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A stochastic nonautonomous N-species Lotka-Volterra model with delays and impulsive perturbations is investigated. For this
model, sufficient conditions for extinction, nonpersistence in the mean, weak persistence and stochastic permanence are given,
respectively. The influences of the stochastic noises, and the impulsive perturbations on the properties of the stochastic model are
also discussed. The critical value between weak persistence and extinction is obtained. Finally, numerical simulations are given to
support the theoretical analysis results.

1. Introduction

Population ecology is a major subfield of ecology that deals
with the dynamics of species populations and the way these
populations interact with the environment. It is concerned
with the study of groups of organisms that live together in
time and space and compete for the limited resources or
in some way inhibit others’ growth. Modelling of dynamic
interactions in nature allows us to understand better how
these complex interactions and processes work. The well-
known model that regards dynamic of population models
is the Lotka-Volterra model. The investigation of the Lotka-
Volterra model is one of the dominant themes in mathemati-
cal ecology due to its importance. The Lotka-Volterra model
with delays has received more and more attentions and had
lots of nice results [1–5]. More details of the Lotka-Volterra
model with delays are discussed in the books by Gopalsamy
[6] and Kuang [7].

In the real world, the population models are inevitably
influenced by the environmental noise which is an important
component in an ecosystem [8–10]. Moreover, May [11] has
pointed out the fact that, due to environmental noise, the
birth rate, carrying capacity, competition coefficient, and
other parameters involved with the system exhibit random
fluctuation to a greater or lesser extent [12].

On the other hand, populationsmay be affected by a vari-
ety of factors both naturally and manly, such as earthquake,
drought, flooding, fire, crop-dusting, planting, hunting, and
harvesting; the inner discipline of species or environment
often suffers some dispersed changes over a relatively short
time interval at the fixed times, which makes it unsuitable
to be considered continually. In mathematics perspective,
such sudden changes could be described by impulses. With
the development of the theory of impulsive differential
equations [13, 14], we can establish adequate mathematical
models of impulsive differential equations to investigate the
dynamic behaviors of such ecosystems with impulsive effects.
Consequently the dynamical behaviors of impulsive popula-
tion dynamical models and stochastic population dynamical
models have been extensively studied [15–19]. The nonau-
tonomous N-species Lotka-Volterra competitive system with
impulsive perturbations was discussed in Hou et al. [15]. N-
species nonautonomous Lotka-Volterra competitive system
with delays and impulsive perturbations was considered in
Zhang and Teng [18]. While these papers did not discuss the
persistence and extinction of the stochastic Lotka-Volterra
model, from the viewpoint of applications, it is critical to find
out when the population will go to extinction or survival.

A major problem in population biology is to understand
what determines extinction of a population. Population
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extinction is often a result of habitat destruction and
modification which can be widespread. Moreover, dramatic
changes in ecosystem structure or function are often caused
by the species additions in the form of invasive species.
In addition, the extinction of native populations may be
caused by the growth of invasive species [20]. Moreover, even
large populations may be destroyed by some extraordinary
perturbation [21]. When the time is sufficiently large the
population of some species may not become extinct, but the
size of that populationmay be close to zero so that the species
can be endangered. In other words, there exists a critical
number between extinction and survival of population. In
this sense, Ma and Hallam [22, 23] proposed the concepts
of nonpersistence in the mean and weak persistence for
some deterministic models and Lu and Ding [24] applied
these concepts to stochastic logistic models instead of the
stochastic Lotka-Volterra model.

Inspired by the works referred above, in this paper, we
will investigate the persistence and extinction of a general
stochastic nonautonomous Lotka-Volterra model with delays
and impulsive perturbations. To our knowledge, there are
few results of this aspect for the stochastic nonautonomous
Lotka-Volterra model. Moreover, all the publications have
not obtained the persistence-extinction threshold for the
general stochastic nonautonomous Lotka-Volterra model
with delays and impulsive perturbations. The problems
above are explored and some main results are given in this
paper.The general stochastic nonautonomous Lotka-Volterra
model with delays and impulsive perturbations which has
a unique positive global solution is investigated. For this
model, sufficient conditions for extinction, nonpersistence
in the mean, weak persistence, and stochastic permanence
are established. The influences of the stochastic noises and
impulsive perturbations on the properties of the stochastic
model are discussed. Comparing with deterministic results
[25–27], if the noise is sufficiently small, the property
permanence that the related deterministic system possesses
is preserved in the stochastic model. However, with the
increase of stochastic noise, the properties of the system
may be changed greatly. For example, the solution to the
associated stochastic model will be extinct with probability
one with the increase of stochastic noise being sufficiently
large, although the solution to the original deterministic
model may be persistent.The properties of the system are not
affected by the impulsive perturbations which are bounded;
otherwise, the properties may be changed significantly. The
critical value between weak persistence and extinction is
obtained.

The rest of the paper is arranged as follows. The stochas-
tic nonautonomous Lotka-Volterra model with delays and
impulsive perturbations is formulated and some notations
and preliminaries are given in Section 2. Section 3 shows
that the general nonautonomous Lotka-Volterra model has
a unique positive global solution. Then, sufficient conditions
for extinction, nonpersistence in the mean, weak persistence,
and stochastic permanence are established in Section 4. The
simulation results in Section 5 are given to illustrate the main
results obtained in this paper. Finally, the conclusions are
given in Section 6.

2. Problem Formulation and Preliminaries

A classical nonautonomous Lotka-Volterra model with time-
varying and infinite delays can be expressed as follows:

𝑑𝑥
𝑖 (𝑡)

𝑑𝑡
= 𝑥

𝑖 (𝑡)
[

[

𝑟
𝑖 (𝑡) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (𝑡) 𝑥𝑗 (𝑡)

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (𝑡) 𝑥𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗 (𝑡) ∫

0

−∞

𝑥
𝑗 (𝑡 + 𝜃) 𝑑𝜇𝑖𝑗 (𝜃)

]

]

,

1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛,

(1)

where 𝑥(𝑡) = (𝑥
1
(𝑡), . . . , 𝑥

𝑛
(𝑡))

𝑇; 𝑥
𝑖
(𝑡) and 𝑟

𝑖
(𝑡) are the pop-

ulation size and intrinsic exponential growth rate for the 𝑖th
species at time 𝑡, respectively; 𝑎

𝑖𝑗
(𝑡), 𝑏

𝑖𝑗
(𝑡), and 𝑐

𝑖𝑗
(𝑡) represent

the effects of interspecific (for 𝑖 ̸= 𝑗) and intraspecific (for 𝑖 =
𝑗) interaction at time 𝑡; 𝜏

𝑖𝑗
(𝑡) ≥ 0 represents the time-varying

delays; and 𝜇
𝑖𝑗
(𝜃) is the probability measure on (−∞, 0], 1 ≤

𝑖, 𝑗 ≤ 𝑛.
In real life, model (1) is affected by environmental noises.

The intrinsic growth rate of the 𝑖th species 𝑟
𝑖
(𝑡) (1 ≤ 𝑖 ≤

𝑛) at time 𝑡 is estimated by an average value plus an error
term. Then the intrinsic growth rate becomes 𝑟

𝑖
(𝑡) →

𝑟
𝑖
(𝑡) + 𝜎

𝑖
(𝑡)�̇�

𝑖
(𝑡). The effects of interspecific (for 𝑖 ̸= 𝑗) and

intraspecific (for 𝑖 = 𝑗) interaction 𝑎
𝑖𝑗
(𝑡) (1 ≤ 𝑖, 𝑗 ≤ 𝑛) at

time 𝑡 are estimated by an average value plus an error term.
So 𝑎

𝑖𝑗
(𝑡) is replaced by −𝑎

𝑖𝑗
(𝑡) → −𝑎

𝑖𝑗
(𝑡) + 𝛿

𝑖𝑗
(𝑡)�̇�

𝑖𝑗
(𝑡). 𝜎

𝑖
(𝑡)

and 𝛿
𝑖𝑗
(𝑡) (1 ≤ 𝑖, 𝑗 ≤ 𝑛) are continuous nonnegative bounded

functions on 𝑅
+
= [0, +∞) and the intensities of the white

noise at time 𝑡. �̇�
𝑖
(𝑡) and �̇�

𝑖𝑗
(𝑡) are the white noises; 𝐵

𝑖
(𝑡) and

𝐵
𝑖𝑗
(𝑡) are the one-dimensional Brownian motions defined on

a complete probability space (Ω,F,P).
On the other hand, in practice, model (1) is affected by

impulsive perturbations. As a result, model (1) becomes the
following stochastic nonautonomous Lotka-Volterra model
with impulsive perturbations:

𝑑𝑥
𝑖 (𝑡) = 𝑥𝑖 (𝑡)

[

[

𝑟
𝑖 (𝑡) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (𝑡) 𝑥𝑗 (𝑡)

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (𝑡) 𝑥𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗 (𝑡) ∫

0

−∞

𝑥
𝑗 (𝑡 + 𝜃) 𝑑𝜇𝑖𝑗 (𝜃)

]

]

𝑑𝑡 + 𝑥
𝑖 (𝑡)

⋅ 𝜎
𝑖 (𝑡) 𝑑𝐵𝑖 (𝑡) + 𝑥𝑖 (𝑡)

𝑛

∑

𝑗=1

𝛿
𝑖𝑗 (𝑡) 𝑥𝑗 (𝑡) 𝑑𝐵𝑖𝑗 (𝑡) ,

𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ 𝑁,

𝑥
𝑖
(𝑡
+

𝑘
) − 𝑥

𝑖
(𝑡
𝑘
) = ℎ

𝑖𝑘
𝑥
𝑖
(𝑡
𝑘
) ,

𝑘 ∈ 𝑁, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛,

(2)
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where 𝑁 denotes the set of positive integers, 0 < 𝑡
1
< 𝑡

2
<

⋅ ⋅ ⋅ < lim
𝑘→+∞

𝑡
𝑘
= +∞. This model will be studied in this

paper.
Let the initial data 𝜉(𝜃) = (𝜉

1
(𝜃), 𝜉

2
(𝜃), . . . , 𝜉

𝑛
(𝜃))

𝑇 be
positive and belong to the friendly space C

𝑔
[28] which is

defined by

C
𝑔
= {𝜑 ∈ 𝐶 ((−∞, 0] ; (0, +∞)

𝑛
) : 𝑙 <

𝜑
C𝑔

= sup
−∞<𝜃≤0

𝑒
𝑟𝜃 𝜑 (𝜃)

 < 𝐿} ,

(3)

where |𝜑(𝜃)| = (𝜑2
1
(𝜃) + 𝜑

2

2
(𝜃) + ⋅ ⋅ ⋅ + 𝜑

2

𝑛
(𝜃))

1/2, 𝑟 > 0, and 𝑙, 𝐿
are two positive constants, 𝑙 < 𝐿.

For model (2) we always assume the following:

(H1): 𝜇
𝑖𝑗
(𝜃) (1 ≤ 𝑖, 𝑗 ≤ 𝑛) is the probability measure on

(−∞, 0] satisfying 𝜇
𝑖𝑗𝑟
= ∫

0

−∞
𝑒
−2𝑟𝜃

𝑑𝜇
𝑖𝑗
(𝜃) < +∞.

(H2): 𝑟
𝑖
(𝑡), 𝑎

𝑖𝑗
(𝑡), 𝑏

𝑖𝑗
(𝑡) and 𝑐

𝑖𝑗
(𝑡) (1 ≤ 𝑖, 𝑗 ≤ 𝑛)

are continuous and bounded function on 𝑅
+
and

min
1≤𝑖,𝑗≤𝑛

inf
𝑡∈𝑅+

𝑎
𝑖𝑗
(𝑡) > 0, 𝑏

𝑖𝑗
(𝑡) ≥ 0, 𝑐

𝑖𝑗
(𝑡) ≥ 0.

(H3): 𝜏
𝑖𝑗
(𝑡) (1 ≤ 𝑖, 𝑗 ≤ 𝑛) are continuously differentiable

functions with 0 ≤ 𝜏
𝑖𝑗
(𝑡) ≤ 𝜏

𝑀 and 1 − ̇𝜏
𝑖𝑗
(𝑡) > 0

for 𝑡 ∈ 𝑅, where 𝜏𝑀 is a constant. Δ−1
𝑖𝑗
(𝑡) is inverse

function of Δ
𝑖𝑗
(𝑡) = 𝑡 − 𝜏

𝑖𝑗
(𝑡).

(H4): we assume that 1 + ℎ
𝑖𝑘
> 0, 𝑖 = 1, 2, . . . , 𝑛, 𝑘 ∈ 𝑁.

When ℎ
𝑖𝑘
> 0, the perturbation denotes increasing

of the species (e.g., planting), while −1 < ℎ
𝑖𝑘
< 0

represents decreasing (e.g., harvesting).

Definition 1 (see [29]). A stochastic process 𝑋(𝑡) = (𝑋
1
(𝑡),

. . . , 𝑋
𝑛
(𝑡))

𝑇, 𝑡 ∈ 𝑅+, is said to be a solution of ISDE:

𝑑𝑋 (𝑡) = 𝐹 (𝑡, 𝑋 (𝑡)) 𝑑𝑡 + 𝐺 (𝑡, 𝑋 (𝑡)) 𝑑𝐵 (𝑡) ,

𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ 𝑁,

𝑋 (𝑡
+

𝑘
) − 𝑋 (𝑡

𝑘
) = 𝐵

𝑘
𝑋(𝑡

𝑘
) , 𝑘 ∈ 𝑁

(4)

with initial condition 𝑋(0), if the following conditions are
satisfied:

(1) 𝑋(𝑡) is adapted and is continuous on (0, 𝑡
1
) and

(𝑡
𝑘
, 𝑡
𝑘+1
), 𝑘 ∈ 𝑁; 𝐹(𝑡, 𝑋(𝑡)) ∈ 𝐿1(𝑅

+
; 𝑅

𝑛
), 𝐺(𝑡, 𝑋(𝑡)) ∈

𝐿
2
(𝑅

+
; 𝑅

𝑛
), where 𝐿𝑘(𝑅

+
; 𝑅

𝑛
) is all 𝑅𝑛 valued measur-

able adapted processes 𝑓(𝑡) satisfying ∫𝑇
0
|𝑓(𝑡)|

𝑘
𝑑𝑡 <

+∞ a.s. (almost surely) for every 𝑇 > 0.
(2) For each 𝑡

𝑘
, 𝑘 ∈ 𝑁, 𝑋(𝑡+

𝑘
) = lim

𝑡→ 𝑡
+

𝑘

𝑋(𝑡) and
𝑋(𝑡

−

𝑘
) = lim

𝑡→ 𝑡
−

𝑘

𝑋(𝑡) exist and 𝑋(𝑡
𝑘
) = 𝑋(𝑡

−

𝑘
) with

probability one.
(3) 𝑋(𝑡) obeys the equivalent integral equation of (4) for

almost every 𝑡 ∈ 𝑅
+
\ 𝑡

𝑘
and satisfies the impulsive

conditions at each 𝑡 = 𝑡
𝑘
, 𝑘 ∈ 𝑁 with probability one.

