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The integrable Kadomtsev-Petviashvili-based system is studied. The breather-like (a pulsating mode) and rational solutions are
presented applying Hirota bilinear method and Taylor series. The intricate structures of the rational solitary wave solution are
discussed mathematically and graphically.The existence conditions of three different solitary wave solution structure for the short-
wave field are given by the theory of extreme value analysis. By controlling the wave number of the background plane wave we may
control the the behavior of rational solitary wave. However, the shape of the rational solitary wave solution for the real long-wave
field is not affected as the wave number is varied.

1. Introduction

The integrable Kadomtsev-Petviashvili-based system is derived
from the Kadomtsev-Petviashvili (KP) equation via an asymp-
totically exact reductionmethod based on the Fourier expan-
sion and spatiotemporal rescaling [1]; it can be written in the
following form:

𝑖𝑢
𝑡
+ 𝑢
𝑥𝑥

+ 𝑢V = 0,

V
𝑡
+ V
𝑦

+ (|𝑢|
2
)
𝑥

= 0,

(1)

where 𝑖 = √−1, 𝑢(𝑥, 𝑦, 𝑡) is a complex function of two scaled
space coordinates 𝑥, 𝑦 and time 𝑡, and V(𝑥, 𝑦, 𝑡) is a real one.
The subscripts 𝑥, 𝑦, and 𝑡 denote partial derivatives. The
integrability property and Lax pairs of system (1) were
obtained in [1]. It is a family of nonlinear partial equation that
are often used to describe the phenomenon in the relevant
physical fields such as nonlinear optic, plasma physics, and
hydrodynamic [2]. It has been studied by many authors. For
example, exact traveling wave solutions of system (1) have
been obtained using the generalized algebraic method [3].
The single and combined generalized solitary wave solutions
are obtained by the Exp-function method [4]. Abundant

soliton and periodic wave solutions are presented by the
trigonometric and hyperbolic functions ansatz [5]. Bright
one- and two-soliton solutions have been gotten with the
Hirota method and symbolic computation [6]. However,
the integrable Kadomtsev-Petviashvili-based system still pos-
sesses many other interesting solution structures that have
not been found. In this paper, by the Exp-function method
with complex frequency and complex wave number, the
breather-like solution (a pulsating mode) is presented.
Employing the Taylor series or the long wave limits [7–11],
the rational solution is obtained. Indeed, this kind of solu-
tion is also called rogue wave [8–11]. Rogue wave was first
observed under circumstances of arbitrary depths of the
ocean. The first-order rational solution (Peregrine solitons)
of the self-focusing nonlinear Schrödinger equation was first
proposed by Peregrine to describe the rogue wave phe-
nomenon [12]. One always has two or even more times
higher amplitude than their surrounding waves and generally
they form in a short time. They are localized in both time
and space and decays algebraically to the background plane
wave. In several other physical fields [13], rogue wave has
drawn much attention such as oceanography, atmospherics,
nonlinear optics, and Bose-Einstein condensates.Many other
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evolution equations exhibit rogue wave solutions, for exam-
ple, the focusing and defocusing Ablowitz-Ladik equations
[14], Davey-Stewartson equation [15], coupled Schrödinger-
Boussinesq equation [16], Sasa-Satsuma equation [17], cou-
pled nonlinear Schrödinger and Maxwell-Bloch equations
[18], systems displaying PT-symmetry [19], three-component
coupled nonlinear Schrödinger equation [20], and even
modeling in finance [21].

2. Breather-Like and Rational Solutions

In this section, we will use Hirota technique [22] and Taylor
series to construct the breather-like (a pulsating mode) and
rational solutions of system (1).

2.1. Hirota Technique and Taylor Series Method. First, by the
dependent variable transformation

𝑢 =
𝐺

𝐹
,

V = 2 (ln𝐹)
𝑥𝑥

,

(2)

system (1) can be transformed into the Hirota’s bilinear form

(𝑖𝐷
𝑡
+ 𝐷

2
𝑥
) 𝐺 ⋅ 𝐹 = 0,

(𝐷
𝑡
𝐷
𝑥

+ 𝐷
𝑦
𝐷
𝑥

− 𝐴) 𝐹 ⋅ 𝐹 + 𝐺 ⋅ 𝐺
∗

= 0,

(3)

where the 𝐷-operator [22] is defined by

𝐷
𝑚

𝑥
𝐷
𝑛

𝑡
𝐹 (𝑥, 𝑡) ⋅ 𝐺 (𝑥, 𝑡) = (

𝜕

𝜕𝑥
−

𝜕

𝜕𝑥
)

