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We investigate properties of algorithms that are used to solve coupled evolutionary partial differential equations posed on
neighboring, nonoverlapping domains, where the solutions are coupled by continuity of state and normal flux through a shared
boundary. The algorithms considered are based on the widely used approach of iteratively exchanging boundary condition data
on the shared boundary at each time step. There exists a significant and sophisticated numerical analysis of such methods.
However, computations for practical applications are often carried out under conditions under which it is unclear if rigorous results
apply while relatively few iterations are used per time step. To examine this situation, we derive exact matrix expressions for the
propagation of the error due to incomplete iteration that can be readily evaluated for specific discretization parameters. Using the
formulas, we show that the universal validity of several tenants of the practitioner’s conventional wisdom are not universally valid.

1. Introduction

The class of multiphysics problems in which one physical
process operates in one domain while a second physical
process operates in a neighboring domain, and the solutions
in the component subdomains are coupled by continuity
of state and normal flux through a common boundary,
which is central to a number of applications [1]. Examples
include conjugate heat transfer between a fluid and solid [2–
5], Stokes-Darcy flow in karst aquifers [6] and in catalytic
converters [7], modeling of the core and edge plasma flows in
a tokamak reactor [8, 9], and flow in heterogeneous porous
media [10–13].

In applications, the processes in the component subdo-
mains are often themselves represented by complex, multi-
scale, and multiphysics models and the component models
are solved with different discretization methods utilizing
significantly different scales. Such coupled problems present
enormous challenges for efficient high performance com-
puting [1]. There are very strong incentives to use existing

“legacy” codes for the component models and to treat
component physics solvers as “black boxes.” For these reasons
themost commonly encountered solution strategy is a simple
iterative approach [1–4, 14–17]. In this approach, the models
in each of the component subdomains are associatedwith one
of the two boundary coupling conditions and subsequently
solved independently except for data from the coupling
through the boundary. The coupling data for the boundary
conditions for one component model are provided by the
solution of the other component model from the previous
iteration. In a time dependent problem, this iteration is
carried out on each time step.

This type of coupled physics problemhas been extensively
studied by the numerical analysis community, with the goals
of deriving accurate, stable numerical methods, efficient, and
accurate coupling algorithms and deriving rigorous a priori
analyses, for example, in [10–15, 17, 18], as well as a posteriori
analyses [2–4, 19]. However, in practice, as mentioned,
the component physics is usually complex and there are
large differences in the discretization strategies employed in
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the component subdomains necessitating significant pro-
cessing of transferred information. Thus, the application of
current rigorous mathematical methods and analysis is prob-
lematic if not impossible.This is partially the reason that there
is a very signicant gulf between the kinds of practices carried
out in high performance computational science and the “best
practices” determined by the mathematical community [3].

In addition, the computational strategies employed in
practice are often rationalized by a body of conventional wis-
dom which asserts that (1) stability is equivalent to accuracy
and (2) the use of unconditionally stable implicit solvers for
the component physics generally stabilizes the entire coupled
simulation as long as the component solutions are stable.
This is often rationalized by some sort of (Neumann) linear
stability analysis applied to the simplied case of two coupled
linear parabolic problems. Based on these ideas, simulations
are deemed acceptable provided they do not exhibit obvious
instabilities such as unbounded behavior or rapid oscillation.
Moreover, due to the prohibitive computational cost, such
conclusions are often based on the single computation at
hand, rather than through an exhaustive study.

This paper attempts to address the difficulties that face
extending rigorous convergence analysis to the complex
models and discretizations that occur in practice and illus-
trate issues arising from the conventional wisdom. Instead of
focusing onderiving conditions that guarantee good behavior
as is usual for a standard convergence analysis, we adopt a
different approach and develop a rigorous computable error
representation that can be evaluated for any given choice
of discretization parameters, thus allowing the conventional
wisdom to be verified or not. We consider the canonical
problem of two linear coupled parabolic equations and
formulate the iterative solution method as a fixed point
iteration for a block system on the discrete level. We then
derive an exact formula for the error in the iterated solution.
This formula is related to the Neumann series for the inverse
of the full systemmatrix.The argument has several virtues: it
is elementary, it subsumes any sort of ad hoc linear stability
analysis, and it is general in the sense that it holds for a
variety of discretization methods and range of scales for the
component physics. Importantly, it allows for easy evaluation
of various discretization parameter choices, for example, step
size, space mesh, and number of iterations per time step.

We then present a detailed study of the canonical problem
of two linear coupled parabolic equations that amply demon-
strates shortcomings of the conventional wisdom. Firstly, we
are able to dispel the notion that stability implies accuracy.
In particular, we demonstrate that a divergent iteration can
be part of a stable algorithm if the number of iterations
used is low, while the resulting approximation is inaccurate.
In this case, the user might not be aware that the iteration
is divergent if they only consider whether or not obvious
instability occurs. This case is particularly interesting since a
serious problem is being masked by seemingly “reasonable”
results. Secondly, we demonstrate that there is no guarantee
that an “unconditionally stable” time integration scheme like
backward Euler remains unconditionally stable if the system
is not solved exactly at each time step.We explore cases where
using a limited number of iterations leads to a conditional
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Figure 1: Illustration of neighboring subdomains.

stability, which depends on the size of the time step. The
values of time steps which provide stability can occupy a
range with a maximum and minimum value, rather than just
a maximum.

The remainder of this paper is organized as follows.
Section 2 introduces the problem and the notation associated
with discretization and iteration. Section 3 derives the pri-
mary results of the paper regarding the stability of the iterative
solution. Section 4 provides numerical examples. Section 5
addresses the multirate case, in which the time step in one
component is an integer multiple of the time step in the other
component. Multirate numerical examples are included. A
brief conclusion is given in Section 6.

2. Problem Formulation and Discretization

We consider a system posed on a domain consisting of
two neighboring, nonoverlapping, convex, and polygonal
subdomains Ω

1
and Ω

2
in 1, 2, or 3 spatial dimensions that

share a common polygonal interface boundary Γ (see [1, 2, 8,
9] for applications). We illustrate in Figure 1.

The general form of the PDE system is

𝜕

𝜕𝑡
U
1
+L
1
U
1
= S
1

on Ω
1
× (0, 𝑇],

𝜕

𝜕𝑡
U
2
+L
2
U
2
= S
2

on Ω
2
× (0, 𝑇],

U
1
= U
2

on Γ × (0, 𝑇],

𝑛 ⋅ 𝑎
1
∇U
1
= 𝑛 ⋅ 𝑎

2
∇U
2

on Γ × (0, 𝑇],

(1)

together with the following additional boundary and initial
conditions:

(i) boundary conditions for U
1
on 𝜕Ω

1
\ Γ and initial

conditions forU
1
onΩ
1
,

(ii) boundary conditions for U
2
on 𝜕Ω

2
\ Γ and initial

conditions forU
2
onΩ
2
,

where L
1
V = ∇ ⋅ (𝑎

1
∇V) and L

2
V = ∇ ⋅ (𝑎

2
∇V) are linear,

coercive elliptic operators, S
1
, S
2
are given functions in 𝐿2,

and 𝑛 is a unit vector normal to Γ and pointing from Ω
1
to

Ω
2
.
We next introduce notation for the discretized problem.