Then𝑋(𝑡) is said to be a solution of ISDE (4).

For the aim of simplicity, we define the following nota-
tions:

𝑓
𝑢
= sup

𝑡∈𝑅

𝑓 (𝑡) ,

𝑓
𝑙
= inf

𝑡∈𝑅

𝑓 (𝑡) ,

⟨𝑥
𝑖 (𝑡)⟩ =

1

𝑡
∫

𝑡

0

𝑥
𝑖 (𝑠) 𝑑𝑠,

𝑥
∗

𝑖
= lim sup

𝑡→+∞

𝑥
𝑖 (𝑡) ,

𝑥
𝑖
∗ = lim inf

𝑡→+∞
𝑥
𝑖 (𝑡) ,

𝑅
+
= (0, +∞) ,

𝑔
∗

𝑖
= lim sup

𝑡→+∞

𝑡
−1
[ ∑

0<𝑡𝑘<𝑡

ln (1 + ℎ
𝑖𝑘
)

+ ∫

𝑡

0

(𝑟
𝑖 (𝑡) −

𝜎
2

𝑖
(𝑠)

2
) 𝑑𝑠] , 1 ≤ 𝑖 ≤ 𝑛.

(5)

For any sequence {𝑑
𝑖𝑗
(𝑡)} (1 ≤ 𝑖, 𝑗 ≤ 𝑛), define

(𝑑
𝑢

𝑖𝑗
) = max

1≤𝑖,𝑗≤𝑛

sup
𝑡∈𝑅

𝑑
𝑖𝑗 (𝑡) ,

(𝑑
𝑙

𝑖𝑗
) = min

1≤𝑖,𝑗≤𝑛

inf
𝑡∈𝑅

𝑑
𝑖𝑗 (𝑡) .

(6)

The following definitions are commonly used and we list
them here.

Definition 2. (a) The population 𝑥
𝑖
(𝑡) is said to go to extinc-

tion a.s. if lim
𝑡→+∞

𝑥
𝑖
(𝑡) = 0.

(b)The population 𝑥
𝑖
(𝑡) is said to be nonpersistence in the

mean a.s. (see, e.g., [22]) if lim sup
𝑡→+∞

⟨𝑥
𝑖
(𝑡)⟩ = 0.

(c) The population 𝑥
𝑖
(𝑡) is said to be weak persistence a.s.

(see, e.g., [23]) if lim sup
𝑡→+∞

𝑥
𝑖
(𝑡) > 0.

(d)The population 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥

2
(𝑡), . . . , 𝑥

𝑛
(𝑡))

𝑇 is said
to be stochastic permanence if, for arbitrary 𝜀 > 0, there are
constants 𝛽 > 0, 𝐻 > 0 such that lim inf

𝑡→+∞
P{|𝑥(𝑡)| ≥

𝛽} ≥ 1 − 𝜀 and lim inf
𝑡→+∞

P{|𝑥(𝑡)| ≤ 𝐻} ≥ 1 − 𝜀, where | ⋅ |
denotes the Euclidian norm in 𝑅𝑛

+
.

3. Nonexplosion

Theorem 3. Consider model (2); for any given initial value
𝜉(𝜃) = (𝜉

1
(𝜃), 𝜉

2
(𝜃), . . . , 𝜉

𝑛
(𝜃))

𝑇
∈ C

𝑔
, there is a unique

solution 𝑥(𝑡) on 𝑡 ∈ 𝑅 and the solution remains in 𝑅𝑛
+
with

probability 1; in other words, 𝑥(𝑡) ∈ 𝑅
𝑛

+
for all 𝑡 ∈ 𝑅 almost

surely.
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Proof. Consider the following SDE without impulses:

𝑑𝑦
𝑖 (𝑡) = 𝑦𝑖 (𝑡)

[

[

𝑟
𝑖 (𝑡) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (𝑡) ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗 (𝑡)

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (𝑡) ∏

0<𝑡𝑘<𝑡−𝜏𝑖𝑗(𝑡)

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗 (𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗 (𝑡)

⋅ ∫

0

−∞

∏

0<𝑡𝑘<𝑡+𝜃

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗 (𝑡 + 𝜃) 𝑑𝜇𝑖𝑗 (𝜃)
]

]

𝑑𝑡

+ 𝑦
𝑖 (𝑡) 𝜎𝑖 (𝑡) 𝑑𝐵𝑖 (𝑡) + 𝑦𝑖 (𝑡)

𝑛

∑

𝑗=1

𝛿
𝑖𝑗 (𝑡) ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑗𝑘
)

⋅ 𝑦
𝑗 (𝑡) 𝑑𝐵𝑖𝑗 (𝑡) ,

(7)

with the same initial condition as model (2).
Now formodel (7), there is a unique solution𝑦(𝑡) on 𝑡 ∈ 𝑅

and the solution will remain in 𝑅
+
with probability 1.

Since the coefficients of model (7) do not fulfil the
linear growth condition, the general theorems of existence
and uniqueness cannot be implemented for this equation.
However, they are locally Lipschitz continuous; hence for
any given positive initial condition 𝜉(𝜃) = (𝜉

1
(𝜃), 𝜉

2
(𝜃), . . .,

𝜉
𝑛
(𝜃))

𝑇
∈ C

𝑔
, there is a unique local solution 𝑦(𝑡) on 𝑡 ∈

(−∞, 𝜏
𝑒
), where 𝜏

𝑒
is the explosion time. To show this solution

𝑥(𝑡) is global solution, which means that the explosion time
𝜏
𝑒
= +∞, a.s. Let us choose 𝑘

0
> 0 which is sufficiently large

such that
1

𝑘
0

< min
−∞<𝜃≤0

𝜉 (𝜃)
 ≤ max

−∞<𝜃≤0

𝜉 (𝜃)
 < 𝑘0. (8)

For each integer 𝑘 ≥ 𝑘
0
, define the stopping time

𝜏
𝑘
= inf {𝑡 ∈ (−∞, 𝜏

𝑒
) : 𝑦

𝑖 (𝑡) ≤
1

𝑘
or 𝑦

𝑖 (𝑡) ≥ 𝑘} ,

1 ≤ 𝑖 ≤ 𝑛,

(9)

where throughout this paper we set inf Ø = +∞ (as usual Ø
denotes the empty set). Clearly, 𝜏

𝑘
is increasing as 𝑘 → +∞.

Set 𝜏
+∞

= lim
𝑘→+∞

𝜏
𝑘
, whence 𝜏

+∞
≤ 𝜏

𝑒
a.s. and 𝑥(𝑡) ∈ 𝑅𝑛

+

a.s. for all 𝑡 ≥ 0. In other words, to complete the proof all we
need to show is that 𝜏

+∞
= +∞ a.s. To show this statement, let

us define a 𝐶2-function 𝑉: 𝑅𝑛
+
→ 𝑅

+
by 𝑉

1
(𝑦) = ∑

𝑛

𝑖=1
[√𝑦𝑖 −

1 − 0.5 ln(𝑦
𝑖
)], where 𝑦 = (𝑦

1
, . . . , 𝑦

𝑛
)
𝑇. Let 𝑘 ≥ 𝑘

0
and 𝑇 > 0

be arbitrary. Now define

𝑉 (𝑡, 𝑦 (𝑡)) =

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏𝑖𝑗(𝑡)

(∏
0<𝑡𝑘<𝑠

(1 + ℎ
𝑗𝑘
))

2

𝑦
2

𝑗
(𝑠)

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

𝑑𝑠

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

0

−∞

∫

𝑡

𝑡+𝜃

( ∏

0<𝑡𝑘<𝑠

(1 + ℎ
𝑗𝑘
))

2

𝑦
2

𝑗
(𝑠) 𝑑𝑠 𝑑𝜇𝑖𝑗 (𝜃)

+ 𝑉
1
(𝑦 (𝑡)) .

(10)

For 0 ≤ 𝑡 ≤ 𝜏
𝑘
∧𝑇, applying Itô’s formula to𝑉(𝑡, 𝑦(𝑡)), we can

get

𝑑𝑉 (𝑡, 𝑦 (𝑡)) = 𝐹 (𝑦 (𝑡)) 𝑑𝑡 +

𝑛

∑

𝑖=1

1

2
[𝑦

0.5

𝑖
(𝑡) − 1]

⋅ 𝜎
𝑖 (𝑡) 𝑑𝐵𝑖 (𝑡) +

𝑛

∑

𝑖=1

1

2
[𝑦

0.5

𝑖
(𝑡) − 1]

⋅ (

𝑛

∑

𝑗=1

𝛿
𝑖𝑗 (𝑡) ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗 (𝑡))𝑑𝐵
𝑖𝑗 (𝑡) ,

(11)

where
𝐹 (𝑦 (𝑡))

=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(∏
0<𝑡𝑘<𝑡

(1 + ℎ
𝑗𝑘
))

2

𝑦
2

𝑗
(𝑡)

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑡))

+ 𝑛

𝑛

∑

𝑗=1

( ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑗𝑘
))

2

𝑦
2

𝑗
(𝑡)

+

𝑛

∑

𝑖=1

1

2
𝑟
𝑖 (𝑡) [𝑦

0.5

𝑖
(𝑡) − 1]

−

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

1

2
𝑎
𝑖𝑗 (𝑡) [𝑦

0.5

𝑖
(𝑡) − 1] ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗 (𝑡)

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

1

16
𝑏
2

𝑖𝑗
(𝑡) [𝑦

0.5

𝑖
(𝑡) − 1]

2

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

1

16
𝑐
2

𝑖𝑗
(𝑡) [𝑦

0.5

𝑖
(𝑡) − 1]

2

−
1

8

𝑛

∑

𝑖=1

𝜎
2

𝑖
(𝑡) 𝑦

0.5

𝑖
(𝑡) +

1

4

𝑛

∑

𝑖=1

𝜎
2

𝑖
(𝑡)

−
1

8

𝑛

∑

𝑖=1

𝑦
0.5

𝑖
(𝑡) [

[

𝑛

∑

𝑗=1

𝛿
𝑖𝑗 (𝑡) ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗 (𝑡)
]

]

2

+
1

4

𝑛

∑

𝑖=1

[

[

𝑛

∑

𝑗=1

𝛿
𝑖𝑗 (𝑡) ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗 (𝑡)
]

]

2

.

(12)

With the fact that ∏
0<𝑡𝑘<𝑡

(1 + ℎ
𝑖𝑘
)𝑦

𝑖
(𝑡) ≤ ∑

𝑛

𝑖=1
∏

0<𝑡𝑘<𝑡
(1 +

ℎ
𝑖𝑘
)𝑦

𝑖
(𝑡), it is easy to see that 𝐹(𝑦(𝑡)) is bounded on 𝑅

𝑛

+
.

In other words, there exists a positive constant 𝐾 such that
𝐹(𝑦(𝑡)) ≤ 𝐾. Therefore,

𝑑𝑉 (𝑡, 𝑦 (𝑡)) ≤ 𝐾𝑑𝑡 +

𝑛

∑

𝑖=1

1

2
[𝑦

0.5

𝑖
(𝑡) − 1] 𝜎𝑖 (𝑡) 𝑑𝐵𝑖 (𝑡)

+

𝑛

∑

𝑖=1

1

2
[𝑦

0.5

𝑖
(𝑡) − 1]

⋅ (

𝑛

∑

𝑗=1

𝛿
𝑖𝑗 (𝑡) ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗 (𝑡))𝑑𝐵
𝑖𝑗 (𝑡) .

(13)
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Integrating both sides from 0 to 𝑡 and then taking expecta-
tions, we have

𝐸𝑉 (𝑡, 𝑦 (𝑡))

≤

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

0

−𝜏𝑖𝑗(0)

(∏
0<𝑡𝑘<𝑡

(1 + ℎ
𝑗𝑘
))

2

𝑦
2

𝑗
(𝑠)

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

𝑑𝑠

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

0

−∞

∫

0

𝜃

( ∏

0<𝑡𝑘<𝑠

(1 + ℎ
𝑗𝑘
))

2

𝑦
2

𝑗
(𝑠) 𝑑𝑠 𝑑𝜇𝑖𝑗 (𝜃)

+ 𝑉
1
(𝑦 (0)) + 𝐾𝑡.

(14)

Let 𝑡 = 𝜏
𝑘
∧ 𝑇, from ̇𝜏

𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑡)) < 1, we have

𝐸𝑉
1
(𝑦 (𝜏

𝑘
∧ 𝑇))

≤

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

0

−𝜏𝑖𝑗(0)

(∏
0<𝑡𝑘<𝑡

(1 + ℎ
𝑗𝑘
))

2

𝑦
2

𝑗
(𝑠)

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

𝑑𝑠

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

0

−∞

∫

0

𝜃

( ∏

0<𝑡𝑘<𝑠

(1 + ℎ
𝑗𝑘
))

2

𝑦
2

𝑗
(𝑠) 𝑑𝑠 𝑑𝜇𝑖𝑗 (𝜃)

+ 𝑉
1
(𝑦 (0)) + 𝐾𝑇.