𝑚

(
𝜕

𝜕𝑡
−

𝜕

𝜕𝑡
)

𝑛

⋅ [𝐹 (𝑥, 𝑡) 𝐺 (𝑥

, 𝑡

)]

𝑥=𝑥,𝑡=𝑡

, 𝑛, 𝑚 ≥ 0,

(4)

and 𝐺(𝑥, 𝑦, 𝑡) is a complex valued function and 𝐹(𝑥, 𝑦, 𝑡)

is a real, 𝐺
∗
(𝑥, 𝑦, 𝑡) is the conjugate function of 𝐺(𝑥, 𝑦, 𝑡),

and 𝐴 represents an arbitrary constant of integration.
So the solutions of original partial differential equation
can be converted into the solutions of bilinear differential
equations.

Second, we solve the above bilinear differential equations
to get the breather-like solution using the two-soliton solu-
tion with complex frequency and complex wave number

𝐹 = 1+ 𝑓1 + 𝑓2 + 𝑀𝑓1𝑓2,

𝐺 = 𝑢0𝑒
−𝑖(𝜏+𝜃0) (1+ 𝑎1𝑓1 + 𝑎2𝑓2 + 𝑀𝑎1𝑎2𝑓1𝑓2) ,

(5)

where 𝑓1 = 𝑒
𝑖𝑝𝑥−Ω(𝑡+𝑞𝑦)+𝑟, 𝑓2 = 𝑒

−𝑖𝑝𝑥−Ω
∗
(𝑡+𝑞𝑦)+𝑟, and 𝜏 = 𝑘𝑥 +

𝑙𝑦 + 𝑐𝑡, and 𝑙, 𝑘, 𝑐, 𝑝, 𝑞, 𝑀, 𝑢0 are real, 𝑎1, 𝑎2, Ω are complex,
and 𝑟 is an arbitrary phase parameter, and ∗ represents the
complex conjugate.

Third, using the Taylor series of the functions 𝐹 and 𝐺 at
the point 𝑝 = 0

𝐹 (𝑝) = 𝐹 (0) + 𝑝𝐹

(0) + 𝑝

2 𝐹


(0)

2!
+ ⋅ ⋅ ⋅ + 𝑝

𝑛𝐹
(𝑛)

(0)

𝑛!

+ ⋅ ⋅ ⋅ ,

(6)

𝐺 is similar to 𝐹; then we can obtain the rational solution.

2.2. Breather-Like (a Pulsating Mode). After the long and
tedious calculation with Hirota technique, the breather-like
solution can be rewritten in terms of trigonometric and
hyperbolic functions

𝑢 = 𝑢0𝑒
−𝑖(𝜏+𝜃0−𝜃1)

√𝑀 cosh (R (Ω) (𝑞𝑦 + 𝑡) − 𝜙1 − 𝑟 − 𝑖𝜃1) + cos (𝑝𝑥 − I (Ω) (𝑞𝑦 + 𝑡) − 𝑖𝜙2)

√𝑀 cosh (R (Ω) (𝑞𝑦 + 𝑡) − 𝜙1 − 𝑟) + cos (𝑝𝑥 − I (Ω) (𝑞𝑦 + 𝑡))
,

V = −

2𝑝
2

(√𝑀 cos (𝑝𝑥 − I (Ω) (𝑞𝑦 + 𝑡)) cosh (R (Ω) (𝑞𝑦 + 𝑡) − 𝜙1 − 𝑟) + 1)

(√𝑀 cosh (R (Ω) (𝑞𝑦 + 𝑡) − 𝜙1 − 𝑟) + cos (𝑝𝑥 − I (Ω) (𝑞𝑦 + 𝑡)))
2 ,

(7)

where these parameters 𝑐, 𝑝, 𝑘, 𝑀, 𝑎1, 𝑎2 satisfy the following
relations

𝐴 = 𝑢
2
0,

𝑐 = 𝑘
2
,

𝑎1 =
𝑖Ω − 2𝑘𝑝 − 𝑝

2

𝑖Ω − 2𝑘𝑝 + 𝑝2 ,

𝑎2 =
𝑖Ω
∗

+ 2𝑘𝑝 − 𝑝
2

𝑖Ω∗ + 2𝑘𝑝 + 𝑝2 ,

𝑀 = 1+
𝑝
4

R2 (Ω)
.