The analysis is based on the backward Euler method in time
but can accommodate various spatial discretization schemes
[3]. For the numerical results included later in the paper,
we use a finite volume method in space [13, 18, 19], and
the details of that discretization are given in Appendix A. In
order to complete the boundary data for each subdomain,
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we adopt the common strategy of using the solution on the
first subdomain to determine Dirichlet boundary data on Γ
for the problem on the second subdomain and, likewise, use
the solution on the second subdomain to provide Neumann
boundary conditions for the problem on the first subdomain;
for example, see [2–4, 8–12, 14, 15, 17, 19]. Thus, each
problem is provided with a full set of boundary data, but the
subdomains are not treated symmetrically. By convention, we
assume that component 2 provides state data for component
1, and component 1 provides flux data for component 2. This
leads to the system of discrete equations:

𝐿
1
𝑢̂
𝑘+1

1
= 𝑢̂
𝑘

1
+ 𝑆
𝑘+1

1
+ 𝑃
21
𝑢̂
𝑘+1

2
,

𝐿
2
𝑢̂
𝑘+1

2
= 𝑢̂
𝑘

2
+ 𝑆
𝑘+1

2
+ 𝑃
12
𝑢̂
𝑘+1

1
,

(2)

where the superscript is the time step index. The symbols 𝐿
1

and 𝐿
2
are the discrete versions of the operators (𝜕/𝜕𝑡 +L

1
)

and (𝜕/𝜕𝑡 +L
2
), except that 𝑢̂𝑘 has been moved to the right

hand side. The symbols 𝑆
1
and 𝑆
2
are the discrete versions of

the source terms S
1
and S

2
and also take into account the

known boundary data on 𝜕Ω
1
\ Γ and 𝜕Ω

2
\ Γ. 𝑃
21
and 𝑃
12
are

the projections by which the solution in one subdomain is
used to provide boundary data on Γ for the other subdomain.
The subscripts “12” and “21” indicate information passing
from “Ω

1
toΩ
2
” and “Ω

2
toΩ
1
.” We refer to 𝑢̂

1
and 𝑢̂
2
, which

solve (2), as the implicitly coupled solution. We emphasize
that we analyze this method because it is one of the most
common approaches used in practice.

Note that the form of the operators 𝑃
21
and 𝑃

12
depends

on the choice of discretization. Some discretizations, for
example, finite volume, require forming these operators using
some combination of averaging, extrapolation, and interpo-
lation [1]. Other discretizations provide natural definitions.
For example, in the case of the mortar method [18, 19], the
coupling between the subdomains has a formal structure
based on Lagrange multiplier variables on the interface. In
this case 𝑃

21
and 𝑃
12
correspond to the off-diagonal blocks of

the Schur complement [20] that are formed by eliminating
the Lagrange multiplier variables.

In all of the above cases, we now write (2) as a single set
of linear equations. Namely,

𝐴𝑢̂
𝑘+1
= 𝑢̂
𝑘
+ 𝑆
𝑘+1
, (3)

where

𝐴 = [
𝐿
1
−𝑃
21

−𝑃
12

𝐿
2

] , 𝑆 = [
𝑆
1

𝑆
2

] , 𝑢̂ = [
𝑢̂
1

𝑢̂
2

] . (4)

2.1. Block Iteration. As mentioned, the implicitly coupled
system (3)-(4) is not formed or solved exactly in practice.
The common approach is to use an iterative block solution
approach that involves a sequence of solutions of each
component problem with alternating exchange of coupling
boundary data; for example, see [2–4, 8–12, 14, 15, 17, 19].This
is easily described using the concept of matrix splitting [20–
22]. We define a matrix splitting 𝐴 = 𝑀 −𝑁 so that

𝑀𝑢̂
𝑘+1
= 𝑢̂
𝑘
+ 𝑆
𝑘+1
+ 𝑁𝑢̂
𝑘+1
. (5)

Starting with some initial guess 𝑢0, the following equation
defines a fixed point iteration which may converge to 𝑢̂𝑘+1.
For the iterates, we use a double superscript, 𝑘 for the time
step and 𝑖 for the iteration index. We use 𝑛 for the number of
iterations to be performed at each time step:

𝑀𝑢
𝑘+1,𝑖

= 𝑢
𝑘,𝑛
+ 𝑆
𝑘+1
+ 𝑁𝑢
𝑘+1,𝑖−1

,

𝑖 = 1, . . . , 𝑛, 𝑢
𝑘+1,0

= 𝑢
𝑘,𝑛
.

(6)

Note 𝑁𝑢𝑘+1,𝑖−1 represents the exchange of information
between the components, and the subsequent inversion of
𝑀 is the solution of the individual components. In the case
of (3), the splitting 𝐴 = 𝑀 − 𝑁 is chosen to separate the
solution of the problems on the subdomains [20–22]. This
is motivated by the fact that the coupling of the subdomains
occurs on a manifold of lower dimension. This splitting can
be accomplished in a “Gauss-Jacobi” sense:

𝑀 = [
𝐿
1
0

0 𝐿
2

] , 𝑁 = [
0 𝑃
21

𝑃
12

0
] , (7)

or in a “Gauss-Seidel” sense:

𝑀 = [
𝐿
1

0

−𝑃
12
𝐿
2

] , 𝑁 = [
0 𝑃
21

0 0
] . (8)

If this iteration converges, it converges to the implicitly
coupled solution 𝑢̂, which is the unique fixed point of the
iteration. By differencing (5) and (6), we get

𝑀𝑒
𝑘+1,𝑖+1

= 𝑁𝑒
𝑘+1,𝑖

, (9)

where 𝑒𝑘+1,𝑖 = 𝑢𝑘+1,𝑖−𝑢̂𝑘+1.This leads to thewell-known result
[20, 21]:

𝑒
𝑘+1,𝑛

= (𝑀
−1
𝑁)
𝑛

𝑒
𝑘+1,0

. (10)

The iteration converges if the spectral radius of 𝑀−1𝑁 is
less than one, and it diverges if the spectral radius is greater
than one [20–22]. If the iteration converges, then we can
get as close as desired to the implicitly coupled solutions 𝑢̂𝑘
by iterating. If for any reason we are unable to iterate until
convergence at each time step, the situation is considerably
more complicated. If 𝑢̂𝑘 cannot be obtained at a given time
step, then it cannot be used as the initial condition for the
next time step, and the iterates 𝑢𝑘 may wander away from the
implicitly coupled solutions 𝑢̂𝑘. To investigate how the iterates
wander from their implicitly coupled counterparts, we must
account for both the error from incomplete iteration at every
time step and for the error associatedwith the inherited initial
value at every time step.