(15)

Note that, for every 𝜔 ∈ {𝜏
𝑘
≤ 𝑇}, 𝑥

𝑖
(𝜏
𝑘
, 𝜔) equals either 𝑘

or 1/𝑘, and hence 𝑉
1
(𝑦(𝜏

𝑘
, 𝜔)) is no less than either√𝑘 − 1 −

0.5 log(𝑘) or√1/𝑘 − 1 − 0.5 log(1/𝑘) = √1/𝑘 − 1 + 0.5 log(𝑘).
Consequently,

𝑉
1
(𝑦 (𝜏

𝑘
, 𝜔)) ≥ [√𝑘 − 1 − 0.5 log (𝑘)]

∧ [√
1

𝑘
− 1 + 0.5 log (𝑘)] .

(16)

It then follows from (14) that

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

0

−𝜏𝑖𝑗(0)

(∏
0<𝑡𝑘<𝑡

(1 + ℎ
𝑗𝑘
))

2

𝑦
2

𝑗
(𝑠)

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

𝑑𝑠

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

0

−∞

∫

0

𝜃

( ∏

0<𝑡𝑘<𝑠

(1 + ℎ
𝑗𝑘
))

2

𝑦
2

𝑗
(𝑠) 𝑑𝑠 𝑑𝜇𝑖𝑗 (𝜃)

+ 𝑉
1
(𝑦 (0)) + 𝐾𝑇 ≥ 𝐸 [𝐼{𝜏𝑘≤𝑇}

(𝜔)𝑉1 (𝑦 (𝜏𝑘, 𝜔))]

≥ P {𝜏
𝑘
≤ 𝑇}([√𝑘 − 1 − 0.5 log (𝑘)] ∧ [√1

𝑘
− 1

+ 0.5 log (𝑘)]) ,

(17)

where 𝐼
{𝜏𝑘≤𝑇}

is the indicator function of {𝜏
𝑘
≤ 𝑇}. Letting

𝑘 → +∞, lim
𝑘→+∞

P{𝜏
𝑘
≤ 𝑇} = 0 and hence P{𝜏

+∞
≤

𝑇} = 0. Since 𝑇 > 0 is arbitrary, we must have P{𝜏
+∞

<

+∞} = 0, soP{𝜏
+∞

= +∞} = 1 as required.

Now let

𝑥
𝑖 (𝑡) = ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑖𝑘
) 𝑦

𝑖 (𝑡) . (18)

Next 𝑥(𝑡) is the solution of (2) which will be shown. In fact,
𝑥(𝑡) is continuous on (𝑡

𝑘
, 𝑡
𝑘+1
) ⊂ (0, +∞), 𝑘 ∈ 𝑁 and for

every 𝑡 ̸= 𝑡
𝑘
,

𝑑𝑥
𝑖 (𝑡) = 𝑑[ ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑖𝑘
) 𝑦

𝑖 (𝑡)]

= ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑖𝑘
) 𝑑𝑦

𝑖 (𝑡) = ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑖𝑘
)

⋅ 𝑦
𝑖 (𝑡)

[

[

𝑟
𝑖 (𝑡) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (𝑡) ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗 (𝑡)

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (𝑡) ∏

0<𝑡𝑘<𝑡−𝜏𝑖𝑗(𝑡)

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗 (𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗 (𝑡)

⋅ ∫

0

−∞

∏

0<𝑡𝑘<𝑡+𝜃

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗 (𝑡 + 𝜃) 𝑑𝜇𝑖𝑗 (𝜃)
]

]

𝑑𝑡

+ ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑖𝑘
) 𝜎

𝑖 (𝑡) 𝑦𝑖 (𝑡) 𝑑𝐵𝑖 (𝑡)

+ ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑖𝑘
) 𝑦

𝑖 (𝑡)

𝑛

∑

𝑗=1

𝛿
𝑖𝑗 (𝑡) ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑗𝑘
)

⋅ 𝑦
𝑗 (𝑡) 𝑑𝐵𝑖𝑗 (𝑡) = 𝑥𝑖 (𝑡)

[

[

𝑟
𝑖 (𝑡)

−

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (𝑡) 𝑥𝑗 (𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (𝑡) 𝑥𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗 (𝑡) ∫

0

−∞

𝑥
𝑗 (𝑡 + 𝜃) 𝑑𝜇𝑖𝑗 (𝜃)

]

]

𝑑𝑡 + 𝜎
𝑖 (𝑡)

⋅ 𝑥
𝑖 (𝑡) 𝑑𝐵𝑖 (𝑡) + 𝑥𝑖 (𝑡)

𝑛

∑

𝑗=1

𝛿
𝑖𝑗 (𝑡) 𝑥𝑗 (𝑡) 𝑑𝐵𝑖𝑗 (𝑡) .

(19)

Moreover, for every 𝑘 ∈ 𝑁 and 𝑡
𝑘
∈ [0, +∞),

𝑥
𝑖
(𝑡
+

𝑘
) = lim

𝑡→ 𝑡
+

𝑘

∏

0<𝑡𝑙<𝑡

(1 + ℎ
𝑖𝑙
) 𝑦

𝑖 (𝑡)

= ∏

0<𝑡𝑙≤𝑡𝑘

(1 + ℎ
𝑖𝑙
) 𝑦

𝑖
(𝑡
+

𝑘
)

= (1 + ℎ
𝑖𝑘
) ∏

0<𝑡𝑙<𝑡𝑘

(1 + ℎ
𝑖𝑙
) 𝑦

𝑖
(𝑡
𝑘
)

= (1 + ℎ
𝑖𝑘
) 𝑥

𝑖
(𝑡
𝑘
) .

(20)
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In addition,

𝑥
𝑖
(𝑡
−

𝑘
)

= lim
𝑡→ 𝑡
−

𝑘

∏

0<𝑡𝑙<𝑡

(1 + ℎ
𝑖𝑙
) 𝑦

𝑖 (𝑡) ∏

0<𝑡𝑙<𝑡𝑘

(1 + ℎ
𝑖𝑙
) 𝑦

𝑖
(𝑡
−

𝑘
)

= ∏

0<𝑡𝑙<𝑡𝑘

(1 + ℎ
𝑖𝑙
) 𝑦

𝑖
(𝑡
𝑘
) = 𝑥

𝑖
(𝑡
𝑘
) .

(21)

So the proof is completed.

4. The Persistence and Extinction Analysis

In this section, the extinction, nonpersistence in the mean,
weak persistence, and stochastic permanence ofmodel (2) are
discussed.

Theorem4. If𝑔∗
𝑖
< 0 andmin

1≤𝑗≤𝑛
inf

𝑡∈𝑅+
{𝑎
𝑖𝑗
(𝑡)−𝑏

𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑡))/

(1− ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑡)))−𝑐

𝑢

𝑖𝑗
} ≥ 0, then the 𝑖th population 𝑥

𝑖
(𝑡) ofmodel

(2) goes to extinction a.s.

Proof. Now applying Itô’s formula to (7), we can have

𝑑

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏𝑖𝑗(𝑡)

𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))∏

0<𝑡𝑘<𝑠
(1 + ℎ

𝑗𝑘
) 𝑦

𝑗 (𝑠)

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

𝑑𝑠

+ 𝑑 ln𝑦
𝑖 (𝑡)

=

𝑛

∑

𝑗=1

[

[

𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑡))∏

0<𝑡𝑘<𝑡
(1 + ℎ

𝑗𝑘
) 𝑦

𝑗 (𝑡)

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑡))

− 𝑏
𝑖𝑗 (𝑡) ∏

0<𝑡𝑘<𝑡−𝜏𝑖𝑗(𝑡)

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗 (𝑡))
]

]

𝑑𝑡

+ [

[

𝑟
𝑖 (𝑡) −

𝜎
2

𝑖
(𝑡)

2
−

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (𝑡) ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗 (𝑡)

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (𝑡) ∏

0<𝑡𝑘<𝑡−𝜏𝑖𝑗(𝑡)

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗 (𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗 (𝑡) ∫

0

−∞

∏

0<𝑡𝑘<𝑡+𝜃

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗 (𝑡 + 𝜃) 𝑑𝜇𝑖𝑗 (𝜃)

−
[∑

𝑛

𝑗=1
𝛿
𝑖𝑗 (𝑡)∏0<𝑡𝑘<𝑡

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗 (𝑡)]
2

2

]

]

𝑑𝑡

+ 𝜎
𝑖 (𝑡) 𝑑𝐵𝑖 (𝑡) +

𝑛

∑

𝑗=1

𝛿
𝑖𝑗 (𝑡) ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑗𝑘
)

⋅ 𝑦
𝑗 (𝑡) 𝑑𝐵𝑖𝑗 (𝑡) .

(22)

Then we have

𝑛

∑

𝑗=1

[

[

∫

𝑡

𝑡−𝜏𝑖𝑗(𝑡)

𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠)) 𝑥𝑗 (𝑠)

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

𝑑𝑠

− ∫

0

−𝜏𝑖𝑗(0)

𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠)) 𝑥𝑗 (𝑠)

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

𝑑𝑠]

]

+ ln𝑦
𝑖 (𝑡)

− ln𝑦
𝑖 (0) = ∫

𝑡

0

[

[

𝑟
𝑖 (𝑠) −

𝜎
2

𝑖
(𝑠)

2

−

𝑛

∑

𝑗=1

(𝑎
𝑖𝑗 (𝑠) −

𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

)𝑥
𝑗 (𝑠)

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗 (𝑠) ∫

0

−∞

𝑥
𝑗 (𝑠 + 𝜃) 𝑑𝜇𝑖𝑗 (𝜃)

−
[∑

𝑛

𝑗=1
𝛿
𝑖𝑗 (𝑠) 𝑥𝑗 (𝑠)]

2

2

]

]

𝑑𝑠 +𝑀
1

𝑖
(𝑡) + 𝑀

2

𝑖
(𝑡) ,

(23)

where 𝑀
1

𝑖
(𝑡) = ∫

𝑡

0
𝜎
𝑖
(𝑠)𝑑𝐵

𝑖
(𝑠) and 𝑀

2

𝑖
(𝑡) =

∫
𝑡

0
∑
𝑛

𝑗=1
𝛿
𝑖𝑗
(𝑠)𝑥

𝑗
(𝑠)𝑑𝐵

𝑖𝑗
(𝑠). By hypothesis (H1),

∫

𝑡

0

𝑛

∑

𝑗=1

𝑐
𝑖𝑗 (𝑠) ∫

0

−∞

𝑥
𝑗 (𝑠 + 𝜃) 𝑑𝜇𝑖𝑗 (𝜃) 𝑑𝑠

=

𝑛

∑

𝑗=1

∫

𝑡

0

𝑐
𝑖𝑗 (𝑠) 𝑑𝑠 ∫

−𝑠

−∞

𝑒
𝑟(𝑠+𝜃)

𝑥
𝑗 (𝑠 + 𝜃) 𝑒

−𝑟(𝑠+𝜃)
𝑑𝜇

𝑖𝑗 (𝜃)

+

𝑛

∑

𝑗=1

∫

0

−𝑡

𝑑𝜇
𝑖𝑗 (𝜃) ∫

𝑡

−𝜃

𝑥
𝑗 (𝑠 + 𝜃) 𝑑𝑠

≤

𝑛

∑

𝑗=1

1

𝑟
𝑐
𝑢

𝑖𝑗


𝜉
𝑗

C𝑟
𝜇
𝑖𝑗𝑟
(1 − 𝑒

−𝑟𝑡
) +

𝑛

∑

𝑗=1

𝑐
𝑢

𝑖𝑗
∫

𝑡

0

𝑥
𝑗 (𝑠) 𝑑𝑠.

(24)

Thequadratic formof𝑀1

𝑖
(𝑡) is ⟨𝑀1

𝑖
(𝑡),𝑀

1

𝑖
(𝑡)⟩ = ∫

𝑡

0
𝜎
2

𝑖
(𝑠)𝑑𝑠 ≤

(𝜎
𝑢

𝑖
)
2
𝑡. Making use of the strong law of large numbers for

martingales [30],

lim
𝑡→+∞

𝑀
1

𝑖
(𝑡)

𝑡
= 0, a.s. (25)

The quadratic form of 𝑀
2

𝑖
(𝑡) is ⟨𝑀

2

𝑖
(𝑡),𝑀

2

𝑖
(𝑡)⟩ =

∫
𝑡

0
[∑

𝑛

𝑗=1
𝛿
𝑖𝑗
(𝑠)𝑥

𝑗
(𝑠)]

2
𝑑𝑠. By virtue of the exponential mar-

tingale inequality [30], for any positive constants 𝑇
0
, 𝛼 and

𝛽, we have

P{ sup
0≤𝑡≤𝑇0

[𝑀
2

𝑖
(𝑡) −

𝛼

2
⟨𝑀

2

𝑖
(𝑡) ,𝑀

2

𝑖
(𝑡)⟩] > 𝛽}

≤ 𝑒
−𝛼𝛽

.

(26)
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Choose 𝑇
0
= 𝑘, 𝛼 = 1, 𝛽 = 2 ln 𝑘. Then it follows that

P{ sup
0≤𝑡≤𝑘

[𝑀
2

𝑖
(𝑡) −

1

2
⟨𝑀

2

𝑖
(𝑡) ,𝑀

2

𝑖
(𝑡)⟩] > 2 ln 𝑘}

≤
1

𝑘2
.