(8)

And the complex number Ω is given as follows:

2𝑝
3
𝑢
2
0 = 𝑖Ω (𝑖Ω − 2𝑘𝑝 + 𝑝

2
) (𝑖Ω − 2𝑘𝑝 − 𝑝

2
) (𝑞 + 1) . (9)

R(Ω) represents the real part of complex Ω and I(Ω)

represents the imaginary part of complexΩ.The parameter 𝑝

defines the period of the solution structure, and 𝜙1 = ln√𝑀,
𝜙2 = ln((R2

(Ω) + (I(Ω) + 2𝑘 + 𝑝)
2
)/(R2

(Ω) + (I(Ω) + 2𝑘 −

𝑝)
2
))
1/2, and 𝜃1 = arctan(2𝑝

2R(Ω)/((2𝑘𝑝+I(Ω))
2
+R2

(Ω)−

𝑝
4
)). Obviously, 𝑀 > 1, the solution (7) has no poles, and

it is well behaved everywhere. It is a nonsingular solution.
This solution is composed of trigonometric and hyperbolic
functions. It presents a kind of interaction solutions between
trigonometrical waves and exponential waves. It is periodic
in 𝑥-direction with period 2𝜋/𝑝 and represents the localized
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oscillation. At the same time it is also a solitary wave solution
in 𝑦-direction. So, this solution is a breather-like solution. In
[23], it is also called complexiton solution. Some asymptotic
behaviors of the obtained solution (7) can be found with
R(Ω) > 0:

(𝑢, V) → (𝑢0𝑒
−𝑖(𝜏+𝜃0), 0) , as 𝑡 → +∞;

(𝑢, V) → (𝑢0𝑒
−𝑖(𝜏+𝜃0−2𝜃1), 0) , as 𝑡 → −∞.

(10)

Note that (𝑢0𝑒
−𝑖(𝜏+𝜃0−2𝜃1), 0) and (𝑢0𝑒

−𝑖(𝜏+𝜃0), 0) are two differ-
ent positions of the same fixed cycle (𝑢0𝑒

−𝑖𝜏
, 0). (𝑢0𝑒

−𝑖𝜏
, 0) is

the planewave solution to system (1).Thismeans that, in limit
𝑡 → ±∞, the solution will approach a plane wave solution,
except for some phase shift.This phenomenon shows that the
obtained solution (7) is a homoclinic wave solution. We also
can observe that this solution is exponentially decaying along
the direction of propagation 𝑦.

2.3. Rational Solution (RogueWave). In this section, we study
the rational solution from breather-like solution. Let Ω =

𝑝Ω1 and 𝑟 = 𝑖𝜋, considering the Taylor series of the functions
𝐹 and𝐺 at the point𝑝 = 0, that is, taking the longwave limits;
then we obtain the following rational solution:

𝑢 = 𝑢0𝑒
−𝑖(𝜏+𝜃0)(1−

4 (𝑖 ((I (Ω1) + 2𝑘) 𝑥 + (R2
(Ω1) − 2𝑘I (Ω1) − I2

(Ω1)) (𝑞𝑦 + 𝑡)) + 1)

((𝑥 − (𝑞𝑦 + 𝑡)I (Ω1))
2

+ (𝑞𝑦 + 𝑡)
2
R2 (Ω1) + 1/R2 (Ω1))

2𝑘 − 𝑖Ω1


2 ) ,

V =
4

(𝑥 − I (Ω1) (𝑞𝑦 + 𝑡))
2

+ R2 (Ω1) (𝑞𝑦 + 𝑡)
2

+ 1/R2 (Ω1)

−
8 (𝑥 − I (Ω1) (𝑞𝑦 + 𝑡))

2

((𝑥 − I (Ω1) (𝑞𝑦 + 𝑡))
2

+ R2 (Ω1) (𝑞𝑦 + 𝑡)
2

+ 1/R2 (Ω1))
2 ,

(11)

where 𝜏 = 𝑘𝑥 + 𝑙𝑦 + 𝑐𝑡, and Ω1 satisfy

2𝑢
2
0 = 𝑖Ω1 (𝑖Ω1 − 2𝑘)

2
(𝑞 + 1) . (12)

R(Ω1) represents the real part of complexΩ1 andR(Ω1) ̸= 0.
I(Ω1) represents the imaginary part of complex Ω1 and 𝑘 ̸=

−I(Ω1)/2. It is clear that (11) is a rational solution. It is a new
type of rational homoclinic wave solution; that is,

(𝑢, V) → (𝑢0𝑒
−𝑖(𝜏+𝜃0), 0) , as 𝑡 → ±∞. (13)

It is algebraically decaying, rather than exponentially decay-
ing. This family of solution is clearly nonsingular.