3. Analysis of Stability of the Iterative Solution

3.1. Stability in Time for a Single Iteration. In this section,
we derive an error formula for the case of a single iteration
at each time step. The motivation is practical both as this
is often encountered in practice and because the relatively
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simple result shows how the general result proceeds.The error
is defined to be the difference between the computed solution
and the implicitly coupled solution at each time step. Recall
the implicitly coupled solution satisfies

𝑀𝑢̂
𝑘+1
= 𝑢̂
𝑘
+ 𝑆
𝑘+1
+ 𝑁𝑢̂
𝑘+1
. (11)

For the case of a single iteration per time step, we have 𝑛 =
1 and we can suppress the iteration index. The iteration is
simply

𝑀𝑢
𝑘+1
= 𝑢
𝑘
+ 𝑆
𝑘+1
+ 𝑁𝑢
𝑘
. (12)

If we define 𝑒𝑘 = 𝑢𝑘 − 𝑢̂𝑘 and Δ𝑢̂𝑘+1 = 𝑢̂𝑘 − 𝑢̂𝑘+1, then (12)
becomes

𝑀(𝑢̂
𝑘+1
+ 𝑒
𝑘+1
) = (𝑢̂

𝑘
+ 𝑒
𝑘
) + 𝑆
𝑘+1

+ 𝑁(𝑢̂
𝑘+1
+ Δ𝑢̂
𝑘+1
+ 𝑒
𝑘
).

(13)

Using (11), we obtain

𝑀𝑒
𝑘+1
= 𝑒
𝑘
+ 𝑁(Δ𝑢̂

𝑘+1
+ 𝑒
𝑘
). (14)

Substituting 𝑘 = 0 and 𝑘 = 1 into (14) and rearranging
gives

𝑒
1
= [𝑀

−1
+𝑀
−1
𝑁]𝑒
0
+ [𝑀
−1
𝑁]Δ𝑢̂

1
, (15)

𝑒
2
= [𝑀

−1
+𝑀
−1
𝑁]𝑒
1
+ [𝑀
−1
𝑁]Δ𝑢̂

2
. (16)

Substituting (15) into (16) gives

𝑒
2
= [𝑀

−1
+𝑀
−1
𝑁]
2

𝑒
0
+ [𝑀
−1
+𝑀
−1
𝑁]

× [𝑀
−1
𝑁]Δ𝑢̂

1
+ [𝑀
−1
𝑁]Δ𝑢̂

2
.

(17)

In general, the error at time step 𝑘 is

𝑒
𝑘
= [𝑀

−1
+𝑀
−1
𝑁]
𝑘

𝑒
0

+

𝑘

∑

𝑗=1

[𝑀
−1
+𝑀
−1
𝑁]
(𝑘−𝑗)

[𝑀
−1
𝑁]Δ𝑢̂

𝑗
.

(18)

While the form of (18) is not as concise as (10), it is clear that
the stability in time depends on the spectral radius of [𝑀−1 +
𝑀
−1
𝑁].

3.2. Stability in Time for 𝑛 Iterations. In this section, we derive
a more general version of (18) for the case of 𝑛 iterations at
each time step. Beginning with (11), the iterates satisfy

𝑀𝑢
𝑘+1,𝑖

= 𝑢
𝑘,𝑛
+ 𝑆
𝑘+1
+ 𝑁𝑢
𝑘+1,𝑖−1

,

𝑖 = 1, . . . , 𝑛, 𝑢
𝑘+1,0

= 𝑢
𝑘,𝑛
.

(19)

The error is now defined as 𝑒𝑘,𝑖 = 𝑢𝑘,𝑖 − 𝑢̂𝑘 for 𝑖 = 1, . . . , 𝑛. We
are interested in obtaining a formula for 𝑒𝑘,𝑛.

The following relationships are useful in deriving the final
result:

𝑢
𝑘+1,0

= 𝑢
𝑘,𝑛
= 𝑢̂
𝑘
+ 𝑒
𝑘,𝑛
= 𝑢̂
𝑘+1
+ Δ𝑢̂
𝑘+1
+ 𝑒
𝑘,𝑛
,

𝑢
𝑘+1,𝑖

= 𝑢̂
𝑘+1
+ 𝑒
𝑘+1,𝑖

, 𝑖 = 1, . . . , 𝑛.

(20)

Substituting these into (19) gives the following, for 𝑖 = 1:

𝑀(𝑢̂
𝑘+1
+ 𝑒
𝑘+1,1

) = (𝑢̂
𝑘
+ 𝑒
𝑘,𝑛
) + 𝑆
𝑘+1

+ 𝑁(𝑢̂
𝑘+1
+ Δ𝑢̂
𝑘+1
+ 𝑒
𝑘,𝑛
),

(21)

and, for 𝑖 = 2, . . . , 𝑛,

𝑀(𝑢̂
𝑘+1
+ 𝑒
𝑘+1,𝑖

) = (𝑢̂
𝑘
+ 𝑒
𝑘,𝑛
) + 𝑆
𝑘+1

+ 𝑁(𝑢̂
𝑘+1
+ 𝑒
𝑘+1,𝑖−1

).

(22)

Substituting into (11) gives the following, for 𝑖 = 1:

𝑀𝑒
𝑘+1,1

= 𝑒
𝑘,𝑛
+ 𝑁(Δ𝑢̂

𝑘+1
+ 𝑒
𝑘,𝑛
), (23)

and, for 𝑖 = 2, . . . , 𝑛,

𝑀𝑒
𝑘+1,𝑖

= 𝑒
𝑘,𝑛
+ 𝑁𝑒
𝑘+1,𝑖−1

. (24)

Starting with 𝑒0 = 𝑢0−𝑢̂0, we can use (23) and (24) to find
𝑒
1,𝑛 and 𝑒2,𝑛 and discover the general form for 𝑒𝑘,𝑛.Theprocess
is tedious, but the pattern is quickly apparent. The final form
for the error at time step 𝑘where 𝑛 iterations have been taken
per time step is

𝑒
𝑘,𝑛
= [𝑇
𝑛
]
𝑘

𝑒
0
+

𝑘

∑

𝑗=1

[𝑇
𝑛
]
𝑘−𝑗

(𝑀
−1
𝑁)
𝑛

Δ𝑢̂
𝑗
. (25)

The form of 𝑇
𝑛
is as follows. For 𝑛 = 1,

𝑇
1
= [𝑀

−1
+𝑀
−1
𝑁], (26)

and, for 𝑛 > 1, the following recursion relationship holds:

𝑇
𝑛
= 𝑀
−1
+𝑀
−1
𝑁[𝑇
𝑛−1
]. (27)

For example,

𝑇
2
= 𝑀
−1
+𝑀
−1
𝑁[𝑀
−1
+𝑀
−1
𝑁],

𝑇
3
= 𝑀
−1
+𝑀
−1
𝑁[𝑀
−1
+𝑀
−1
𝑁[𝑀
−1
+𝑀
−1
𝑁]].

(28)

Note that the results derived above assume that 𝑀 is being
inverted exactly. Amodification of (25) for the case of inexact
inversion is given in Appendix B. A second modification of
(25), incorporating the use of a weighted Jacobi method in
which the new iterate is taken to be a weighted average of the
old iterate and the Jacobi iterate, is given in Appendix C.