(27)

Making use of the Borel-Cantelli lemma [30], one gets that,
for almost all 𝜔 ∈ Ω, there is a random integer 𝑘

0
= 𝑘

0
(𝜔)

such that, for 𝑘 ≥ 𝑘
0
,

sup
0≤𝑡≤𝑘

[𝑀
2

𝑖
(𝑡) −

1

2
⟨𝑀

2

𝑖
(𝑡) ,𝑀

2

𝑖
(𝑡)⟩] ≤ 2 ln 𝑘. (28)

This implies that

𝑀
2

𝑖
(𝑡) ≤ 2 ln 𝑘 + 1

2
⟨𝑀

2

𝑖
(𝑡) ,𝑀

2

𝑖
(𝑡)⟩

= 2 ln 𝑘 + 1
2
∫

𝑡

0

[

[

𝑛

∑

𝑗=1

𝛿
𝑖𝑗 (𝑠) 𝑥𝑗 (𝑠)

]

]

2

𝑑𝑠

(29)

for all 0 ≤ 𝑡 ≤ 𝑘, 𝑘 ≥ 𝑘
0
a.s. Substituting this inequality, (24),

and (25) into (23), we can obtain that

∑

0<𝑡𝑘<𝑡

ln (1 + ℎ
𝑖𝑘
) + ln𝑦

𝑖 (𝑡) − ln𝑦
𝑖 (0) ≤ ∑

0<𝑡𝑘<𝑡

ln (1

+ ℎ
𝑖𝑘
) +

𝑛

∑

𝑗=1

∫

0

−𝜏𝑖𝑗(0)

[

[

𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠)) 𝑥𝑗 (𝑠)

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

]

]

𝑑𝑠

+ ∫

𝑡

0

[

[

𝑟
𝑖 (𝑠) −

𝜎
2

𝑖
(𝑠)

2

−

𝑛

∑

𝑗=1

(𝑎
𝑖𝑗 (𝑠) −

𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

− 𝑐
𝑢

𝑖𝑗
)

⋅ 𝑥
𝑗 (𝑠)

]

]

𝑑𝑠 + 2 ln 𝑘 +
𝑛

∑

𝑗=1

1

𝑟
𝑐
𝑢

𝑖𝑗


𝜉
𝑗

C𝑟
𝜇
𝑖𝑗𝑟
(1

− 𝑒
−𝑟𝑡
) +𝑀

1

𝑖
(𝑡) ,

(30)

for all 0 ≤ 𝑡 ≤ 𝑘, 𝑘 ≥ 𝑘
0
a.s. Therefore,

ln𝑥
𝑖 (𝑡) − ln𝑥

𝑖 (0) ≤ ∑

0<𝑡𝑘<𝑡

ln (1 + ℎ
𝑖𝑘
)

+

𝑛

∑

𝑗=1

∫

0

−𝜏𝑖𝑗(0)

[

[

𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠)) 𝑥𝑗 (𝑠)

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

]

]

𝑑𝑠 + ∫

𝑡

0

[

[

𝑟
𝑖 (𝑠)

−
𝜎
2

𝑖
(𝑠)

2
−

𝑛

∑

𝑗=1

(𝑎
𝑖𝑗 (𝑠) −

𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

− 𝑐
𝑢

𝑖𝑗
)

⋅ 𝑥
𝑗 (𝑠)

]

]

𝑑𝑠 + 2 ln 𝑘 +
𝑛

∑

𝑗=1

1

𝑟
𝑐
𝑢

𝑖𝑗


𝜉
𝑗

C𝑟
𝜇
𝑖𝑗𝑟
(1

− 𝑒
−𝑟𝑡
) +𝑀

1

𝑖
(𝑡) ,

(31)

for all 0 ≤ 𝑡 ≤ 𝑘, 𝑘 ≥ 𝑘
0
a.s. In other words, we can get that

for 0 < 𝑘 − 1 ≤ 𝑡 ≤ 𝑘, 𝑘 ≥ 𝑘
0
,

𝑡
−1
{ln𝑥

𝑖 (𝑡) − ln𝑥
𝑖 (0)}

≤ 𝑡
−1

∑

0<𝑡𝑘<𝑡

ln (1 + ℎ
𝑖𝑘
)

+ 𝑡
−1

𝑛

∑

𝑗=1

∫

0

−𝜏𝑖𝑗(0)

[

[

𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠)) 𝑥𝑗 (𝑠)

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

]

]

𝑑𝑠

+ 𝑡
−1
∫

𝑡

0

[𝑟
𝑖 (𝑠) −

𝜎
2

𝑖
(𝑠)

2
] 𝑑𝑠 + 2 (𝑘 − 1)

−1 ln 𝑘

+ 𝑡
−1

𝑛

∑

𝑗=1

1

𝑟
𝑐
𝑢

𝑖𝑗


𝜉
𝑗

C𝑟
𝜇
𝑖𝑗𝑟
(1 − 𝑒

−𝑟𝑡
) +

𝑀
1

𝑖
(𝑡)

𝑡
.

(32)

Taking superior limit on both sides of (32) and using
(25), we have lim sup

𝑡→+∞
(ln𝑥

𝑖
(𝑡)/𝑡) ≤ 𝑔

∗

𝑖
. That is to say,

if 𝑔∗
𝑖
< 0, one can see that lim

𝑡→+∞
𝑥
𝑖
(𝑡) = 0 a.s. So the proof

is completed.

Theorem5. If𝑔∗
𝑖
= 0 andmin

1≤𝑗≤𝑛
inf

𝑡∈𝑅+
{𝑎
𝑖𝑗
(𝑡)−𝑏

𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑡))/

(1− ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑡)))−𝑐

𝑢

𝑖𝑗
} > 0, then the 𝑖th population 𝑥

𝑖
(𝑡) ofmodel

(2) is nonpersistent in the mean a.s.

Proof. Due to (25), for any given 𝜀 > 0, there is a positive
constant 𝑇, such that

𝑡
−1

∑

0<𝑡𝑘<𝑡

ln (1 + ℎ
𝑖𝑘
)

+ 𝑡
−1

𝑛

∑

𝑗=1

∫

0

−𝜏𝑖𝑗(0)

[

[

𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠)) 𝑥𝑗 (𝑠)

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

]

]

𝑑𝑠

+ 𝑡
−1

𝑛

∑

𝑗=1

1

𝑟
𝑐
𝑢

𝑖𝑗


𝜉
𝑗

C𝑟
𝜇
𝑖𝑗𝑟
(1 − 𝑒

−𝑟𝑡
) +

2 ln 𝑘
𝑡

+
𝑀

1

𝑖
(𝑡)

𝑡
< 𝜀,

(33)

for sufficiently large 𝑡 satisfying 𝑡 > 𝑇. Substituting the above
inequality into (31), therefore,

ln𝑥
𝑖 (𝑡) − ln𝑥

𝑖 (0)

𝑡
< 𝜀

− 𝑡
−1
∫

𝑡

0

𝑛

∑

𝑗=1

(𝑎
𝑖𝑗 (𝑠) −

𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

− 𝑐
𝑢

𝑖𝑗
)

⋅ 𝑥
𝑗 (𝑠) 𝑑𝑠,

(34)

for all 𝑇 ≤ 𝑘 − 1 ≤ 𝑡, 𝑘 ≥ 𝑘
0
a.s.

Define ℎ
𝑖
(𝑡) = ∫

𝑡

0
𝑥
𝑖
(𝑠)𝑑𝑠, 𝑁 = min

1≤𝑗≤𝑛
inf

𝑠∈𝑅+
[𝑎
𝑖𝑗
(𝑠) −

𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))/(1 − ̇𝜏

𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))) − 𝑐

𝑢

𝑖𝑗
], with the fact that 𝑥

𝑖
(𝑡) ≤

∑
𝑛

𝑖=1
𝑥
𝑖
(𝑡) ≤ 𝑛|𝑥(𝑡)|; we have

ln(
𝑑ℎ

𝑖 (𝑡)

𝑑𝑡
) < 𝜀𝑡 − 𝑁ℎ

𝑖 (𝑡) + ln𝑥
𝑖 (0) ; 𝑡 > 𝑇. (35)
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Consequently,

𝑒
𝑁ℎ𝑖(𝑡) (

𝑑ℎ
𝑖 (𝑡)

𝑑𝑡
) < 𝑥

𝑖 (0) 𝑒
𝜀𝑡
; 𝑡 > 𝑇. (36)

Integrating this inequality from 𝑇 to 𝑡,

𝑁
−1
[𝑒
𝑁ℎ𝑖(𝑡) − 𝑒

𝑁ℎ𝑖(𝑇)] < 𝑥
𝑖 (0) 𝜀

−1
[𝑒
𝜀𝑡
− 𝑒

𝜀𝑇
] . (37)

Rewriting this inequality,

𝑒
𝑁ℎ𝑖(𝑡) < 𝑒

𝑁ℎ𝑖(𝑇) + 𝑥
𝑖 (0)𝑁𝜀

−1
𝑒
𝜀𝑡
− 𝑥

𝑖 (0)𝑁𝜀
−1
𝑒
𝜀𝑇
. (38)

Taking the logarithm of both sides, we have

ℎ
𝑖 (𝑡)

< 𝑁
−1 ln (𝑥

𝑖 (0)𝑁𝜀
−1
𝑒
𝜀𝑡
+ 𝑒

𝑁ℎ𝑖(𝑇) − 𝑥
𝑖 (0)𝑁𝜀

−1
𝑒
𝜀𝑇
) .

(39)

In other words, we can get that

{𝑡
−1
∫

𝑡

0

𝑥
𝑖 (𝑠) 𝑑𝑠} ≤ {𝑡

−1
𝑁

−1

⋅ ln (𝑥
𝑖 (0)𝑁𝜀

−1
𝑒
𝜀𝑡
+ 𝑒

𝑁ℎ𝑖(𝑇) − 𝑥
𝑖 (0)𝑁𝜀

−1
𝑒
𝜀𝑇
)}

∗

.

(40)

By applying L’Hospital’s rule, one can obtain

⟨𝑥
𝑖 (𝑡)⟩

∗
≤ 𝑁

−1
{𝑡
−1ln [𝑥

𝑖 (0)𝑁𝜀
−1
𝑒
𝜀𝑡
]}

∗

=
𝜀

𝑁
. (41)

Since 𝜀 is arbitrary, we have ⟨𝑥
𝑖
(𝑡)⟩

∗
= 0, which is the required

assertion. So the proof is completed.

Theorem 6. If 𝑔
∗

𝑖
> 0, min

1≤𝑗≤𝑛
inf

𝑡∈𝑅+
{𝑎
𝑖𝑗
(𝑡) −

𝑒
𝜏𝑖𝑗(Δ
−1

𝑖𝑗
(𝑡))
𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑡))/(1 − ̇𝜏

𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑡))) − 𝑐

𝑢

𝑖𝑗
𝜇
𝑖𝑗𝑟
} > 0, then

the 𝑖th population 𝑥
𝑖
(𝑡) of model (2) is weak persistence a.s.

Proof. To begin with, let us claim that

lim sup
𝑡→+∞

[𝑡
−1 ln𝑥

𝑖 (𝑡)] ≤ 0 a.s. (42)

Applying Itô’s formula to (7), we have

𝑑(

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏𝑖𝑗(𝑡)

𝑒
𝑠+𝜏𝑖𝑗(Δ

−1

𝑖𝑗
(𝑠))
𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))∏

0<𝑡𝑘<𝑠
(1 + ℎ

𝑗𝑘
) 𝑦

𝑗 (𝑠)

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

𝑑𝑠

+ 𝑒
𝑡 ln𝑦

𝑖 (𝑡)) = 𝑒
𝑡 [

[

ln𝑥
𝑖 (𝑡) − ∑

0<𝑡𝑘<𝑡

ln (1 + ℎ
𝑖𝑘
) + 𝑟

𝑖 (𝑡)

−
𝜎
2

𝑖
(𝑡)

2
−

𝑛

∑

𝑗=1

(𝑎
𝑖𝑗 (𝑡) −

𝑒
𝜏𝑖𝑗(Δ
−1

𝑖𝑗
(𝑡))
𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑡))

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑡))

)𝑥
𝑗 (𝑡)

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗 (𝑡) ∫

0

−∞

𝑥
𝑗 (𝑡 + 𝜃) 𝑑𝜇𝑖𝑗 (𝜃) −

[∑
𝑛

𝑗=1
𝛿
𝑖𝑗 (𝑡) 𝑥𝑗 (𝑡)]

2

2

]

]

𝑑𝑡

+ 𝑒
𝑡
𝜎
𝑖 (𝑡) 𝑑𝐵𝑖 (𝑡) + 𝑒

𝑡

𝑛

∑

𝑗=1

𝛿
𝑖𝑗 (𝑡) 𝑥𝑗 (𝑡) 𝑑𝐵𝑖𝑗 (𝑡) .

(43)

Thus,
𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏𝑖𝑗(𝑡)

𝑒
𝑠+𝜏𝑖𝑗(Δ

−1

𝑖𝑗
(𝑠))
𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠)) 𝑥𝑗 (𝑠)

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

𝑑𝑠

−

𝑛

∑

𝑗=1

∫

0

−𝜏𝑖𝑗(0)

𝑒
𝑠+𝜏𝑖𝑗(Δ

−1

𝑖𝑗
(𝑠))
𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠)) 𝑥𝑗 (𝑠)

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

𝑑𝑠 + 𝑒
𝑡

⋅ ln𝑦
𝑖 (𝑡) − ln𝑦

𝑖 (0) = ∫

𝑡

0

𝑒
𝑠 [

[

ln𝑥
𝑖 (𝑠)

− ∑

0<𝑡𝑘<𝑠

ln (1 + ℎ
𝑖𝑘
) + 𝑟

𝑖 (𝑠) −
𝜎
2

𝑖
(𝑠)

2

−

𝑛

∑

𝑗=1

(𝑎
𝑖𝑗 (𝑠) −

𝑒
𝜏𝑖𝑗(Δ
−1

𝑖𝑗
(𝑠))
𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

)𝑥
𝑗 (𝑠)

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗 (𝑠) ∫

0

−∞

𝑥
𝑗 (𝑠 + 𝜃) 𝑑𝜇𝑖𝑗 (𝜃)

−
[∑

𝑛

𝑗=1
𝛿
𝑖𝑗 (𝑠) 𝑥𝑗 (𝑠)]

2

2

]

]

𝑑𝑠 + 𝑁
1

𝑖
(𝑡) + 𝑁

2

𝑖
(𝑡) ,

(44)

where 𝑁1

𝑖
(𝑡) = ∫

𝑡

0
𝑒
𝑠
𝜎
𝑖
(𝑠)𝑑𝐵

𝑖
(𝑠), 𝑁

2

𝑖
(𝑡) =

∫
𝑡

0
𝑒
𝑠
∑
𝑛

𝑗=1
𝛿
𝑖𝑗
(𝑠)𝑥

𝑗
(𝑠)𝑑𝐵

𝑖𝑗
(𝑠). Now we have

∫

𝑡

0

𝑒
𝑠

𝑛

∑

𝑗=1

𝑐
𝑖𝑗 (𝑠) ∫

0

−∞

𝑥
𝑗 (𝑠 + 𝜃) 𝑑𝜇𝑖𝑗 (𝜃) 𝑑𝑠

=

𝑛

∑

𝑗=1

∫

𝑡

0

𝑐
𝑖𝑗 (𝑠) 𝑒

𝑠
𝑑𝑠

⋅ ∫

−𝑠

−∞

𝑒
𝑟(𝑠+𝜃)

𝑥
𝑗 (𝑠 + 𝜃) 𝑒

−𝑟(𝑠+𝜃)
𝑑𝜇

𝑖𝑗 (𝜃)

+

𝑛

∑

𝑗=1

∫

0

−𝑡

𝑑𝜇
𝑖𝑗 (𝜃) ∫

𝑡+𝜃

0

𝑐
𝑖𝑗 (𝑠 − 𝜃) 𝑒

𝑠−𝜃
𝑥
𝑗 (𝑠) 𝑑𝑠

≤

𝑛

∑

𝑗=1

𝑐
𝑢

𝑖𝑗
𝜇
𝑖𝑗𝑟


𝜉
𝑗

C𝑟
𝑡 +

𝑛

∑

𝑗=1

𝑐
𝑢

𝑖𝑗
𝜇
𝑖𝑗𝑟
∫

𝑡

0

𝑒
𝑠
𝑥
𝑗 (𝑠) 𝑑𝑠.

