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The basic theories of load forecasting on the power system are summarized. Fractal theory, which is a new algorithm applied to load
forecasting, is introduced. Based on the fractal dimension and fractal interpolation function theories, the correlation algorithms
are applied to the model of short-term load forecasting. According to the process of load forecasting, the steps of every process
are designed, including load data preprocessing, similar day selecting, short-term load forecasting, and load curve drawing. The
attractor is obtained using an improved deterministic algorithm based on the fractal interpolation function, a day’s load is predicted
by three days’ historical loads, the maximum relative error is within 3.7%, and the average relative error is within 1.6%. The
experimental result shows the accuracy of this prediction method, which has a certain application reference value in the field
of short-term load prediction.

1. Introduction

Short-term load forecasting plays an important role in control
and operation of the power system. People are the main
consumers of electrical energy.The periodicity of production
and life of the people decides the periodicity of power load.
The cyclicity of power load is performed as the week and
seasonal periodicity. Power load not only is cyclical but also
has certain continuity, which generally does not occur in big
jumps and the load curve is continuous between any two
points, making it possible to predict load.

Although traditional forecasting methods, such as gray
theory, expert systems theory, and fuzzy mathematics, are
relatively mature, the forecast results are often unsatisfactory
[1]. To further improve the prediction accuracy, we need to
make some improvements on the traditional methods. In
recent years, prediction experts have put forward a prediction
method, which is based on particle swarm optimization
extendedmemory and support vector regression (SVR) and a
predictionmethod which combines support vector machines
(SVM) and wavelet neural network optimization [2–4]. This
improves the accuracy of prediction but has a complex
computing process.

Since Mandelbrot created fractal geometry, fractals have
been described in a large number of mathematical models of
natural phenomena and have increasingly attracted people’s
attention. Fractals as a branch of nonlinear theory have
penetrated into many other branches, and fractal dimension
has been widely used in image processing, data compression,
fault diagnosis, voice recognition, pattern recognition, and so
on [5, 6].

This study is based on the existing similar daily load
forecasting method and a deep research on the fractal char-
acteristics of the power load, which designs corresponding
fractal characteristic value algorithms to achieve scientific
data processing for power load.

2. Fractal Theory

2.1. The Fractal Dimension. Fractal theory gives a geometric
definition about calculation dimension formula: a set 𝐴 con-
sists of 𝑚 compositions which are similar and the similarity
ratio 𝑟 can be considered as a dimension 𝐷:

𝐷(𝐴) =
log𝑚

log 𝑟
. (1)
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Since this formula can only be used in measuring the
strict self-similarity geometry, the power load can adopt a
similar method to approximate calculation.

Box-counting dimension is one of the most widely used
dimensions. To calculate this dimension for a fractal 𝐹,
imagine this fractal lying on an evenly spaced grid, and count
how many boxes are required to cover the set. The box-
counting dimension is calculated by seeing how this number
changes as wemake the grid finer by applying a box-counting
algorithm [7].

Suppose that𝑁(𝜀) is the number of boxes of side length 𝜀

required to cover the set. Then the box-counting dimension
is defined as

𝑑
𝑐
(𝐹) = lim

𝜀→0

ln𝑁(𝜀)

ln (1/𝜀)
. (2)

2.2. Fractal Interpolation Function. Fractal interpolation
function is a method of fractal curve construction which
has the advantage that it can reflect adjacent local features.
The fractal interpolation algorithm can construct an iterated
function system over the entire range rather than a function,
so it can maintain the most characteristic of the original
sample curve and the sample interpolation points can be
displayed with rich details. Because it can well reflect the
characteristics of the load curve at each point, one can more
accurately predict the load.

Fractal interpolation method is based on the theory of
iterated function systems. If given a set of fractal interpolation
function, iterated function systems (IFS) will make the
attractor close to the curve of fractal interpolation function.
Each 𝜔

𝑖
in IFS is the affine transform function, which is given

by the following structure formula [8, 9]:

𝜔
𝑖
[
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0
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𝑖
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] , (3)

where (𝑥, 𝑦) is a coordinate, 𝑎
𝑖
, 𝑐
𝑖
are elements of transfor-

mation matrix, 𝑑
𝑖
is the vertical scaling factor, and 𝑒
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(4)

After obtaining the parameters, the IFS attractor can
be obtained by deterministic iterative algorithm. With the
increased number of iterations, the fitting degree of curve
obtained by interpolation continues to improve and form a
stable constant interpolation curve.

2.2.1. The Vertical Scale Factor. When calculating the affine
coefficients of IFS, we temporarily regard vertical scaling
factor 𝑑 as a free parameter that can be empirically selected.
However, parameter 𝑑 has an impact on interpolation result,
which is closely related to the complexity of corresponding
fractal interpolation function. When |𝑑| < 1, IFS converges
to the only attractor.

There aremanymethods of calculating the vertical scaling
factor 𝑑. In this paper, we use the analytical method to obtain
parameter 𝑑; its principle is by calculating the minimum
mean square error of the original and mapping function.The
process is as follows [10, 11].