We conclude of course that the stability in time is
determined by the spectral radius of the matrix 𝑇

𝑛
. However,

given the conventional wisdom, it is important to point out
that stability does not imply accuracy. If we examine (25),
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it is clear from the term [𝑇
𝑛
]
𝑘
𝑒
0 that if 𝑇

𝑛
has a spectral

radius of greater than one then even tiny machine rounding
errors will grow out of control [20], and this is one way to
describe the notion of instability. If the spectral radius of
𝑇
𝑛
is less than one, this can not occur and the method can

then be considered stable. However, the summation term
∑
𝑘

𝑗=1
[𝑇
𝑛
]
𝑘−𝑗
(𝑀
−1
𝑁)
𝑛
Δ𝑢̂
𝑗 shows that it is still possible for

error to accumulate in time, and the size of this error depends
on the size of the vectorsΔ𝑢̂ as well as the effect of𝑀−1𝑁 and
𝑇
𝑛
on Δ𝑢̂. We consider these errors to be an issue of accuracy,

not stability.This calls into question the conventional wisdom
that if the result does not blow up, then the method is stable
and therefore accurate.

We emphasize that the error formulas derived above
measure the difference between the computed numerical
solution and the idealized numerical solution obtained by
solving the implicitly coupled discrete equations. The ide-
alized numerical solution is itself a discrete approximation
to the continuous solution of the PDE. The accuracy of
the implicitly coupled solution relative to the continuous
solution is a separate matter and would have some order
in ℎ and 𝑑𝑡, where ℎ and 𝑑𝑡 represent the cell width and
time step, such as 𝑂(ℎ2) + 𝑂(𝑑𝑡) assuming a typical second
order accurate spatial discretization and first order accurate
time discretization is used. Preserving this ideal accuracy
requires that discrete effects such as solution error and errors
arising from projecting between component discretizations
are minimal [19].

3.3. Relationship between𝑇
𝑛
and𝐴−1. An alternative form for

the 𝑇
𝑛
is

𝑇
𝑛
= [

𝑛−1

∑

𝑖=0

(𝑀
−1
𝑁)
𝑖

]𝑀
−1
+ (𝑀
−1
𝑁)
𝑛

. (29)

This form suggests a power series representation for an
approximate inverse. Rewriting the splitting 𝐴 = 𝑀 − 𝑁 as
(𝑀 − 𝑁) = 𝑀[𝐼 − (𝑀

−1
𝑁)], then

(𝑀 − 𝑁)
−1
= [𝐼 − (𝑀

−1
𝑁)]
−1

𝑀
−1
. (30)

Using a power series for the inverse in brackets [20–22],
assuming that ‖𝑀−1𝑁‖ < 1, we get

(𝑀 − 𝑁)
−1
= [

∞

∑

𝑖=0

(𝑀
−1
𝑁)
𝑖

]𝑀
−1
. (31)

Hence, provided ‖𝑀−1𝑁‖ < 1, 𝑇
𝑛
becomes an increasingly

accurate approximation of 𝐴−1 as the number of iterations 𝑛
increases. Specifically, the first term in (29) approaches (31) as
𝑛 increases, while the second term in (29) goes to zero.

4. Numerical Examples

We can employ the error formulas derived above by forming
the matrix 𝑇

𝑛
for any given set of discretization parameters,

for example, step size, space mesh, and number of iterations
per time step, and then easily examine the stability of the

Exported state

Exported flux

uc ue

Figure 2: Diagram of the coupling strategy used in the numerical
experiments, in which linear extrapolation from the last two
available state or flux values in one subdomain are used to compute
a boundary value for the other subdomain.

overall algorithm for particular choices. In this section, we
present numerical experiments designed to examine aspects
of the conventional wisdom.

We consider a one dimensional domain with 𝑥 ∈ [0, 1]
and the interface between the two subdomains located at 𝑥 =
1/2, and we pose the heat equation with constant diffusivity
equal to one in each subdomain (𝑎

1
= 𝑎
2
= 1). The outer

boundary conditions are homogeneous Neumann at 𝑥 = 0
and homogeneous Dirichlet at 𝑥 = 1. Error measurement
is facilitated by constructing the problems so that the exact
continuous solution is U(𝑥, 𝑡) = (1 − 𝑥2)𝑒−𝑡. The complete
statement of the PDE is

𝜕

𝜕𝑡
U
1
−
𝜕
2

𝜕𝑥2
U
1
= (1 + 𝑥

2
)𝑒
−𝑡
, 𝑥 ∈ [0, .5], 𝑡 ∈ [0, 𝑇],

𝜕

𝜕𝑡
U
2
−
𝜕
2

𝜕𝑥2
U
2
= (1 + 𝑥

2
)𝑒
−𝑡
, 𝑥 ∈ [.5, 1], 𝑡 ∈ [0, 𝑇],

U
1
= U
2
, 𝑥 = .5, 𝑡 ∈ [0, 𝑇],

𝜕

𝜕𝑥
U
1
=
𝜕

𝜕𝑥
U
2
, 𝑥 = .5, 𝑡 ∈ [0, 𝑇],

𝜕

𝜕𝑥
U
1
(0, 𝑡) = 0,

U
2
(1, 𝑡) = 0,

U
1
(𝑥, 0) = U

2
(𝑥, 0) = (1 − 𝑥

2
).

(32)

We use finite volume in space and backward Euler in time
[13, 18, 19, 21, 22]. The details of the discrete equations are
given inAppendix A.The cell-centered finite-volumemethod
provides state values at cell centers. Fluxes at cell boundaries
are calculated via differencing, while linear extrapolation is
used to compute coupling values at the boundary between
subdomains. Component 1 receives a Dirichlet condition at
the interface that is a linear extrapolation of the two state
values that are the nearest to the interface in component 2
and, similarly, component 2 receives a Neumann condition at
the interface which is a linear extrapolation of the two flux
values that are the nearest to the interface in component 1
[8, 9]. The extrapolation scheme is depicted in Figure 2.

In the examples, we use a Jacobi iteration with 𝜔 = 1.
Once the exchange of information is complete, each sub-
domain is solved to within machine precision by direct
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Figure 3: Spectral radius for various values of 𝑛 with fixed 𝑑𝑡. Black
is 𝐴−1, green is𝑀−1𝑁, blue is 𝑇

𝑛
, and red marks the value one.

inversion of the matrix 𝑀. At each time step, the code
produces both the implicitly coupled solution, 𝑢̂, by inverting
the coupled system matrix 𝐴 and the iterative solution, 𝑢, by
performing the specified number of iterations. The implicitly
coupled and iterative solutions can then be compared at
any time step. It is easily verified that the implicitly coupled
solution is unconditionally stable and has accuracy 𝑂(ℎ2) +
𝑂(𝑑𝑡). In the following examples, we concentrate on the error
between the implicitly coupled and iterative solutions. We
introduce the relative error, which is based on the standard
discrete two-norm:

𝑒rel =
‖𝑢 − 𝑢̂‖2

‖𝑢̂‖2

. (33)

Finally, we conduct similar experimentswith awide range
of spatial mesh sizes. The qualitative results are the same
in every case, although the specific threshold values may of
course vary.