(45)

Note that 𝑁1

𝑖
(𝑡) (1 ≤ 𝑖 ≤ 𝑛) is a local martingale with the

quadratic form ⟨𝑁
1

𝑖
(𝑡),𝑁

1

𝑖
(𝑡)⟩ = ∫

𝑡

0
𝑒
2𝑠
𝜎
2

𝑖
(𝑠)𝑑𝑠. 𝑁2

𝑖
(𝑡) (1 ≤

𝑖 ≤ 𝑛) is also a local martingale with the quadratic form
⟨𝑁

2

𝑖
(𝑡),𝑁

2

𝑖
(𝑡)⟩ = ∫

𝑡

0
𝑒
2𝑠
[∑

𝑛

𝑗=1
𝛿
𝑖𝑗
(𝑠)𝑥

𝑗
(𝑠)]

2
𝑑𝑠. Following from

the exponential martingale inequality (26) by choosing 𝑇
0
=

𝜇𝑘, 𝛼 = 𝑒−𝜇𝑘, 𝛽 = 𝜌𝑒𝜇𝑘 ln 𝑘,

P{ sup
0≤𝑡≤𝜇𝑘

[𝑁
𝜆

𝑖
(𝑡) − 0.5𝑒

−𝜇𝑘
⟨𝑁

𝜆

𝑖
(𝑡) ,𝑁

𝜆

𝑖
(𝑡)⟩]

> 𝜌𝑒
𝜇𝑘 ln 𝑘} ≤ 𝑘

−𝜌
,

(46)
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where 𝜌 > 1 and 𝜇 > 1, 𝜆 = 1, 2. In view of the Borel-Cantelli
lemma [30], for almost all 𝜔 ∈ Ω, there exists a 𝑘

0
(𝜔) such

that, for every 𝑘 ≥ 𝑘
0
(𝜔),

𝑁
𝜆

𝑖
(𝑡) ≤ 0.5𝑒

−𝜇𝑘
⟨𝑁

𝜆

𝑖
(𝑡) ,𝑁

𝜆

𝑖
(𝑡)⟩ + 𝜌𝑒

𝜇𝑘 ln 𝑘,

0 ≤ 𝑡 ≤ 𝜇𝑘.

(47)

By hypotheses (H2) and (H3), it is easy to see that there exists
a constant 𝐶 independent of 𝑘 such that

ln𝑥
𝑖 (𝑠) − ∑

0<𝑡𝑘<𝑠

ln (1 + ℎ
𝑖𝑘
) + 𝑟

𝑖 (𝑠) −
𝜎
2

𝑖
(𝑠)

2

−

𝑛

∑

𝑗=1

(𝑎
𝑖𝑗 (𝑠) −

𝑒
𝜏𝑖𝑗(Δ
−1

𝑖𝑗
(𝑠))
𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

− 𝑐
𝑢

𝑖𝑗
𝜇
𝑖𝑗𝑟
)

⋅ 𝑥
𝑗 (𝑠) +

𝑒
𝑠−𝜇𝑘

𝜎
2

𝑖
(𝑠)

2

−
[∑

𝑛

𝑗=1
𝛿
𝑖𝑗 (𝑠) 𝑥𝑗 (𝑠)]

2

[1 − 𝑒
𝑠−𝜇𝑘

]

2
≤ 𝐶,

(48)

for any 0 ≤ 𝑠 ≤ 𝜇𝑘 and 𝑥
𝑖
(𝑠) > 0. Substituting the above

inequalities (45), (47), and (48) into (44), for any 0 ≤ 𝑡 ≤ 𝜇𝑘,
we have

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏𝑖𝑗(𝑡)

𝑒
𝑠+𝜏𝑖𝑗(Δ

−1

𝑖𝑗
(𝑠))
𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠)) 𝑥𝑗 (𝑠)

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

𝑑𝑠

−

𝑛

∑

𝑗=1

∫

0

−𝜏𝑖𝑗(0)

𝑒
𝑠+𝜏𝑖𝑗(Δ

−1

𝑖𝑗
(𝑠))
𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠)) 𝑥𝑗 (𝑠)

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

𝑑𝑠

+ 𝑒
𝑡 ln𝑦

𝑖 (𝑡) − ln𝑦
𝑖 (0)

≤ 𝐶 [𝑒
𝑡
− 1] +

𝑛

∑

𝑗=1

𝑐
𝑢

𝑖𝑗
𝜇
𝑖𝑗𝑟


𝜉
𝑗

C𝑟
𝑡 + 2𝜌𝑒

𝜇𝑘 ln 𝑘.

(49)

On the other hand, we can obtain that

𝑒
𝑡
∑

0<𝑡𝑘<𝑡

ln (1 + ℎ
𝑖𝑘
) + 𝑒

𝑡 ln𝑦
𝑖 (𝑡) − ln𝑦

𝑖 (0)

≤

𝑛

∑

𝑗=1

∫

0

−𝜏𝑖𝑗(0)

𝑒
𝑠+𝜏𝑖𝑗(Δ

−1

𝑖𝑗
(𝑠))
𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠)) 𝑥𝑗 (𝑠)

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

𝑑𝑠

+ 𝑒
𝑡
∑

0<𝑡𝑘<𝑡

ln (1 + ℎ
𝑖𝑘
) + 𝐶 [𝑒

𝑡
− 1]

+

𝑛

∑

𝑗=1

𝑐
𝑢

𝑖𝑗
𝜇
𝑖𝑗𝑟


𝜉
𝑗

C𝑟
𝑡 + 2𝜌𝑒

𝜇𝑘 ln 𝑘.

(50)

That is to say,

𝑒
𝑡 ln𝑥

𝑖 (𝑡) − ln𝑥
𝑖 (0)

≤

𝑛

∑

𝑗=1

∫

0

−𝜏𝑖𝑗(0)

𝑒
𝑠+𝜏𝑖𝑗(Δ

−1

𝑖𝑗
(𝑠))
𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠)) 𝑥𝑗 (𝑠)

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

𝑑𝑠

+ 𝑒
𝑡
∑

0<𝑡𝑘<𝑡

ln (1 + ℎ
𝑖𝑘
) + 𝐶 [𝑒

𝑡
− 1]

+

𝑛

∑

𝑗=1

𝑐
𝑢

𝑖𝑗
𝜇
𝑖𝑗𝑟


𝜉
𝑗

C𝑟
𝑡 + 2𝜌𝑒

𝜇𝑘 ln 𝑘.

(51)

Therefore,

ln𝑥
𝑖 (𝑡)

≤ 𝑒
−𝑡 ln𝑥

𝑖 (0) + ∑

0<𝑡𝑘<𝑡

ln (1 + ℎ
𝑖𝑘
) + 𝐶 [1 − 𝑒

−𝑡
]

+ 2𝜌𝑒
𝜇𝑘−𝑡 ln 𝑘 + 𝑒−𝑡

𝑛

∑

𝑗=1

𝑐
𝑢

𝑖𝑗
𝜇
𝑖𝑗𝑟


𝜉
𝑗

C𝑟
𝑡

+

𝑛

∑

𝑗=1

∫

0

−𝜏𝑖𝑗(0)

𝑒
𝑠−𝑡+𝜏𝑖𝑗(Δ

−1

𝑖𝑗
(𝑠))
𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠)) 𝑥𝑗 (𝑠)

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

𝑑𝑠.

(52)

Consequently, if 𝜇(𝑘 − 1) ≤ 𝑡 ≤ 𝜇𝑘 and 𝑘 ≥ 𝑘
0
(𝜔), one can

observe that

𝑡
−1 ln𝑥

𝑖 (𝑡)

≤ 𝑡
−1
𝑒
−𝑡 ln𝑥

𝑖 (0) + 𝑡
−1
( ∑

0<𝑡𝑘<𝑡

ln (1 + ℎ
𝑖𝑘
))

+ 𝑡
−1
𝐶 [1 − 𝑒

−𝑡
] + 2𝑡

−1
𝜌𝑒

𝜇𝑘−𝑡 ln 𝑘

+ 𝑡
−1
𝑒
−𝑡

𝑛

∑

𝑗=1

𝑐
𝑢

𝑖𝑗
𝜇
𝑖𝑗𝑟


𝜉
𝑗

C𝑟
𝑡

+ 𝑡
−1

𝑛

∑

𝑗=1

∫

0

−𝜏𝑖𝑗(0)

𝑒
𝑠−𝑡+𝜏𝑖𝑗(Δ

−1

𝑖𝑗
(𝑠))
𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠)) 𝑥𝑗 (𝑠)

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

𝑑𝑠,

(53)

which becomes the desired assertion (42) by letting 𝑡 → +∞.
Now suppose that 𝑔

∗

𝑖
> 0; we will prove

lim sup
𝑡→+∞

𝑥
𝑖
(𝑡) > 0 a.s. If this assertion is not true,

let 𝐹 = {lim sup
𝑡→+∞

𝑥
𝑖
(𝑡) = 0} and suppose 𝑃(𝐹) > 0. In the

light of (23), we can get that

𝑡
−1 [

[

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏𝑖𝑗(𝑡)

𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠)) 𝑥𝑗 (𝑠)

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

𝑑𝑠]

]

− 𝑡
−1 [

[

𝑛

∑

𝑗=1

∫

0

−𝜏𝑖𝑗(0)

𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠)) 𝑥𝑗 (𝑠)

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

𝑑𝑠]

]

+ 𝑡
−1

⋅ ln𝑥
𝑖 (𝑡) − 𝑡

−1 ln𝑥
𝑖 (0) = 𝑡

−1
( ∑

0<𝑡𝑘<𝑡

ln (1 + ℎ
𝑖𝑘
))
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+ 𝑡
−1
∫

𝑡

0

[

[

𝑟
𝑖 (𝑠) −

𝜎
2

𝑖
(𝑠)

2

−

𝑛

∑

𝑗=1

(𝑎
𝑖𝑗 (𝑠) −

𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

1 − ̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑠))

)𝑥
𝑗 (𝑠)

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗 (𝑠) ∫

0

−∞

𝑥
𝑗 (𝑠 + 𝜃) 𝑑𝜇𝑖𝑗 (𝜃)

−
[∑

𝑛

𝑗=1
𝛿
𝑖𝑗 (𝑠) 𝑥𝑗 (𝑠)]

2

2

]

]

𝑑𝑠 +
𝑀

1

𝑖
(𝑡)

𝑡

+
𝑀

2

𝑖
(𝑡)

𝑡
.

(54)

On the other hand, for ∀𝜔 ∈ 𝐹, we have lim
𝑡→+∞

𝑥
𝑖
(𝑡, 𝜔) =

0 and the fact that 𝑥
𝑖
(𝑡) ≤ ∑

𝑛

𝑖=1
𝑥
𝑖
(𝑡) ≤ 𝑛|𝑥(𝑡)|. The law

of large numbers for local martingales [30] indicates that
lim

𝑡→+∞
(𝑀

2

𝑖
(𝑡)/𝑡) = 0. Substituting this equality and (25)

into (68),

lim sup
𝑡→+∞

[𝑡
−1 ln𝑥

𝑖 (𝑡, 𝜔)]

≥ lim sup
𝑡→+∞

𝑡
−1
[ ∑

0<𝑡𝑘<𝑡

ln (1 + ℎ
𝑖𝑘
)

+ ∫

𝑡

0

(𝑟
𝑖 (𝑠) −

𝜎
2

𝑖
(𝑠)

2
) 𝑑𝑠] = 𝑔

∗

𝑖
> 0.

(55)

Then P(lim sup
𝑡→+∞

[𝑡
−1ln𝑥

𝑖
(𝑡)] > 0) > 0, which contra-

dicts (42). So the proof is completed.

When it comes to the study of population model, the role
of stochastic permanence indicating the eternal existence of
the population can never be ignorant with its theoretical and
practical significance. So now let us show that the population
𝑥
𝑖
(𝑡) is stochastic permanence in some cases.

(H5): there are two positive constants 𝑚 and 𝑀 such that
𝑚 ≤ ∏

0<𝑡𝑘<𝑡
(1 + ℎ

𝑖𝑘
) ≤ 𝑀 (𝑖 = 1, 2, . . . , 𝑛) for all

𝑡 > 0.