2.4. Amplitude of Rational Solution. For convenience, we
assume Ω1 = 𝑛 + 𝑑𝑖. Here 𝑛 and 𝑑 are two real parameters.
First, we consider the function 𝑢(𝑡, 𝑥, 𝑦) in (11). Let 𝑈(𝑥, 𝑦) =

|𝑢(0, 𝑥, 𝑦)|
2
𝑢
−2
0 . After calculating, five critical points of the

function 𝑈(𝑥, 𝑦) are easily obtained:

{(𝑥, 𝑦) | 𝐴
𝜖
(𝜖

2 (𝑛𝛿 − 𝑘) √𝛿2 − 1/3
3𝑛2 (𝛿2 + 1)

,
𝜖√𝛿2 − 1/3
3𝑛2 (𝛿2 + 1) 𝑞

) ,

𝐵
𝜖
(

𝜖√3 − 𝛿2 (𝑛 − 𝑑𝛿)

𝑛2 (𝛿2 + 1)
, −

𝜖√3 − 𝛿2𝛿

𝑛2 (𝛿2 + 1) 𝑞
) , 𝑂 (0, 0)} ,

(14)

where 𝛿 = (2𝑘 + 𝑑)/𝑛, 𝜖 = ±1. From the above four critical
points 𝐴

𝜖
, 𝐵
𝜖
. The existing condition of 𝐴

𝜖
is 𝛿

2
≥ 1/3 and 𝐵

𝜖

is 𝛿
2

≤ 3. Their public region is 1/3 ≤ 𝛿
2

≤ 3. Thus, (0, +∞)

can be divided into three parts by 1/3 and 3: (0, 1/3]∪(1/3, 3)∪

[3, +∞). Moreover, if 𝛿
2

→ 3 or 1/3, 𝐴
𝜖
or 𝐵
𝜖

→ 𝑂. So, we

only consider the critical point 𝑂(0, 0). After calculation, we
get

𝑆 =
𝜕
2

𝜕𝑥2 𝑈 (𝑥, 𝑦)

𝑂(0,0)
=

48 (𝛿
2

− 1)

𝑛2 (𝛿2 + 1)
2 ,

Δ =



𝜕
2

𝜕𝑥2 𝑈 (𝑥, 𝑦)
𝜕
2

𝜕𝑥𝜕𝑦
𝑈 (𝑥, 𝑦)

𝜕
2

𝜕𝑦𝜕𝑥
𝑈 (𝑥, 𝑦)

𝜕
2

𝜕𝑦2 𝑈 (𝑥, 𝑦)


𝑂(0,0)

=

(16𝑞)
2

(𝛿
2

− 1/3) (𝛿
2

− 3)

3𝑛2 (𝛿2 + 1)
4 .

(15)

Applying extreme values analysis for the function𝑈(𝑥, 𝑦),
we can obtain the following results.

(1) If 𝛿
2

∈ (0, 1/3], then 𝑆 < 0 and Δ > 0. The function
𝑈(𝑥, 𝑦) has three local extreme points: 𝑂, 𝐵

+
, and

𝐵
−
. 𝐵
𝜖
are two local minimum value points and the

local minimum value is 𝑈
𝐵
𝜖

= 0. 𝑂(0, 0) is the only
local maximum point of the function 𝑈(𝑥, 𝑦) and the
local maximum value is 𝑈

𝑂
= (4/(1 + 𝛿

2
) − 1)

2.
Clearly 𝑈

𝑂
(𝛿

2
) is monotonically decreasing with 𝛿

2
∈

(0, 1/3). So at local maximum point, if 𝛿 → 0, the
maximum amplitude of the function 𝑈(𝑥, 𝑦) → 9;
this shows that the amplitude of the rational solitary
wave is three times that of the background planewave.
From Figure 1(a), we can see that the profile is a single
hump structure. It a typical Peregrine-soliton-like
structure—ahumpand twoholes, twoholes separated
by a hump. It is a bright solitary wave solution [12].
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Figure 1: Spatial structures of the rational solution (11): (a) 𝑘 = 0, (b) 𝑘 = 0.5, (c) 𝑘 = 0.8 and 𝑢0 = 𝑙 = 1, and 𝑞 = 1/2. Curved lines drawn at
the bottom of this figure are contour lines.