4.1. Case 1: Stability of the Algorithm with 𝑛 Iterations Using a
Fixed Time Step, 𝑑𝑡. In the first experiment, we set the grid
size to be 16 cells in each subdomain (ℎ = 1/32) and fix the
time step at 𝑑𝑡 = 1/40. We plot the spectral radius of 𝑇

𝑛
,

𝑀
−1
𝑁, and 𝐴−1 for various values of 𝑛 in Figure 3. Note that

the spectral radius of𝑀−1𝑁 is less and one, so the iteration
is convergent, and the spectral radius of 𝐴−1 is less than one,
so the implicitly coupled scheme would be unconditionally
stable if we had the luxury of inverting 𝐴−1 at each time
step. However, the method is unstable for certain values of
𝑛. If one observes the progress of the iterative solution at
a given time step, it is clear that although the iteration is
convergent, certain early iterates contain significantly more
error than the previous iterate. In other words, the error in
the computational iterate does not decrease monotonically.
For the particular problem examined here, it is every fourth
iterate, starting with the second iterate, that has the increased
error. Figure 3 shows that for the first few 𝑛 values in this
sequence (𝑛 = 2, 6, 10, 14) the reduced quality of the iterate

Table 1: Relative error at 𝑡 = 2 for various numbers of iterations.

𝑛 𝑒rel

1 .05

2 4.4 ∗ 10
9

3 .09

4 .65

5 .05

6 8.5 ∗ 10
5

200 1.8 ∗ 10
−4

400 5.6 ∗ 10
−7

results in the entire algorithm being unstable, despite the fact
that the iteration is convergent. As the number of iterations
increases, this effect is reduced in magnitude and eventually
disappears. We verify the instability by solving to 𝑡 = 2 (80
time steps) and listing the relative error at 𝑡 = 2 for several
values of 𝑛 in Table 1.

The values 𝑛 = 200 and 𝑛 = 400 are included in Table 1
to verify that, since the iteration is convergent, the relative
error approaches zero as the number of iterations becomes
very large. The reduction in relative error for large 𝑛 is fairly
slow, since the spectral radius of𝑀−1𝑁 is approximately .975,
as indicated in Figure 3.

The results of this experiment serve to illustrate one of
our main points that a low number of iterations can interfere
with the unconditional stability of the time discretization.
In addition, it shows that a lower number of iterations can
be stable, while a higher number is unstable. The plot of
the spectral radius of 𝑇

𝑛
in Figure 3 indicates that using

2, 6, 10, or 14 iterations leads to an unstable method. The
numerical values in Table 1 confirm the instability for 𝑛 = 2
and 𝑛 = 6 (𝑛 = 10 and 𝑛 = 14 yield analogous results).
Backward Euler is considered “unconditionally stable” [21,
22]; however, this fact is based on the assumption that the
system is solved exactly at each time step. For the iterative
algorithm used here, this unconditional stability is only valid
in the limit as the number of iterations goes to infinity. This
example shows how sensitive the stability of the algorithm
is to the number of iterations used. Note that this example
also provides another demonstration of the fact that stability
does not imply accuracy. Notice in Table 1 that the relative
error for the stable case 𝑛 = 4 is around ten times that of
the nearby stable cases, 𝑛 = 1, 3, 5. Despite the fact that
the spectral radius of 𝑇

𝑛
is less than one for all the stable

cases, it is still possible for the summation term in (25) to
accumulate significant error in time.This termmakes amuch
larger contribution for the case of 𝑛 = 4 than it does for the
other stable cases.This is not evident from the spectral radius
of 𝑇
𝑛
alone; note that 𝜌(𝑇

1
) > 𝜌(𝑇

4
).

4.2. Case 2: Stability of the Algorithm with Time Step 𝑑𝑡, Using
a Fixed Number of Iterations, 𝑛. In the second experiment,
we use identical conditions except that we fix the number
of iterations 𝑛 and vary the time step 𝑑𝑡. Figure 4 shows the
spectral radii of the relevant matrices for 𝑛 = 1 and values
of 𝑑𝑡 ranging from 0 to 0.1. Since ℎ = 1/32, this range
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Figure 4: Spectral radius for various values of 𝑑𝑡 with 𝑛 = 1. Black
is 𝐴−1, green is𝑀−1𝑁, blue is 𝑇

𝑛
, and red marks the value one.
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Figure 5: Spectral radius for various values of 𝑑𝑡 with 𝑛 = 2. Black
is 𝐴−1, green is𝑀−1𝑁, blue is 𝑇

𝑛
, and red marks the value one.

Table 2: Relative error at 𝑡 = 2 for 𝑛 = 1 with various values of 𝑑𝑡.

𝑑𝑡 𝑒rel

.005 .01

.05 .08

.1 .22

of time step 𝑑𝑡 corresponds to a range for the ratio 𝑑𝑡/ℎ2
of approximately 1 to 100. Figure 4 implies that the method
with 𝑛 = 1 is stable for all 𝑑𝑡 < 0.1. Carrying out the
calculation confirms this, and the relative errors at the end
of the simulation are given in Table 2.

Figure 5 shows the spectral radii of the relevant matrices
for 𝑛 = 2. The implication is that the method with 𝑛 = 2 is
stable only for very small values of 𝑑𝑡. Table 3 gives relative
errors for the 𝑛 = 2 case.

For the case of 𝑛 = 6, the plot and table are shown
in Figure 6 and Table 4. This case illustrates that instability

Table 3: Relative error at 𝑡 = 2 for 𝑛 = 2 with various values of 𝑑𝑡.
Note that for larger values of 𝑑𝑡, fewer time steps are needed to reach
𝑡 = 2, so the relative error does not grow as large.

𝑑𝑡 𝑒rel

.0025 .01

.005 5.7 ∗ 10
16

.05 2.5 ∗ 10
4

.1 19
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Figure 6: Spectral radius for various values of 𝑑𝑡 with 𝑛 = 6. Black
is 𝐴−1, green is𝑀−1𝑁, blue is 𝑇

𝑛
, and red marks the value one.

Table 4: Relative error at 𝑡 = 2 for 𝑛 = 6 with various values of 𝑑𝑡.

𝑑𝑡 𝑒rel

.005 .0135

.05 117

.1 .0114

can occur for a limited range of time steps with a minimum
and a maximum, not simply for time steps above a certain
threshold, as one might expect. The 𝑛 = 6 case makes it clear
that the method is stable for sufficiently small and sufficiently
large time steps and is unstable in between. (In fact this is also
true for the 𝑛 = 2 case, and if the horizontal axis in Figure 5
is carried out to much larger time steps the spectral radius of
𝑇
2
does eventually drop below one.)This is a surprising result

since onewould not expect reducing the time step to promote
instability, nor increasing the time step to restore stability.