Theorem 7. Under assumption (H5), if 𝑟𝑙
𝑖
≥ 2(𝜎

𝑢

𝑖
)
2, 𝑟 ≥ 1,

and there exists 𝜀
2

∈ (0, 2𝑟) such that
min

1≤𝑖,𝑗≤𝑛
inf

𝑡∈𝑅+
{𝑒
𝜀2(𝑡+𝜏𝑖𝑗(𝑡)) − 𝑒

𝜀2(Δ
−1

𝑖𝑗
(𝑡))
/(1 − ̇𝜏

𝑖𝑗
(𝑡))} ≥ 0, then

the population 𝑥(𝑡) of model (2) is stochastic permanence.

Proof. We prove that, for arbitrary 𝜀 ∈ (0, 1), there is a
positive constant𝐻 = 𝐻(𝜀) such that lim inf

𝑡→+∞
P{|𝑥(𝑡)| ≤

𝐻} ≥ 1 − 𝜀. Consider 0 < 𝑝 < 1; by Itô’s formula, we have

𝑑

𝑛

∑

𝑖=1

𝑦
𝑝

𝑖
(𝑡) ≤ 𝐹 (𝑥 (𝑡)) 𝑑𝑡 − [

[

𝑛

∑

𝑖=1

𝜀
2
𝑥
𝑝

𝑖
(𝑡)

(∏
0<𝑡𝑘<𝑡

(1 + ℎ
𝑖𝑘
))
𝑝

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑒
𝜀2𝜏𝑖𝑗(𝑡)𝑥

2

𝑗
(𝑡) −

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑥
2

𝑗
(𝑡 − 𝜏

𝑖𝑗 (𝑡))

−

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

0

−∞

𝑥
2

𝑗
(𝑡 + 𝜃) 𝑑𝜇𝑖𝑗 (𝜃)

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜇
𝑖𝑗𝑟
𝑥
2

𝑗
(𝑡)]

]

𝑑𝑡

+

𝑛

∑

𝑖=1

𝑝𝑥
𝑝

𝑖
(𝑡) 𝜎𝑖 (𝑡)

(∏
0<𝑡𝑘<𝑡

(1 + ℎ
𝑖𝑘
))
𝑝
𝑑𝐵

𝑖 (𝑡)

+

𝑛

∑

𝑖=1

𝑝𝑥
𝑝

𝑖
(𝑡)

(∏
0<𝑡𝑘<𝑡

(1 + ℎ
𝑖𝑘
))
𝑝

⋅ [

[

𝑛

∑

𝑗=1

𝛿
𝑖𝑗 (𝑡) 𝑥𝑗 (𝑡)

]

]

𝑑𝐵
𝑖𝑗 (𝑡) ,

(56)

where

𝐹 (𝑥 (𝑡)) =

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑒
𝜀2𝜏𝑖𝑗(𝑡)𝑥

2

𝑗
(𝑡)

+

𝑛

∑

𝑖=1

(𝜀
2
+ 𝑟

𝑖 (𝑡) 𝑝) 𝑥
𝑝

𝑖
(𝑡)

(∏
0<𝑡𝑘<𝑡

(1 + ℎ
𝑖𝑘
))
𝑝

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑝
2
𝑏
2

𝑖𝑗
(𝑡) 𝑥

2𝑝

𝑖
(𝑡)

4 (∏
0<𝑡𝑘<𝑡

(1 + ℎ
𝑖𝑘
))
2𝑝

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜇
𝑖𝑗𝑟
𝑥
2

𝑗
(𝑡) +

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑥
2

𝑗
(𝑡 − 𝜏

𝑖𝑗 (𝑡))

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑝
2
𝑐
2

𝑖𝑗
(𝑡) 𝑥

2𝑝

𝑖
(𝑡)

4 (∏
0<𝑡𝑘<𝑡

(1 + ℎ
𝑖𝑘
))
2𝑝

−

𝑛

∑

𝑖=1

1

2
𝑝 (1 − 𝑝)

𝜎
2

𝑖
(𝑡) 𝑥

𝑝

𝑖
(𝑡)

(∏
0<𝑡𝑘<𝑡

(1 + ℎ
𝑖𝑘
))
𝑝

−

𝑛

∑

𝑖=1

1

2
𝑝 (1 − 𝑝)

𝑥
𝑝

𝑖
(𝑡)

(∏
0<𝑡𝑘<𝑡

(1 + ℎ
𝑖𝑘
))
𝑝

⋅ [

[

𝑛

∑

𝑗=1

𝛿
𝑖𝑗 (𝑡) 𝑥𝑗 (𝑡)

]

]

2

.

(57)

With the fact that 𝑥
𝑖
(𝑡) ≤ ∑

𝑛

𝑖=1
𝑥
𝑖
(𝑡) ≤ 𝑛|𝑥(𝑡)|, it is easy

to see that 𝐹(𝑥(𝑡)) is bounded in 𝑅𝑛
+
; in other words, 𝑀

1
=

sup
𝑥(𝑡)∈𝑅

𝑛

+

𝐹(𝑥(𝑡)) < +∞.Therefore,

𝑑

𝑛

∑

𝑖=1

𝑦
𝑝

𝑖
(𝑡) ≤ [

[

𝑀
1
−

𝑛

∑

𝑖=1

𝜀
2
𝑥
𝑝

𝑖
(𝑡)

(∏
0<𝑡𝑘<𝑡

(1 + ℎ
𝑖𝑘
))
𝑝

−

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑒
𝜀2𝜏𝑖𝑗(𝑡)𝑥

2

𝑗
(𝑡) +

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑥
2

𝑗
(𝑡 − 𝜏

𝑖𝑗 (𝑡))
]

]

𝑑𝑡
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+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

0

−∞

𝑥
2

𝑗
(𝑡 + 𝜃) 𝑑𝜇𝑖𝑗 (𝜃) 𝑑𝑡

−

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜇
𝑖𝑗𝑟
𝑥
2

𝑗
(𝑡) 𝑑𝑡 + 𝑝𝑥

𝑝

𝑖
(𝑡) 𝜎𝑖 (𝑡) 𝑑𝐵𝑖 (𝑡)

+ 𝑝𝑥
𝑝

𝑖
(𝑡)(

𝑛

∑

𝑗=1

𝛿
𝑖𝑗 (𝑡) 𝑥𝑗 (𝑡))𝑑𝐵

𝑖𝑗 (𝑡) .

(58)

Once again by Itô’s formula, we have

𝑑[𝑒
𝜀2𝑡

𝑛

∑

𝑖=1

𝑦
𝑝

𝑖
(𝑡)] = 𝑒

𝜀2𝑡 [

𝑛

∑

𝑖=1

𝜀
2
𝑦
𝑝

𝑖
(𝑡) 𝑑𝑡 + 𝑑

𝑛

∑

𝑖=1

𝑦
𝑝

𝑖
(𝑡)]

≤ 𝑒
𝜀2𝑡 [

[

𝑀
1
−

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑒
𝜀2𝜏𝑖𝑗(𝑡)𝑥

2

𝑗
(𝑡)

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑥
2

𝑗
(𝑡 − 𝜏

𝑖𝑗 (𝑡))

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

0

−∞

𝑥
2

𝑗
(𝑡 + 𝜃) 𝑑𝜇𝑖𝑗 (𝜃)

−

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜇
𝑖𝑗𝑟
𝑥
2

𝑗
(𝑡)]

]

𝑑𝑡 + 𝑒
𝜀2𝑡𝑝𝑥

𝑝

𝑖
(𝑡) 𝜎𝑖 (𝑡) 𝑑𝐵𝑖 (𝑡)

+ 𝑒
𝜀2𝑡𝑝𝑥

𝑝

𝑖
(𝑡)(

𝑛

∑

𝑗=1

𝛿
𝑖𝑗 (𝑡) 𝑥𝑗 (𝑡))𝑑𝐵

𝑖𝑗 (𝑡) .

(59)

We hence derive that

𝑒
𝜀2𝑡𝐸[

𝑛

∑

𝑖=1

𝑦
𝑝

𝑖
(𝑡)]

≤

𝑛

∑

𝑖=1

𝜉
𝑝

𝑖
(0) +

𝑒
𝜀2𝑡𝑀

1

𝜀
2

−
𝑀

1

𝜀
2

− 𝐸

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

𝑡

0

𝑒
𝜀2𝑠+𝜀2𝜏𝑖𝑗(𝑠)𝑥

2

𝑗
(𝑠) 𝑑𝑠

+ 𝐸

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

𝑡−𝜏𝑖𝑗(𝑡)

−𝜏𝑖𝑗(0)

𝑒
𝜀2Δ
−1

𝑖𝑗
(𝑠)
𝑥
2

𝑗
(𝑠) 𝑑𝑠

1 − ̇𝜏
𝑖𝑗 (𝑠)

𝑑𝑠

+ 𝐸

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

𝑡

0

𝑒
𝜀2𝑠 ∫

0

−∞

𝑥
2

𝑗
(𝑠 + 𝜃) 𝑑𝜇𝑖𝑗 (𝜃) 𝑑𝑠

− 𝐸

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

𝑡

0

𝜇
𝑖𝑗𝑟
𝑒
𝜀2𝑠𝑥

2

𝑗
(𝑠) 𝑑𝑠

≤

𝑛

∑

𝑖=1

𝜉
𝑝

𝑖
(0) +

𝑒
𝜀2𝑡𝑀

1

𝜀
2

−
𝑀

1

𝜀
2

+ 𝐸

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

0

−𝜏𝑖𝑗(0)

𝑒
𝜀2𝑠+𝜀2𝜏𝑖𝑗(𝑠)𝑥

2

𝑗
(𝑠) 𝑑𝑠

+ 𝐸

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

∫

𝑡

0

𝑒
𝜀2𝑠 ∫

0

−∞

𝑥
2

𝑗
(𝑠 + 𝜃) 𝑑𝜇𝑖𝑗 (𝜃) 𝑑𝑠

− 𝐸

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜇
𝑖𝑗𝑟
∫

𝑡

0

𝑒
𝜀2𝑠𝑥

2

𝑗
(𝑠) 𝑑𝑠.

(60)

From hypothesis (H1), we have

∫

𝑡

0

𝑒
𝜀2𝑠 ∫

0

−∞

𝑥
2

𝑗
(𝑠 + 𝜃) 𝑑𝜇𝑖𝑗 (𝜃) 𝑑𝑠

= ∫

𝑡

0

𝑒
𝜀2𝑠𝑑𝑠∫

−𝑠

−∞

𝑒
2𝑟(𝑠+𝜃)

𝑥
2

𝑗
(𝑠 + 𝜃) 𝑒

−2𝑟(𝑠+𝜃)
𝑑𝜇

𝑖𝑗 (𝜃)

+ ∫

0

−𝑡

𝑑𝜇
𝑖𝑗 (𝜃) ∫

𝑡+𝜃

0

𝑒
𝜀2(𝑠−𝜃)𝑥

2

𝑗
(𝑠) 𝑑𝑠

≤

𝜉
𝑗



2

C𝑟
𝜇
𝑖𝑗𝑟
𝑡 + 𝜇

𝑖𝑗𝑟
∫

𝑡

0

𝑒
𝜀2𝑠𝑥

2

𝑗
(𝑠) 𝑑𝑠.

(61)

This implies that lim sup
𝑡→+∞

𝐸[∑
𝑛

𝑖=1
𝑦
𝑝

𝑖
(𝑡)] ≤ 𝑀

1
/𝜀
2
.There-

fore,

lim sup
𝑡→+∞

𝐸[

𝑛

∑

𝑖=1

( ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑖𝑘
))

𝑝

𝑦
𝑝

𝑖
(𝑡)] ≤ 𝑀

𝑝𝑀1

𝜀
2

. (62)

So we can get that

lim sup
𝑡→+∞

𝐸[

𝑛

∑

𝑖=1

𝑥
𝑝

𝑖
(𝑡)] ≤ 𝑀

𝑝𝑀1

𝜀
2

. (63)

On the other hand, we have |𝑥(𝑡)|2 ≤ 𝑛max
1≤𝑖≤𝑛

sup
𝑡∈𝑅
𝑥
𝑖
(𝑡)

2,
so

|𝑥 (𝑡)|
𝑝
≤ 𝑛

𝑝/2max
1≤𝑖≤𝑛

sup
𝑡∈𝑅

𝑥
𝑖 (𝑡)

𝑝
≤ 𝑛

𝑝/2

𝑛

∑

𝑖=1

𝑥
𝑝

𝑖
(𝑡) . (64)

Therefore, finally we have

lim sup
𝑡→+∞

𝐸 |𝑥 (𝑡)|
𝑝
≤ 𝑛

𝑝/2
𝑀

𝑝𝑀1

𝜀
2

. (65)

Setting𝐾 = 𝑛
𝑝/2
𝑀

𝑝
(𝑀

1
/𝜀
2
) and choosing 𝑝 = 1/2,

lim sup
𝑡→+∞

𝐸 (√|𝑥 (𝑡)|) ≤ 𝐾. (66)

Now for any 𝜀 > 0, let 𝐻 = 𝐾
2
/𝜀
2. Then, by Chebyshev’s

inequality,

P {|𝑥 (𝑡)| > 𝐻} = P {√|𝑥 (𝑡)| > √𝐻}

≤
𝐸 (√|𝑥 (𝑡)|)

√𝐻
.

(67)
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Hence lim sup
𝑡→+∞

P{|𝑥(𝑡)| > 𝐻} ≤ 𝜀.This implies

lim inf
𝑡→+∞

P {|𝑥 (𝑡)| ≤ 𝐻} ≥ 1 − 𝜀. (68)

Next, we claim that, for arbitrary 𝜀 > 0, there is a constant
𝛽 > 0 such that lim inf

𝑡→+∞
P{|𝑥(𝑡)| ≥ 𝛽} ≥ 1 − 𝜀. Denote

𝑉(𝑦(𝑡)) = ∑
𝑛

𝑖=1
𝑦
𝑖
(𝑡). Applying Itô’s formula, we get

𝑑𝑉 (𝑦 (𝑡)) =

𝑛

∑

𝑖=1

𝑦
𝑖 (𝑡)

[

[

𝑟
𝑖 (𝑡) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (𝑡)

⋅ ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗 (𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (𝑡)

⋅ ∏

0<𝑡𝑘<𝑡−𝜏𝑖𝑗(𝑡)

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗 (𝑡)) +

𝑛

∑

𝑗=1

𝑐
𝑖𝑗 (𝑡)

⋅ ∫

0

−∞

∏

0<𝑡𝑘<𝑡+𝜃

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗 (𝑡 + 𝜃) 𝑑𝜇𝑖𝑗 (𝜃)
]

]

𝑑𝑡

+

𝑛

∑

𝑖=1

𝑦
𝑖 (𝑡) 𝜎𝑖 (𝑡) 𝑑𝐵𝑖 (𝑡) +

𝑛

∑

𝑖=1

𝑦
𝑖 (𝑡)

𝑛

∑

𝑗=1

𝛿
𝑖𝑗 (𝑡)

⋅ ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗 (𝑡) 𝑑𝐵𝑖𝑗 (𝑡) .