There is the following data sequence: {(𝑥
𝑖
, 𝑦
𝑖
) : 𝑖 =

0, 1, 2, 3, . . . , 𝑛}; (𝑥
𝑝
, 𝑦
𝑝
) and (𝑥

𝑞
, 𝑦
𝑞
) are two successive inter-

polation points; and 𝑝 < 𝑞; then formula (3) is rewritten as
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where𝑚 = int(𝑎𝑥
𝑖
+𝑒) and the values of𝑚 points correspond

to the values in the original function
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The mean square error of the mapping function and the
original function is

𝐸 =

𝑛

∑

𝑖=0
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2

. (7)
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To make the minimum mean square error 𝐸, the partial
derivative of 𝑑 will be zero:
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2.2.2. The Method of Seeking Attractor. Attractor of IFS
has a complex structure fractal diagram; the basic idea is
that global and local geometric objects have self-similar
structures under affine transformation. According to this
principle, ultimately getting the attractor has nothing to do
with the initial generator, but it depends on a set of iterative
codes by affine transformation (also known as IFS code).
Currently, we can use two ways to construct attractor on
a computer, a deterministic algorithm (recursive algorithm)
and a stochastic algorithm (random iterative algorithm) [12,
13]. Here we take an improved deterministic algorithm.

The procedure of improved deterministic algorithm is
summarized in Algorithm 1.

3. The Design of Overall Program

The process is mainly divided into the following steps: load
data preprocessing, similar day selection, short-term load
forecasting, and daily load curve drawing.

3.1. Load Data Preprocessing. Short-term load forecasting
relies on large amounts of historical data. Conducting
preparatory work of load forecasting, we select and collect
the original data regardless of what methods forecasters
adopt; the true and reliable degree of data will have great
influence on the extent of these predictions and directly
affect the accuracy of prediction. In the process of collecting
the original data, some abnormal data must be effectively
corrected or complemented [14]. In the paper, we compare
the value of the load at this time to the average value of the
load at a time ondifferent days. If the difference is greater than
a threshold, we think it is the burr interference, modified by
formula (12):

𝑦 (𝑗) =
1

𝑛

𝑛/2
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𝑡=−𝑛/2
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(11)
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where 𝑛 is the number of sample points, 𝐾
𝑡
is the weight

coefficient, 𝐾
ℎ
is the upper limit threshold value, and 𝐾

𝑙
is

the lower threshold value. Here we set 𝐾
ℎ
= 1.1, 𝐾

𝑙
= 0.9.

3.2. Design of Load Forecasting. The basic steps of fractal
interpolation algorithm used in load forecasting are as fol-
lows.

Step 1. Preprocess load data; remove or repair spike points.

Step 2. Obtain samples, according to the relevant factors of the
forecast day and historical day; use a similar day algorithm to
select the same or similar type of three to five days from the
history days as similar days of the predicted days.

Step 3. Choose a more similar day from similar days as a
reference date.

Step 4. Establish IFS of the benchmark daily load; calculate
fractal interpolation parameters.

Step 5. Establish IFS of the other similar daily load; also
calculate fractal interpolation parameters.

Step 6. Obtaining the weighting average fractal interpolation
parameters of several similar days, get a statistical meaning of
IFS.

3.3. Daily Load Curve Drawing. Daily load curve can be
drawn by the attractor method. According to the short-
term load forecasting model, we obtain affine transformation
group {𝑋; 𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
}, set the generator, then use the

deterministic algorithm to iterate the initial start point, and
eventually draw daily load curve.

4. The Prediction Example

This section will predict the work day and holidays load
and prove the accuracy and usefulness of short-term load
forecasting by fractal theory. The load data are provided by
Eastern Slovakian Electricity Corporation. The calculation
process is as shown in Figure 1.

4.1. Workday Load Forecasting. According to a city grid, we
predict July 22 load data by July historical load data and July
22 is Tuesday, which is a work day. In this example, we take
the 48 points from daily load curve (every 30 minutes to take
a point) and calculate box-counting dimension from July 1
to July 26. July 8, July 15, and July 22 are Tuesdays, which
meet the weekly periodic characteristics which accord with
the regularities of load changes that vary on a weekly cycle.
In addition, July 21 is close to July 22, which may indirectly
reflect their loads trend. Obtained box dimension of July 21
is 1.2078, and the box dimensions of July 8 and July 15 are
1.2067 and 1.2008; they are relatively close, so we select July
8, July 15, and July 21 as similar days of July 22. Box-counting
dimensions of July are shown in Table 1.