Finally, in Figure 7 we provide two further plots for the
𝑛 = 10 and 𝑛 = 18 cases. These show the relationship
between 𝑇

𝑛
and 𝐴−1 discussed in Section 3.3. The spectral

radius of 𝐴−1 is less than one for all values of 𝑑𝑡, and it
decreases monotonically with increasing 𝑑𝑡. We know from
the expansions in Section 3.3 that as 𝑛 becomes large then 𝑇

𝑛

approaches 𝐴−1. However, there is no reason to expect the
spectral radius of 𝑇

𝑛
to be monotonic in 𝑑𝑡 for small values

of 𝑛, and the plots in this section show that it is not. There is
a characteristic bump in the plots of the spectral radius of 𝑇

𝑛

versus 𝑑𝑡, and it is in this range of 𝑑𝑡 values that the spectral
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Figure 7: Spectral radius for various values of 𝑑𝑡 with 𝑛 = 10 (a), and 𝑛 = 18 (b). Black is 𝐴−1, green is𝑀−1𝑁, blue is 𝑇
𝑛
, and red marks the

value one.

radius of 𝑇
𝑛
may exceed 1, leading to an unstable method.

Naturally, as 𝑛 becomes large, the size of this bump is reduced,
since𝑇

𝑛
is driven closer to𝐴−1. In the 𝑛 = 18 case, the spectral

radius of 𝑇
𝑛
is less than 1 for all time steps.

5. The Multirate Case

Multirate integration using different time steps for the differ-
ent components is a common practice [1, 8, 9]. In this case,
the implicitly coupled system and error formulas are changed
slightly.We assume the longer time step is an integer multiple
of the shorter time step, so component 2 will take 𝑝 steps
for every one step in the component 1. The outline of the
derivation for𝑝 = 2 is given here, but results easily generalize.
The large time steps correspond to the index 𝑘 and the small
time steps correspond to fractional indices. First, component
1 equation is straightforward since it only involves one time
step:

𝐿
1
𝑢̂
𝑘+1

1
= 𝑢̂
𝑘

1
+ 𝑆
𝑘+1

1
+ 𝑃
21
𝑢̂
𝑘+1

2
. (34)

Next, component 2 equation requires compounding two
steps:

𝐿
2
𝑢̂
𝑘+1/2

2
= 𝑢̂
𝑘

2
+ 𝑆
𝑘+1/2

2
+ 𝑃
12
𝑢̂
𝑘+1

1
,

𝐿
2
𝑢̂
𝑘+1

2
= 𝑢̂
𝑘+1/2

2
+ 𝑆
𝑘+1

2
+ 𝑃
12
𝑢̂
𝑘+1

1
.

(35)

After carrying out the algebra and generalizing to larger
𝑝, we obtain the system:

[
[

[

𝐿
1

−𝑃
21

−

𝑝−1

∑

𝑗=0

(𝐿
−1

2
)
𝑗

𝑃
12

𝐿
2

]
]

]

[

[

𝑢̂
𝑘+1

1

𝑢̂
𝑘+1

2

]

]

=
[
[

[

𝑢̂
𝑘

1
+ 𝑆
𝑘+1

1

(𝐿
−1

2
)
𝑝−1

𝑢̂
𝑘

2
+

𝑝−1

∑

𝑗=0

(𝐿
−1

2
)
𝑗

𝑆
𝑘+(𝑝−𝑗)/𝑝

2

]
]

]

.

(36)

The fractional index is used to indicate the small time steps.

Now that the implicitly coupled system has been defined,
we can choose a splitting that defines𝑀 and 𝑁 in the error
formulas above. The error formula for the multirate case is
very similar to (25), but we must define matrices 𝑇

𝑛,𝑝
where 𝑛

is the number of iterations per time step and 𝑝 is the integer
number of time steps taken in component 2 for each time step
taken in component 1. Let

𝑍
𝑝
= [
𝐼
1

0

0 (𝐿
−1

2
)
𝑝−1] , (37)

where 𝐼
1
is an identity matrix of the same size as 𝐿

1
. The

recursion relationship for the 𝑇
𝑛,𝑝

is

𝑇
1,𝑝
= 𝑀
−1
𝑍
𝑝
+𝑀
−1
𝑁,

𝑇
𝑛,𝑝
= 𝑀
−1
𝑍
𝑝
+𝑀
−1
𝑁𝑇
𝑛−1,𝑝

.

(38)

The alternative form for 𝑇
𝑛,𝑝
, analogous to (29) is

𝑇
𝑛,𝑝
= [

𝑛−1

∑

𝑖=0

(𝑀
−1
𝑁)
𝑖

]𝑀
−1
𝑍
𝑝
+ (𝑀
−1
𝑁)
𝑛

. (39)

This means that as 𝑛 goes to infinity, 𝑇
𝑛,𝑝

approaches 𝐴−1𝑍
𝑝

(note that 𝑍
1
= 𝐼). Finally, the multirate error formula is

𝑒
𝑘,𝑛

𝑝
= [𝑇
𝑛,𝑝
]
𝑘

𝑒
0
+

𝑘

∑

𝑗=1

[𝑇
𝑛,𝑝
]
𝑘−𝑗

(𝑀
−1
𝑁)
𝑛

Δ𝑢̂
𝑗
. (40)

5.1. Multirate Example 1: Varying 𝑝 with Constant 𝑛. The
multirate examples are the same as those described in
Section 4.2 with only the values of 𝑛 and 𝑝 altered. We use
the same Jacobi style iteration, so based on (36) we have

𝑀 = [
𝐿
1
0

0 𝐿
2

] , 𝑁 =
[
[

[

0 𝑃
21

𝑝−1

∑

𝑗=0

(𝐿
−1

2
)
𝑗

𝑃
12

0

]
]

]

. (41)
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Figure 8: Spectral radii for multirate example 1. 𝑛 = 1, 𝑝 = 2 (a), and 𝑛 = 1, 𝑝 = 10 (b). Black is 𝐴−1, dotted black is 𝐴−1𝑍
𝑝
, green is𝑀−1𝑁,

blue is 𝑇
𝑛
, and red marks the value one. The horizontal axis shows the size of the large time step.
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Figure 9: Spectral radii for multirate example 2. 𝑛 = 3, 𝑝 = 2 (a), and 𝑛 = 100, 𝑝 = 2 (b). Black is 𝐴−1, dotted black is 𝐴−1𝑍
𝑝
, green is𝑀−1𝑁,

blue is 𝑇
𝑛
, and red marks the value one. The horizontal axis shows the size of the large time step.

In the first multirate example, 𝑛 is set to 1, and 𝑝 is set first
to 2 and then to 10. Figure 8 shows the spectral radii of the
relevant matrices.

Values of 𝑝 larger than 10 produce no visible change in
the plot, so Figure 8(b) can be taken to represent the case of
“many” time steps in component 2 within each time step for
component 1. There is now a range of time steps for which
the iteration diverges. As might be expected, the algorithm is
unstablewhen the iteration is divergent. In otherwords, when
the spectral radius of𝑀−1𝑁 is greater than one, the spectral
radius of 𝑇

𝑛
is greater than one.

