling flows. For this reason, the data
of |𝜀
1
/𝜀
3
| > 100 (see Figures 4(a) and 4(c)) and −0.8 < log 𝜀

1
,

log 𝜀
2
, log 𝜀

3
< 0.4 (see Figure 5(d) or equivalently 0.158 < 𝜀

1
,

𝜀
2
, 𝜀
3
< 2.5) was extracted and the locations for these data

in the background of vorticities of 𝑆 = 0.28 and 0.59 were
shown.

Figure 6 shows that the locations of extremely anisotropic
turbulence dissipation (e.g., |𝜀

1
/𝜀
3
| > 100, designated by

colored spheres) are concentrated in the central region of
the jet (Figure 6(a)), corresponding to strong twisted vortices
when the swirl level is low. On the other hand, the locations of
nearly isotropic turbulence dissipation (0.158< 𝜀

1
, 𝜀
2
, 𝜀
3
< 2.5)

are dispersed in the peripheral region of the jet (Figure 6(b)),
corresponding to the region with small-scale and weak
turbulence. Moreover, the locations of extremely anisotropic
turbulence dissipation are concentrated in the central region
of vortex breakdown (Figure 6(c)), corresponding to strong
swirling large-scale vortex structure when the swirl level is
large.The locations of nearly isotropic turbulence dissipation
are dispersed in the peripheral region of the vortex break-
down, such as strong small-scale vortices (Figure 6(d)).

Figure 6 conclusively shows that strong anisotropic tur-
bulence dissipation occurs concentratively in the vortex
breakdown region or is closely related to the large-scale vor-
tex structure. On the other hand, nearly isotropic turbulence
dissipation occurs dispersively in the peripheral region of the
strong swirling flows, that is, closely related to small-scale
vortices.

4. Conclusion

This work was carried out to investigate the physical aspects
of anisotropic turbulent motions and dissipations in swirling
flows. Based on the observation and analysis of the DNS
results, the following results were found.

(1) Turbulent swirling jet flows have evident coher-
ent structures relevant to the remarkable VB phe-
nomenon and recirculation of the flows, which domi-
nates anisotropic turbulent motions and dissipations.

(2) The evidently nonzero components of dissipation
tensor relevant to ⟨𝑢󸀠

𝑖
𝑢
󸀠

𝑗
⟩
𝑖 ̸=𝑗

validates the occurrence
of anisotropic turbulent fluctuations and motions in
swirling flows.

(3) With diagonalized dissipation tensor, the relation and
distribution of the three eigenvalues show strong
anisotropic characteristics of turbulent energy dissi-
pation, especially in strong swirling flows.

(4) Based on the probability density functions, turbulent
dissipation of swirling flows is anisotropic in most
regions, but an isotropic subrange of turbulent dissi-
pation still exists, especially for low swirling flows. On
the contrary, the isotropic subrange of PDF is reduced
for strong swirling flows. The power-law form of
PDF for the isotropic subrange was obtained through
linear regression.

(5) More importantly, strong anisotropic turbulence dis-
sipation occurs concentratively in the vortex break-
down region or is closely related to the large-scale
vortex structure, whereas the nearly isotropic turbu-
lence dissipation occurs dispersively in the peripheral
region of the strong swirling flows, that is, closely
related to small-scale vortices.
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(a) (b)

(c) (d)

Figure 6: Locations of anisotropic turbulence dissipation (|𝜀
1
/𝜀
3
| > 100) for 𝑆

1
= 0.28 (a) and 𝑆

3
= 0.59 (c) and locations of nearly isotropic

turbulence dissipation (−0.8 < log 𝜀
1
, log 𝜀

2
, log 𝜀

3
< 0.4 or 0.158 < 𝜀

1
, 𝜀
2
, 𝜀
3
< 2.5) for 𝑆

1
= 0.28 (b) and 𝑆

3
= 0.59 (d), respectively, in the

background of vorticities.

Nomenclatures

Scalars

𝑎, 𝑏, 𝐶: Coefficients
𝑑: The jet diameter at the inlet
𝑒
𝑙
, 𝑒
ℎ
: Low and high limiting value

𝐾: Turbulent kinetic energy
𝑛: Number density
𝑝: Fluid pressure
𝑟, 𝑟𝐶: Radius, radial center
Re: Reynolds number
𝑆: Swirl number
𝑡: Time
𝑢
𝑥
, 𝑢
𝜃
: Axial and azimuthal velocity of fluids

𝑢
𝑖
, 𝑢
𝑗
: Velocity of fluids

𝑈
𝑖
, 𝑈
𝑗
: Mean velocities of fluids

𝑈
0
: The inflow velocity

𝑥
𝑖
, 𝑥
𝑗
: Spatial variables

𝛽
1
, 𝛽
2
, 𝛽
3
: Regression lines

𝛿
𝑖𝑗
: Kronecker function

Δ𝑡: Time step
Δ𝑥: Mesh spacing

𝜀
𝑖𝑗
, 𝐸
𝑖𝑗
: Turbulent energy dissipation tensor

𝜀
1
, 𝜀
2
, 𝜀
3
: Three eigenvalues of 𝜀

𝑖𝑗

𝜂: The Kolmogorov length scale
𝜆: Inflow momentum thickness
]: Kinematic viscosity of fluids
]
𝑇
: Turbulent viscosity of fluids

𝜏
𝑖𝑗
: Reynolds stress tensor.

Operators

∇: Hamiltonian operator, ∇ = e
𝑖
(𝜕/𝜕𝑥

𝑖
)

Δ: Laplace operator
𝜕
𝑡
: Partial derivative

⟨ ⟩: Assemble averaging process
𝑝(): Probability density function
𝛿(): Infinitesimal increment
Σ: Summation operator.

Subscripts

𝑐: Center
ℎ: High
𝑖, 𝑗: Index
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𝑙: Low
0: Initial
𝑇: Turbulence
𝑥: Axial direction
𝜃: Azimuthal direction
󸀠: Fluctuation value
∼: Eigenvalue.

Abbreviations

DNS: Direct numerical simulation
K-H: Kelvin-Helmholtz
PDF: Probability density function
VB: Vortex breakdown.
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