According to load data of July 8, 15, and 21, fractal inter-
polation parameters of three similar days were calculated.
Weighting and averaging them, we finally get a statistically
iterated function system and IFS codes (affine transformation
set {𝜔

𝑛
, 𝑛 = 1, 2, 3, . . . , 𝑁}, 𝑤 contains five parameters of 𝑎, 𝑐,

𝑑, 𝑒, and 𝑓). Parts of them are shown in Table 2.
According to the corresponding parameters of IFS, we

weight and average them to obtain IFS codes by the fractal
interpolation. Then by benchmark interpolating points, we
use the deterministic algorithm to get attractor, which can
be considered as the prediction daily load curve fit by the
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Input: the initial set of points 𝑥, the maximum number of iterations 𝑁max;
Output: the attractor;
(i) .take the point 𝑥

𝑖
, 𝑖 = 0, 1, 2, . . . , 𝑘 within the set 𝑥 {𝑥

0
, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
} and use

iterative sequence by IFS affine transformation {𝑋, 𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
};

(ii) then replace the 𝑥
𝑖
, 𝑖 = 0, 1, 2, . . . , 𝑘 by each new generated point,

𝑁max = 𝑁max − 1;
(iii) if 𝑁max ̸= 1, return to step (ii), or go to the next step;
(iv) .take the end point 𝑥

𝑖
, 𝑖 = 0, 1, 2, . . . , 𝑘 within the set 𝑥 {𝑥

0
, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
} and

use iterative sequence by IFS, replace the 𝑥
𝑖
, 𝑖 = 0, 1, 2, . . . , 𝑘 by each new

point until the end.

Algorithm 1: Deterministic algorithm of seeking attractor.

Select similar dayBox dimension calculation based on daily data IFS codes
Calculate fractal interpolation 

parameters

Deterministic algorithm to obtain attractor Load prediction curve

Figure 1: The calculation process.

Table 1: Box-counting dimension.

Data Box-counting dimension
July 8 1.2067
July 15 1.2008
July 21 1.2078

Table 2: IFS codes.

𝜔
𝑖

𝑎 𝑐 𝑑 𝑒 𝑓

𝜔
1

0.0213 −0.5357 −0.0698 0.4894 474.0602

𝜔
2

0.0213 −0.3673 −0.0534 0.9894 453.7342

𝜔
3

0.0213 −0.1882 −0.0274 1.4894 432.0924

𝜔
4

0.0213 −0.4455 −0.0646 1.9894 444.5385

𝜔
5

0.0213 0.0029 −0.0003 2.4894 403.6593

𝜔
6

0.0213 −0.7698 −0.1085 2.9894 453.3236

𝜔
7

0.0213 0.2650 0.0375 3.4894 366.3361

𝜔
8

0.0213 0.2286 0.0344 3.9894 376.0253

𝜔
9

0.0213 0.5837 0.0832 4.4894 359.7458

𝜔
10

0.0213 −0.1254 −0.0199 4.9894 420.9114

𝜔
11

0.0213 0.9604 0.1403 5.4894 346.4575

𝜔
12

0.0213 0.6629 0.0893 5.9894 394.8628

𝜔
13

0.0213 1.3693 0.1894 6.4894 364.2898

𝜔
14

0.0213 0.9708 0.1426 6.9894 419.1270

𝜔
15

0.0213 0.4246 0.0648 7.4894 481.0946

𝜔
16

0.0213 0.2279 0.0282 7.9894 508.1429

𝜔
17

0.0213 0.6179 0.0860 8.4894 485.8020

𝜔
18

0.0213 0.2819 0.0430 8.9894 521.3269

𝜔
19

0.0213 0.2887 0.0437 9.4894 530.2681

historical data. Figure 2 shows the prediction load curve and
the actual load curve for July 22.
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Figure 2: Actual and predicted daily load curve.

Through Figure 3, we conclude that the maximum rela-
tive error is 3.6778% and the average relative error is 1.32%,
showing that the predicted and actual values are close and the
relative error is small.

According to Figure 2, we can see the following.

(1) Predicted load point and the actual load point are
basically consistent with high prediction accuracy.

(2) When electrical load changes are great, the error is
small; on the contrary, when electrical load changes
are small, the error is relatively large, so that is exactly
the characteristics of fractal interpolation function
algorithm.

4.2. Holidays Load Forecasting. After completing workday
load forecasting, we predict July 19 load data by July historical
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Figure 3: The relative error curve.
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Figure 4: Actual and predicted daily load curve.

Table 3: Box-counting dimension.

Data Box-counting dimension
July 5 1.2119
July 12 1.2144
July 18 1.2109

load data of July 5, 12, and 18, being holidays. Box-counting
dimensions are shown in Table 3.

From the different types of load days, the fractal theory
is proven to be accurate for short-term load forecasting. By
the same principle, we can draw the predicted and actual load
curves for July 19 from Figure 4.

Through Figure 5, we conclude that the maximum rela-
tive error is 3.0818% and the average relative error is 1.57%,
showing that the predicted and actual values are close and the
relative error is small.

5. Conclusions

Fractal theory has a great advantage in the study of nonlinear
systems. In the paper, combining the fractal characteristics
with its own short-term power load curve, we can have a
deep study on algorithm and forecasting steps. Three main
conclusions of this approach are as follows.
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Figure 5: The relative error curve.

(i) Through the concept of fractal theory and con-
ventional methods for solving fractal interpolation
parameters, we introduce the method of the vertical
scaling factor to better reflect the details of the load,
improving the accuracy of prediction.

(ii) By studying the characteristics of the load data, using
a box-counting method to select similar days, the
algorithm was simplified for the application to power
load calculation and good foundation was laid.

(iii) Using both fractal interpolation function and
improved deterministic iterative attractor algorithms,
we can accurately predict the electric power load.
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