As the number of iterations, 𝑛, approaches infinity, a
divergent iteration must result in an unstable algorithm.
However, for the case of finite iteration, this is not guaranteed,
and the next experiment illustrates this point.

5.2. Multirate Example 2: Varying 𝑛 with Constant 𝑝. In the
second multirate example, 𝑝 is set to 2, and 𝑛 is set first
to 3 and then to 100. Figure 9 shows the spectral radii for
the relevant matrices. The results show that the method may
be stable, even though the iteration is divergent. Figure 9(a)
include a region inwhich the spectral radius of𝑀−1𝑁 ismore
than one, yet the spectral radius of 𝑇

𝑛
is less than one. In

Figure 9(a), where only 3 iterations are used per large time
step, the entire range of 𝑑𝑡 values for which the iteration
is divergent results in a stable algorithm. In Figure 9(b),
where the number of iterations is raised to 100, the region of
divergence and the region of instability are very nearly the
same. Such cases are not unique to multirate examples and
have also been observed in single rate examples. Of course
these cases can only occur when the number of iterations per
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Figure 10: Spectral radii for multirate example 1 in 2 spatial dimensions. 𝑛 = 1, 𝑝 = 2 (a), and 𝑛 = 1, 𝑝 = 10 (b). Black is 𝐴−1, dotted black is
𝐴
−1
𝑍
𝑝
, green is𝑀−1𝑁, blue is 𝑇

𝑛
, and red marks the value one. The horizontal axis shows the size of the large time step.

time step is small, since iteratingmany times with a divergent
iteration would certainly lead to an unstable algorithm. This
is an interesting case, since a stable algorithm could contain
a divergent iteration and the user might not know.

5.3. Multirate Example in Two Spatial Dimensions. In this
section, themultirate tests in Sections 5.1 and 5.2 are extended
to a problem in two spatial dimensions posed on 𝑥

1
∈ [0, 1],

𝑥
2
∈ [0, .5] with the interface located at 𝑥

1
= .5:

𝜕

𝜕𝑡
U
1
− ΔU

1
= 𝑓
𝐿
(𝑥
1
, 𝑥
2
, 𝑡),

(𝑥
1
, 𝑥
2
) ∈ [0, .5] × [0, .5], 𝑡 ∈ [0, 𝑇],

𝜕

𝜕𝑡
U
2
− ΔU

2
= 𝑓
𝑅
(𝑥
1
, 𝑥
2
, 𝑡),

(𝑥
1
, 𝑥
2
) ∈ [.5, 1] × [0, .5] , 𝑡 ∈ [0, 𝑇],

U
1
= U
2
, 𝑥
1
= .5, 𝑥

2
∈ [0, .5], 𝑡 ∈ [0, 𝑇],

𝑛 ⋅ ∇U
1
= 𝑛 ⋅ ∇U

2
, 𝑥
1
= .5, 𝑥

2
∈ [0, .5], 𝑡 ∈ [0, 𝑇],

𝜕

𝜕𝑥
1

U
1
(𝑥
1
, 𝑥
2
, 𝑡) = 0, 𝑥

1
= 0, 𝑥

2
∈ [0, .5] , 𝑡 ∈ [0, 𝑇] ,

U
1
(𝑥
1
, 𝑥
2
, 𝑡) = 0, 𝑥

1
= 1, 𝑥

2
∈ [0, .5] , 𝑡 ∈ [0, 𝑇] ,

U
2
(𝑥
1
, 𝑥
2
, 𝑡) = 0, 𝑥

1
∈ [0, 1], 𝑥2 = 0 or .5, 𝑡 ∈ [0, 𝑇],

U
1
(𝑥
1
, 𝑥
2
, 0) = 𝑔

𝐿
(𝑥
1
, 𝑥
2
, 𝑡), 𝑥

1
∈ [0, 1], 𝑥2 ∈ [0, .5],

U
2
(𝑥
1
, 𝑥
2
, 0) = 𝑔

𝑅
(𝑥
1
, 𝑥
2
, 𝑡), 𝑥

1
∈ [0, 1], 𝑥2 ∈ [0, .5].

(42)

The purpose of this example is to examine the changes in
the spectral radii of the relevant matrices resulting from

the change to two spatial dimensions. We use the standard
finite volume discretization with 16 × 16 cells in each subdo-
main. Since the functions 𝑓

𝐿
, 𝑓
𝑅
, 𝑔
𝐿
, and 𝑔

𝑅
have no impact

on the relevant matrices, we do not state them explicitly.
Plots of the spectral radii of the relevant matrices are

given in Figures 10 and 11. The spectral radius of 𝐴−1 is much
smaller in the two space dimension case. Nonetheless, the
plots show that the two space dimension case exhibits the
same qualitative behavior as the one space dimension case. In
particular, there is a range of time steps for which the iteration
is divergent and also a range of time steps forwhich the overall
method is unstable.

6. Conclusion

By selecting a coupling strategy comprising space and
time grids and an associated rule by which information
is exchanged between components, we define an implicitly
coupled system. At each time step, we seek a solution of this
implicitly coupled system through a block iterative strategy.
Since only a limited number of iterations can be performed
at each time step, there will be some iteration error which
separates the final iterate from the implicitly coupled solution.
These errors are propagated to the next time step in the form
of errors in the initial condition and are compounded as
the incomplete iteration process repeats itself at each time
step. The cumulative effect can manifest itself as conditional
stability, meaning the solution is only stable for certain values
of 𝑑𝑡 despite the unconditional stability of the implicitly
coupled solution.

We have derived formulas for this error which show
that stability hinges on the spectral radius of the matrix
𝑇
𝑛
and further show that there is a mechanism for error

to accumulate in time even if the algorithm is stable.
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Figure 11: Spectral radii for multirate example 2 in 2 spatial dimensions. 𝑛 = 3, 𝑝 = 2 (a), and 𝑛 = 100, 𝑝 = 2 (b). Black is 𝐴−1, dotted black
is 𝐴−1𝑍

𝑝
, green is𝑀−1𝑁, blue is 𝑇

𝑛
, and red marks the value one. The horizontal axis shows the size of the large time step.

By examining the spectral radius of 𝑇
𝑛
for a variety of

discretization choices on a simplemodel problemwe demon-
strate several important points. Firstly, the unconditional
stability of the time integration method is not necessarily
retained if a low number of iterations per timestep are used.
Instead, a conditional stability may occur, where the method
is stable for a range of values of 𝑑𝑡. In additon, we show
by example that it is possible for the method to be stable
even if the iteration is divergent, provided a low number of
iterations is used. These results seem to contradict intuition,
which suggests that a convergent iteration will produce a
stable algorithm and a divergent iteration will produce an
unstable algorithm. However, both of these ideas hold only
in the limit as the number of iterations goes to infinity, and
in the case of finite iteration we have shown that there are
exceptions.