(69)

Define 𝑈(𝑦(𝑡)) = 1/𝑉(𝑦(𝑡)) on 𝑡 ≥ 0. Then we have

𝑑𝑈 =
[
[

[

−𝑈
2
(

𝑛

∑

𝑖=1

𝑦
𝑖 (𝑡)

[

[

𝑟
𝑖 (𝑡) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (𝑡)

⋅ ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗 (𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (𝑡)

⋅ ∏

0<𝑡𝑘<𝑡−𝜏𝑖𝑗(𝑡)

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗 (𝑡)) +

𝑛

∑

𝑗=1

𝑐
𝑖𝑗 (𝑡)

⋅ ∫

0

−∞

∏

0<𝑡𝑘<𝑡+𝜃

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗 (𝑡 + 𝜃) 𝑑𝜇𝑖𝑗 (𝜃)
]

]

)

+ 𝑈
3
([

𝑛

∑

𝑖=1

𝑦
𝑖 (𝑡) 𝜎𝑖 (𝑡)]

2

+ [

[

𝑛

∑

𝑖=1

𝑦
𝑖 (𝑡)

𝑛

∑

𝑗=1

𝛿
𝑖𝑗 (𝑡)

⋅ ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗 (𝑡)
]

]

2

)
]
]

]

𝑑𝑡 − 𝑈
2

𝑛

∑

𝑖=1

𝑦
𝑖 (𝑡)

⋅ 𝜎
𝑖 (𝑡) 𝑑𝐵𝑖 (𝑡) − 𝑈

2

𝑛

∑

𝑖=1

𝑦
𝑖 (𝑡)

𝑛

∑

𝑗=1

𝛿
𝑖𝑗 (𝑡)

⋅ ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗 (𝑡) 𝑑𝐵𝑖𝑗 (𝑡) ,

(70)

dropping 𝑦(𝑡) from 𝑈(𝑦(𝑡)). Define the function 𝑉(𝑦(𝑡)) =
𝑈
2+𝑝
(𝑦(𝑡)); then by Itô’s formula, we have

𝐿𝑉 (𝑦 (𝑡)) = (2 + 𝑝)𝑈
𝑝 [
[

[

−𝑈
3
(

𝑛

∑

𝑖=1

𝑦
𝑖 (𝑡)

[

[

𝑟
𝑖 (𝑡)

−

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (𝑡) ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗 (𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (𝑡)

⋅ ∏

0<𝑡𝑘<𝑡−𝜏𝑖𝑗(𝑡)

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗 (𝑡)) +

𝑛

∑

𝑗=1

𝑐
𝑖𝑗 (𝑡)

⋅ ∫

0

−∞

∏

0<𝑡𝑘<𝑡+𝜃

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗 (𝑡 + 𝜃) 𝑑𝜇𝑖𝑗 (𝜃)
]

]

)

+ 𝑈
4
([

𝑛

∑

𝑖=1

𝑦
𝑖 (𝑡) 𝜎𝑖 (𝑡)]

2

+ [

[

𝑛

∑

𝑖=1

𝑦
𝑖 (𝑡)

𝑛

∑

𝑗=1

𝛿
𝑖𝑗 (𝑡)

⋅ ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗 (𝑡)
]

]

2

)+
𝑝 + 1

2

⋅ 𝑈
4
([

𝑛

∑

𝑖=1

𝑦
𝑖 (𝑡) 𝜎𝑖 (𝑡)]

2

+ [

[

𝑛

∑

𝑖=1

𝑦
𝑖 (𝑡)

𝑛

∑

𝑗=1

𝛿
𝑖𝑗 (𝑡)

⋅ ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗 (𝑡)
]

]

2

)
]
]

]

.

(71)

Since we know that

𝑈

𝑛

∑

𝑖=1

𝑦
𝑖 (𝑡) 𝑟𝑖 (𝑡) ≥ 𝑟

𝑙

𝑖
,

𝑈
2

𝑛

∑

𝑖=1

𝑦
𝑖 (𝑡)

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (𝑡) ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗 (𝑡) ≤ 𝑀𝑎
𝑢

𝑖𝑗
,

𝑈
2
(

𝑛

∑

𝑖=1

𝑦
𝑖 (𝑡) 𝜎𝑖 (𝑡))

2

≤ (𝜎
𝑢

𝑖
)
2
,

𝑈
4
(

𝑛

∑

𝑖=1

𝑦
𝑖 (𝑡)

𝑛

∑

𝑗=1

𝛿
𝑖𝑗 (𝑡) ∏

0<𝑡𝑘<𝑡

(1 + ℎ
𝑗𝑘
) 𝑦

𝑗 (𝑡))

2

≤ 𝑀
2
(𝛿

𝑢

𝑖𝑗
)
2

.

(72)

It follows from (71) that

𝐿𝑉 (𝑦 (𝑡)) ≤ (2 + 𝑝) (− (𝑟
𝑙

𝑖
−
𝑝 + 3

2
(𝜎

𝑢

𝑖
)
2
)𝑈

2+𝑝

+𝑀𝑎
𝑢

𝑖𝑗
𝑈
1+𝑝

+
𝑝 + 3

2
𝑀

2
(𝛿

𝑢

𝑖𝑗
)
2

𝑈
𝑝
) .

(73)
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Now choose a constant 𝑘 > 0 sufficiently small such that it
satisfies 𝑘 − (2 + 𝑝)(𝑟𝑙

𝑖
− ((𝑝 + 3)/2)(𝜎

𝑢

𝑖
)
2
) < 0. Therefore,

𝐿 [𝑒
𝑘𝑡
𝑉 (𝑦 (𝑡))] = 𝑘𝑒

𝑘𝑡
𝑉 (𝑦 (𝑡)) + 𝑒

𝑘𝑡
𝐿𝑉 (𝑦 (𝑡))

≤ 𝑘𝑒
𝑘𝑡
𝑈
2+𝑝

(𝑦 (𝑡)) + 𝑒
𝑘𝑡
(2 + 𝑝)

⋅ (− (𝑟
𝑙

𝑖
−
𝑝 + 3

2
(𝜎

𝑢

𝑖
)
2
)𝑈

2+𝑝

+𝑀𝑎
𝑢

𝑖𝑗
𝑈
1+𝑝

+
𝑝 + 3

2
𝑀

2
(𝛿

𝑢

𝑖𝑗
)
2

𝑈
𝑝
)

= 𝑒
𝑘𝑡
([𝑘 − (2 + 𝑝) (𝑟

𝑙

𝑖
−
𝑝 + 3

2
(𝜎

𝑢

𝑖
)
2
)]𝑈

2+𝑝

+ (2 + 𝑝)𝑀𝑎
𝑢

𝑖𝑗
𝑈
1+𝑝

+ (2 + 𝑝)
𝑝 + 3

2
𝑀

2
(𝛿

𝑢

𝑖𝑗
)
2

𝑈
𝑝
) ≤ 𝐾𝑒

𝑘𝑡
.

(74)

This implies that

lim sup
𝑡→+∞

𝐸𝑈
2+𝑝

(𝑦 (𝑡)) ≤ 𝐾. (75)

For 𝑦(𝑡) ∈ 𝑅
𝑛

+
, note that (∑𝑛

𝑖=1
𝑦
𝑖
(𝑡))

2+𝑝
≤ 𝑛

2+𝑝
|𝑦(𝑡)|

2+𝑝
.

Consequently

lim sup
𝑡→+∞

𝐸
1

|𝑥 (𝑡)|
2+𝑝

≤ 𝑛
−2−𝑝lim sup

𝑡→+∞

𝐸
1

(∑
𝑛

𝑖=1
𝑥
𝑖 (𝑡))

2+𝑝

= 𝑛
−2−𝑝lim sup

𝑡→+∞

𝐸
1

(∑
𝑛

𝑖=1
∏

0<𝑡𝑘<𝑡
(1 + ℎ

𝑖𝑘
) 𝑦

𝑖 (𝑡))
2+𝑝

≤ (𝑚𝑛)
−2−𝑝

𝐾 =: 𝑑.

(76)

So for any 𝜀 > 0, setting 𝛽 = (𝜀/𝑑)
1/(2+𝑝), by Chebyshev’s

inequality, gets that

P {|𝑥 (𝑡)| < 𝛽} = P {|𝑥 (𝑡)|
2+𝑝

< 𝛽
2+𝑝
}

= P{
1

|𝑥 (𝑡)|
2+𝑝

>
1

𝛽2+𝑝
}

≤
𝐸 [1/ |𝑥 (𝑡)|

2+𝑝
]

1/𝛽2+𝑝

= 𝛽
2+𝑝
𝐸[

1

|𝑥 (𝑡)|
2+𝑝

] ,

(77)

which means that lim sup
𝑡→+∞

P{|𝑥(𝑡)| < 𝛽} ≤ 𝛽
2+𝑝
𝑑 = 𝜀.

We can get that

lim inf
𝑡→+∞

P {|𝑥 (𝑡)| ≥ 𝛽} ≥ 1 − 𝜀. (78)

So the whole proof is completed.

Remark 8. If 𝑔
∗

𝑖
> 0 and min

1≤𝑗≤𝑛
inf

𝑡∈𝑅+
{𝑎
𝑖𝑗
(𝑡) −

𝑒
𝜏𝑖𝑗(Δ
−1

𝑖𝑗
(𝑡))
𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑡))/(1 − ̇𝜏

𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑡))) − 𝑐

𝑢

𝑖𝑗
𝜇
𝑖𝑗𝑟
} > 0, then the

population 𝑥
𝑖
(𝑡) will be weak persistence. If 𝑔∗

𝑖
< 0 and

min
1≤𝑗≤𝑛

inf
𝑡∈𝑅+

{𝑎
𝑖𝑗
(𝑡) − 𝑏

𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑡))/(1 − ̇𝜏

𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑡))) − 𝑐

𝑢

𝑖𝑗
} ≥ 0,

then the population𝑥
𝑖
(𝑡)will go to extinction.That is to say, if

min
1≤𝑗≤𝑛

inf
𝑡∈𝑅+

{𝑎
𝑖𝑗
(𝑡)−𝑒

𝜏𝑖𝑗(Δ
−1

𝑖𝑗
(𝑡))
𝑏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑡))/(1− ̇𝜏

𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑡)))−

𝑐
𝑢

𝑖𝑗
𝜇
𝑖𝑗𝑟
} > 0 and min

1≤𝑗≤𝑛
inf

𝑡∈𝑅+
{𝑎
𝑖𝑗
(𝑡) − 𝑏

𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑡))/(1 −

̇𝜏
𝑖𝑗
(Δ

−1

𝑖𝑗
(𝑡))) − 𝑐

𝑢

𝑖𝑗
} ≥ 0 hold, then 𝑔∗

𝑖
is the critical number

between weak persistence and extinction for the population
𝑥
𝑖
(𝑡).

Remark 9. Generally speaking, as the biology has implied,
in Theorem 4, on one hand, if the species in the process of
planting, that is, ℎ

𝑖𝑘
> 0, or harvesting, that is, ℎ

𝑖𝑘
< 0,

is affected by stochastic environmental noises which plays
a dominant role, then the species will be extinct a.s. In a
word, population probably will come to an end in the worst
cases which is revealed in Theorem 4, while if the growth
rate and the influences of the stochastic noises and impulsive
perturbations cancel each other out, then the effects of
interspecific (for 𝑖 ̸= 𝑗) and intraspecific (for 𝑖 = 𝑗)
interaction at time 𝑡, that is, 𝑎

𝑖𝑗
(𝑡), are the dominant factor.

So the living chances are considerably rare which is shown
in Theorem 5. In Theorem 6, even though the growth rate
is larger than the influences of the stochastic noises and
impulsive perturbations, 𝑎

𝑖𝑗
(𝑡) plays the dominant role; then

the population size is limited to zero with the time permitted;
however, the opportunity of the survival of it still exists. In
Theorem 7, if the growth rate is large enough, then the species
will be stochastic permanence. This can well explain why the
conditions are gradually stronger fromTheorems 4–6.

Remark 10. According to 𝑔
∗

𝑖
=

lim sup
𝑡→+∞

𝑡
−1
[∑

0<𝑡𝑘<𝑡
ln(1 + ℎ

𝑖𝑘
) + ∫

𝑡

0
(𝑟
𝑖
(𝑠) − 𝜎

2

𝑖
(𝑠)/2)𝑑𝑠],

on one hand, we are conscious of the fact that the stochastic
noise on 𝑟

𝑖
(𝑡) is detrimental to the survival of the population

but the stochastic noise on 𝑎
𝑖𝑗
(𝑡) has hardly impressed on

the persistence or extinction of the population. Thus, in true
ecological modelling, the stochastic noise on 𝑟

𝑖
(𝑡) should be

realized but the stochastic noise on 𝑎
𝑖𝑗
(𝑡) could be overlooked

in some cases.

Remark 11. In view of 𝑔∗
𝑖
= lim sup

𝑡→+∞
𝑡
−1
[∑

0<𝑡𝑘<𝑡
ln(1 +

ℎ
𝑖𝑘
) + ∫

𝑡

0
(𝑟
𝑖
(𝑠) − 𝜎

2

𝑖
(𝑠)/2)𝑑𝑠], we can find that the properties

including extinction, nonpersistence in the mean, weak
persistence, and stochastic permanence are not affected by
the impulsive perturbations which are bounded and if the
impulsive perturbations are unbounded the properties will
change significantly.