Finally, the question of accuracy must be considered in
addition to the issue of stability. The error formulas derived
above show that the iterative solutionmay wander away from
the implicitly coupled solution over time even if the method
is stable in the traditional sense.

Appendices

A. Discrete Equations for 1D Finite
Volume with Backward Euler in Time on
the Heat Equation

Let there be 𝑛 cells in the 1D spatial grid in a given subdomain,
𝑥 ∈ [𝑥

𝑎
, 𝑥
𝑏
]. Let 𝑢𝑗

𝑖
be the discrete solution on cell 𝑖 at time

𝑗, 𝑑𝑡 the constant time step, and ℎ the constant cell width.
The symbol 𝑓𝑗

𝑖
represents the exact integral over cell 𝑖 of the

right hand side of the PDE evaluated at time 𝑗. The symbol
𝑎
𝑗

𝑖+1/2
represents the diffusivity function evaluated at the

boundary between cell 𝑖 and cell 𝑖+1, at time 𝑗. The system of
equations below, when placed intomatrix form, describes the
terms in (3) as theywere implemented for the numerical tests.

𝑢
𝑗+1

𝑖
+
𝑑𝑡

ℎ
(𝑁
𝑗+1
−

𝑎
𝑗+1

𝑖+1/2
(𝑢
𝑗+1

𝑖+1
− 𝑢
𝑗+1

𝑖
)

ℎ
) =

𝑑𝑡

ℎ
𝑓
𝑗+1

𝑖
+ 𝑢
𝑗

𝑖
,

for 𝑖 = 1,
(A.1)

where 𝑁𝑗+1 is the known Neumann boundary condition at
𝑥 = 𝑥

𝑎
at time 𝑗 + 1.

Consider

𝑢
𝑗+1

𝑖
+
𝑑𝑡

ℎ

[

[

𝑎
𝑗+1

𝑖−1/2
(𝑢
𝑗+1

𝑖
− 𝑢
𝑗+1

𝑖−1
)

ℎ
−

𝑎
𝑗+1

𝑖+1/2
(𝑢
𝑗+1

𝑖+1
− 𝑢
𝑗+1

𝑖
)

ℎ

]

]

=
𝑑𝑡

ℎ
𝑓
𝑗+1

𝑖
+ 𝑢
𝑗

𝑖
, for 𝑖 = 2, . . . , 𝑛 − 1,

𝑢
𝑗+1

𝑖
+
𝑑𝑡

ℎ
(

𝑎
𝑗+1

𝑖−1/2
(𝑢
𝑗+1

𝑖
− 𝑢
𝑗+1

𝑖−1
)

ℎ
−

𝑎
𝑗+1

𝑖+1/2
(𝐷
𝑗+1
− 𝑢
𝑗+1

𝑖
)

ℎ/2
)

=
𝑑𝑡

ℎ
𝑓
𝑗+1

𝑖
+ 𝑢
𝑗

𝑖
, for 𝑖 = 𝑛,

(A.2)

where𝐷𝑗+1 is the knownDirichlet boundary condition at 𝑥 =
𝑥
𝑏
at time 𝑗 + 1.
Note that (A.1) and (A.2) are valid for both of our

subdomains provided that 𝑁𝑗+1 and 𝐷𝑗+1 are interpreted
as given boundary conditions on the outer boundaries of
the entire domain and are determined by the extrapolation
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strategy depicted in Figure 2 at the interface between the
subdomains.

B. Inexact Component Solutions (Inexact
Inversion of 𝑀)

The error formulas derived in Sections 3.1 and 3.2 can easily
be modified to include the effects of inexact inversion of𝑀.
We first adjust (18) from Section 3.1, for a single iteration per
time step. The iterates are now defined by

𝑢
𝑘+1
= 𝑀
−1
[𝑢
𝑘
+ 𝑆
𝑘+1
+ 𝑁𝑢
𝑘
] + 𝜖
𝑘
, (B.1)

where 𝜖𝑘 represents the error from inexact inversion. The
result corresponding to (18) in Section 3.1 is now

𝑒
𝑘
= [𝑇
1
]
𝑘

𝑒
0
+

𝑘

∑

𝑗=1

[𝑇
1
]
(𝑘−𝑗)

[𝑀
−1
𝑁]Δ𝑢̂

𝑗

+

𝑘

∑

𝑗=1

[𝑇
1
]
(𝑘−𝑗)

𝜖
𝑗
.

(B.2)

Notice the extra term resulting from incomplete iteration.
Repeating the process for 𝑛 iterations per time step, the

computational iterates are defined by

𝑢
𝑘+1,𝑖

= 𝑀
−1
[𝑢
𝑘
+ 𝑆
𝑘+1
+ 𝑁𝑢
𝑘+1,𝑖−1

] + 𝜖
𝑘+1,𝑖

. (B.3)

Following the same logic and derivation used in Section 3.2,
the expression corresponding to (25) is

𝑒
𝑘,𝑛
= [𝑇
𝑛
]
𝑘

𝑒
0
+

𝑘

∑

𝑗=1

[𝑇
𝑛
]
𝑘−𝑗

(𝑀
−1
𝑁)
𝑛

Δ𝑢̂
𝑗

+

𝑘

∑

𝑗=1

[𝑇
𝑛
]
(𝑘−𝑗)

𝑛

∑

𝑖=1

(𝑀
−1
𝑁)
𝑛−𝑖

𝜖
𝑗,𝑖
.

(B.4)

Notice that, with multiple iterations per time step, the 𝜖
term needs a double index because an error due to inexact
inversion is made at every iteration. Equation (B.4) contains
both terms from (25) and has an additional term which
represents the error caused by the inexact inversions. The
matrix 𝑇

𝑛
is the key to the growth of all three terms and

therefore remains the key to stability.

C. Weighted Jacobi

It is worth noting that the error formula (25) can easily be
altered to allow for a “relaxed” Jacobi iteration [20–22], in
which a weighted average of the new and old iterates of a
standard Jacobi iteration is taken to be the next iterate (see,
e.g., [23]). If we rewrite (25) as

𝑒
𝑘
= [𝑇
𝑛
]
𝑘

𝑒
0
+

𝑘

∑

𝑗=1

[𝑇
𝑛
]
𝑘−𝑗

(𝑅
𝜔
)
𝑛

Δ𝑢̂
𝑗
, (C.1)

with𝑅
𝜔
= [(1−𝜔)𝐼+𝜔𝑀

−1
𝑁] and redefine𝑇

1
= [𝜔𝑀

−1
+𝑅
𝜔
],

then for 𝑛 > 1

𝑇
𝑛
= 𝜔𝑀

−1
+ 𝑅
𝜔
[𝑇
𝑛−1
]. (C.2)

With this definition of 𝑇
𝑛
, (25) holds for any value of 𝜔 ∈

[0, 1], with 𝜔 = 1 corresponding to standard iteration. In
some cases where the iterative convergence at each time step
is slow, the iterates tend to oscillate around the implicitly
coupled solution at that time step. In these cases, adjusting
𝜔 can drastically accelerate iterative convergence.
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