Remark 12. Assumption (H5) is easy to be satisfied. For
example, for the 𝑖th population, if ℎ

𝑖𝑘
= 𝑒

(−1)
𝑘+1

/𝑘
2

− 1, then
𝑒
0.75

< ∏
0<𝑡𝑘<𝑡

(1 + ℎ
𝑖𝑘
) < 𝑒 for all 𝑡 > 0. Thus 1 ≤ ∏

0<𝑡𝑘<𝑡
(1 +

ℎ
𝑖𝑘
) ≤ 𝑒 for all 𝑡 > 0.

5. Examples and Numerical Simulations

In this section, we explore system behavior numerical solu-
tions of model (2). For convenience, consider the case 𝑛 = 2
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and let the probability measure 𝜇
𝑖𝑗
(𝜃) = 𝑒

𝜃
(𝑖 = 1, 2, 𝑗 = 1, 2)

on (−∞, 0] satisfying 𝜇
𝑖𝑗𝑟
= ∫

0

−∞
𝑒
−2𝑟𝜃

𝑑𝜇
𝑖𝑗
(𝜃) < +∞.Thus the

nonautonomous stochastic model (2) will be written as

𝑑𝑥 (𝑡) = 𝑥 (𝑡) [𝑟1 (𝑡) − 𝑎11 (𝑡) 𝑥 (𝑡) − 𝑎12 (𝑡) 𝑦 (𝑡)

+ 𝑏
11 (𝑡) 𝑥 (𝑡 − 𝜏11 (𝑡)) + 𝑏12 (𝑡) 𝑦 (𝑡 − 𝜏12 (𝑡))

+ 𝑟𝑒
𝑡
𝑐
11 (𝑡) ∫

0

−∞

𝑒
𝑟𝜃
𝜉
1 (𝜃) 𝑑𝜃

+ 𝑟𝑒
𝑡
𝑐
12 (𝑡) ∫

0

−∞

𝑒
𝑟𝜃
𝜉
2 (𝜃) 𝑑𝜃

+ 𝑟𝑒
𝑡
𝑐
11 (𝑡) ∫

𝑡

0

𝑒
𝑟𝜃
𝑥 (𝜃) 𝑑𝜃

+ 𝑟𝑒
𝑡
𝑐
12 (𝑡) ∫

𝑡

0

𝑒
𝑟𝜃
𝑦 (𝜃) 𝑑𝜃] 𝑑𝑡 + 𝜎1 (𝑡) (𝑡)

⋅ 𝑥 (𝑡) 𝑑𝐵1 (𝑡) + 𝛿11 (𝑡) 𝑥
2
(𝑡) 𝑑𝐵11 (𝑡)

+ 𝛿
12 (𝑡) 𝑥 (𝑡) 𝑦 (𝑡) 𝑑𝐵12 (𝑡) ,

𝑑𝑦 (𝑡) = 𝑦 (𝑡) [𝑟2 (𝑡) − 𝑎21 (𝑡) 𝑥 (𝑡) − 𝑎22 (𝑡) 𝑦 (𝑡)

+ 𝑏
21 (𝑡) 𝑥 (𝑡 − 𝜏21 (𝑡)) + 𝑏22 (𝑡) 𝑦 (𝑡 − 𝜏22 (𝑡))

+ 𝑟𝑒
𝑡
𝑐
21 (𝑡) ∫

0

−∞

𝑒
𝑟𝜃
𝜉
1 (𝜃) 𝑑𝜃

+ 𝑟𝑒
𝑡
𝑐
22 (𝑡) ∫

0

−∞

𝑒
𝑟𝜃
𝜉
2 (𝜃) 𝑑𝜃

+ 𝑟𝑒
𝑡
𝑐
21 (𝑡) ∫

𝑡

0

𝑒
𝑟𝜃
𝑥 (𝜃) 𝑑𝜃

+ 𝑟𝑒
𝑡
𝑐
22 (𝑡) ∫

𝑡

0

𝑒
𝑟𝜃
𝑦 (𝜃) 𝑑𝜃] 𝑑𝑡 + 𝜎2 (𝑡) (𝑡)

⋅ 𝑦 (𝑡) 𝑑𝐵2 (𝑡) + 𝛿21 (𝑡) 𝑥 (𝑡) 𝑦 (𝑡) 𝑑𝐵21 (𝑡)

+ 𝛿
22 (𝑡) 𝑦

2
(𝑡) 𝑑𝐵22 (𝑡) ,

𝑥 (𝜃) = 𝜉1 (𝜃) ,

𝑦 (𝜃) = 𝜉2 (𝜃) ,

𝜉 (𝜃) = (𝜉1 (𝜃) , 𝜉2 (𝜃))
𝑇
∈ C

𝑔
.

(79)

By employing theMilsteinmethodmentioned inHigham [31]
to discretize the two equations, where the integral term is
approximated by using the composite 𝜃-rule as a quadrature
[32] and taking 𝜉

1
(𝜃) = 𝑒

−0.5𝜃, 𝜉
2
(𝜃) = 2𝑒

−0.5𝜃, 𝜏
𝑖𝑗
(𝑡) ≡

0.3 (𝑖 = 1, 2, 𝑗 = 1, 2), we can obtain the discrete approxi-
mate solution with respect to (79)

𝑥
𝑘+1

= 𝑥
𝑘
+ 𝑥

𝑘
[

[

𝑟
1 (𝑘Δ𝑡) − 𝑎11 (𝑘Δ𝑡) 𝑥𝑘

− 𝑎
12 (𝑘Δ𝑡) 𝑦𝑘 + 𝑏11 (𝑘Δ𝑡) 𝑥𝑘−300 + 𝑏12 (𝑘Δ𝑡) 𝑦𝑘−300

+
𝑐
11 (𝑘Δ𝑡) 𝑟𝑒

−𝑘Δ𝑡

2
+ 𝑐

12 (𝑘Δ𝑡) 𝑟𝑒
−𝑘Δ𝑡

+ 𝑐
11 (𝑘Δ𝑡) 𝑟𝑒

−𝑘Δ𝑡

𝑘

∑

𝑗=1

𝑒
−𝑟𝑗Δ𝑡
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𝑗
Δ𝑡

+ 𝑐
12 (𝑘Δ𝑡) 𝑟𝑒

−𝑘Δ𝑡

𝑘

∑

𝑗=1

𝑒
−𝑟𝑗Δ𝑡

𝑥
𝑗
Δ𝑡]

]

Δ𝑡 + 𝜎
1 (𝑘Δ𝑡)

⋅ 𝑥
𝑘
√Δ𝑡𝜁

1𝑘
+
1

2
𝜎
2

1
(𝑘Δ𝑡) 𝑥𝑘 [𝜁

2

1𝑘
− 1] Δ𝑡
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11 (𝑘Δ𝑡) 𝑥

2
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11𝑘
+
1

2
𝛿
2
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2

𝑘
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2
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12 (𝑘Δ𝑡) 𝑥𝑘𝑦𝑘

√Δ𝑡𝜁
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1

2
𝛿
2

12
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𝑘
𝑦
𝑘
[𝜁

2

12𝑘
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𝑦
𝑘+1

= 𝑦
𝑘
+ 𝑦

𝑘
[

[

𝑟
2 (𝑘Δ𝑡) − 𝑎21 (𝑘Δ𝑡) 𝑥𝑘

− 𝑎
22 (𝑘Δ𝑡) 𝑦𝑘 + 𝑏21 (𝑘Δ𝑡) 𝑥𝑘−300 + 𝑏22 (𝑘Δ𝑡) 𝑦𝑘−300

+
𝑐
21 (𝑘Δ𝑡) 𝑟𝑒

−𝑘Δ𝑡

2
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22 (𝑘Δ𝑡) 𝑟𝑒
−𝑘Δ𝑡

+ 𝑐
21 (𝑘Δ𝑡) 𝑟𝑒

−𝑘Δ𝑡

𝑘
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−𝑟𝑗Δ𝑡

𝑥
𝑗
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22 (𝑘Δ𝑡) 𝑟𝑒

−𝑘Δ𝑡
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𝑒
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𝑦
𝑗
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⋅ 𝑦
𝑘
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2𝑘
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1

2
𝜎
2

2
(𝑘Δ𝑡) 𝑦𝑘 [𝜁

2

2𝑘
− 1] Δ𝑡

+ 𝛿
21 (𝑘Δ𝑡) 𝑥𝑘𝑦𝑘

√Δ𝑡𝜁
21𝑘

+
1

2
𝛿
2

21
(𝑘Δ𝑡) 𝑥𝑘𝑦𝑘 [𝜁

2

21𝑘

− 1] Δ𝑡 + 𝛿
22 (𝑘Δ𝑡) 𝑦

2

𝑘
√Δ𝑡𝜁

22𝑘
+
1
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𝛿
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22
(𝑘Δ𝑡)

⋅ 𝑦
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2

22𝑘
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(80)

where 𝜁
𝑖𝑘
and 𝜁

𝑖𝑗𝑘
(𝑖 = 1, 2, 𝑗 = 1, 2, 𝑘 = 1, 2, . . . , 𝑛) are the

Gaussian random variables which follow𝑁(0, 1).
Here, we choose 𝑡

𝑘
= 100𝑘, 𝑎

𝑖𝑗
(𝑡) = 1.2 + 0.01cos 𝑡 (𝑖 =

1, 2, 𝑗 = 1, 2), 𝑏
𝑖𝑗
(𝑡) = 0.3+0.05sin 𝑡, 𝑐

𝑖𝑗
(𝑡) = 0.006+0.02cos 𝑡,

𝜎
𝑖
(𝑡) = 1.5, 𝛿

𝑖𝑗
(𝑡) = 0.1, ℎ

𝑖𝑘
= 𝑒

−0.005
− 1 for all 𝑘 ∈ 𝑁 and

step size Δ𝑡 = 0.001. The only difference between conditions
of Figures 1(a)–1(d) is that the representations of 𝑟

𝑖
(𝑡) are

different.
Because of−1 < ℎ

𝑖𝑘
= 𝑒

−0.005
−1 < 0, both species𝑥(𝑡) and

𝑦(𝑡) are in the process of harvesting.Moreover, in Figure 1(a),
we choose 𝑟

𝑖
(𝑡) = 0.1 + 0.4sin 𝑡; stochastic environmental

noises play a dominant role; then the conditions ofTheorem 4
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Figure 1: Persistence and extinction of model (68). (a) Extinction a.s. (b) Nonpersistence in the mean a.s. (c) Weak persistence a.s.
(d) Stochastic permanence.

are satisfied. In view of Theorem 4, the population 𝑥(𝑡) and
the population𝑦(𝑡)will go to extinction a.s. In Figure 1(b), we
consider 𝑟

𝑖
(𝑡) = 1.12505 + 0.4sin 𝑡; the effects of interspecific

(for 𝑖 ̸= 𝑗) and intraspecific (for 𝑖 = 𝑗) interaction at time 𝑡,
that is, 𝑎

𝑖𝑗
(𝑡), are the dominant factor; then the conditions of

Theorem 5 hold. By virtue of Theorem 5, the population 𝑥(𝑡)
and the population 𝑦(𝑡) are nonpersistent in the mean a.s. In
Figure 1(c), we choose 𝑟

𝑖
(𝑡) = 1.6 + 0.4sin 𝑡; 𝑎

𝑖𝑗
(𝑡) plays the

dominant role; then the conditions ofTheorem 6 are satisfied.
That is to say, the population 𝑥(𝑡) and the population 𝑦(𝑡) are
weak persistence a.s.This means that even though the species
𝑥(𝑡) and 𝑦(𝑡) are in the process of harvesting, 𝑎

𝑖𝑗
(𝑡) plays the

dominant role; then the opportunity of the survival of it still
exists. In Figure 1(d), we consider 𝑟

𝑖
(𝑡) = 4.9; the growth rate

is large enough; then the conditions ofTheorem 7 hold. Mak-
ing use ofTheorem 7, the population 𝑥(𝑡) and the population
𝑦(𝑡) are stochastic permanence. By the numerical simula-
tions, we can find that stochastic noise on 𝑟

𝑖
(𝑡) (1 ≤ 𝑖 ≤ 𝑛) can

change the properties of the population models significantly.

6. Conclusions

In this paper, the persistence and extinction of a general
stochastic nonautonomous N-species Lotka-Volterra model

with time-varying, infinite delays and impulsive perturba-
tions are investigated. Sufficient conditions for extinction,
nonpersistence in the mean, weak persistence, and stochastic
permanence are established inTheorems 4–7. The influences
of the stochastic noises and impulsive perturbations on the
properties of the stochastic model are discussed. On one
hand, if the noise is small enough, the property permanence
that the related deterministic system possesses is preserved
in the stochastic model. On the other hand, with the increase
of noise, the solution of the considered model (2) that will
become extinct with probability one, nonpersistent in the
mean, or weakly persistent has also been shown in this
paper. According to 𝑔

∗

𝑖
= lim sup

𝑡→+∞
𝑡
−1
[∑

0<𝑡𝑘<𝑡
ln(1 +

ℎ
𝑖𝑘
) + ∫

𝑡

0
(𝑟
𝑖
(𝑠) − 𝜎

2

𝑖
(𝑠)/2)𝑑𝑠], we can obtain the result that

if the impulsive perturbations are bounded, the properties
including extinction, nonpersistence in the mean, weak
persistence, and stochastic permanence are not affected by
the impulsive perturbations and if the impulsive perturba-
tions are unbounded the properties will be affected by the
impulsive perturbations and change greatly. Moreover, the
critical number between extinction and weak persistence is
obtained. Through the observation of Theorems 4–7, there
is a very interesting phenomenon that the stochastic noise
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on 𝑟
𝑖
(𝑡) is detrimental to the survival of the population

but the stochastic noise on 𝑎
𝑖𝑗
(𝑡) has hardly impressed on

the persistence or extinction of the population. Finally, the
numerical simulations are given to confirm the theoretical
analysis results.
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