(2) If 𝛿
2

∈ (1/3, 3), then 𝑆 < 0 or > 0 and Δ ≤ 0. The
function 𝑈(𝑥, 𝑦) has five critical points: 𝑂, 𝐵

𝜖
, and

𝐴
𝜖
. The point 𝑂(0, 0) is not a local extremum point.

Similarly, we can judge that the function 𝑈(𝑥, 𝑦) has
two local maximum points 𝐴

+
and 𝐴

−
and two local

minimum points 𝐵
+
and 𝐵

−
. The local maximum

value is 𝑈
𝐴
𝜖

= 1 + 1/𝛿
2 and the local minimum value

is 𝑈
𝐵
𝜖

= 0. Obviously, 𝑈
𝐵
𝜖

< 𝑈
𝑂

< 𝑈
𝐴
𝜖

. If 𝛿 → 1/3,
the maximum amplitude of the function 𝑈(𝑥, 𝑦) →

4; this shows that the amplitude of the rational
solitary wave is two times that of the background
plane wave. Since near the origin the figure has the
shape of a saddle, point 𝑂(0, 0) is a saddle point (see
Figure 1(b)). Figure 1(b) also shows that the rational
solitary wave solution 𝑈(𝑥, 𝑦) has four lumps, two
upper hills and two down holes. The contour lines
are like a four-petaled flower. It is quite different from
Figure 1(a). Comparing with Figure 1(a), we can also
think that the single hump is split into two smaller
lumps, forming a four lumps pattern. The amplitude
becomes smaller.

(3) If 𝛿
2

∈ [3, +∞), then 𝑆 > 0 and Δ > 0. The function
𝑈(𝑥, 𝑦) has three local extreme points: 𝑂, 𝐴

+
, and

𝐴
−
. 𝑂(0, 0) is the only local minimum point of the

function 𝑈(𝑥, 𝑦) and the local minimum value is
𝑈
𝑂

= (4/(1 + 𝛿
2
) − 1)

2. The local maximum value is

𝑈
𝐴
𝜖

= 1+ 1/𝛿
2 at points 𝐴

𝜖
. From Figure 1(c), we can

see that there is a deep hole under the plane wave. On
the the background plane wave, two small lumps were
separated by this deep hole. It is a dark solitary wave
solution [2]. Comparing with Figure 1(b), two dark
solitary wave solutions combine into a dark solitary
wave solution.

The analysis above indicates that the dynamics of rational
solution 𝑢(𝑡, 𝑥, 𝑦) depend on the value of the parameter 𝛿.
The points 1/3 and 3 are two critical points. The behavior of
rational solution 𝑢(𝑡, 𝑥, 𝑦) changes suddenly as the parameter
𝛿 crosses the critical point 1/3 or 3. Indeed, 𝛿 = (2𝑘 +

𝑑)/𝑛 and 𝑘 is the wave number of the background plane
wave. When 𝛿

2
= 1/3 or 3, the wave number 𝑘 is −(3𝑑 ∓

√3𝑛)/6 and −(𝑑 ∓ √3𝑛)/2, respectively. So the behavior
of 𝑢(𝑡, 𝑥, 𝑦) will change suddenly as the wave number 𝑘 is
varied; then it is said to have undergone a bifurcation [24].
At a point of bifurcation, stability will be lost. It shows that
the structure of the rational solution is instability. At the
same time, we may control the behavior of rational rogue
wave by controlling the wave number of the background
plane wave.The Nizhnik-Novikov-Veselov equation [25] also
exhibits intriguing structures regarding solitary wave.

Second, considering the real long-wave function V(𝑥, 𝑦, 𝑡)

in (11), we can find that the profile does not vary too much
in shape. Let 𝑉(𝑥, 𝑦) = V(0, 𝑥, 𝑦). After calculating, we can
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Figure 2: Spatial structures of the rational solution (11): (a) 𝑘 = 0, (b) 𝑘 = 0.5, (c) 𝑘 = 0.8 and 𝑢0 = 𝑙 = 1, and 𝑞 = 1/2. Curved lines drawn at
the bottom of this figure are contour lines.

obtain easily that the function 𝑉(𝑥, 𝑦) has three extreme
value points: 𝑂(0, 0), 𝐷

±
(±√3/𝑛, 0). At the point 𝑂(0, 0), the

value of the function 𝑉(𝑥, 𝑦) is equal to 𝑉
𝑂

= 4𝑛
2, and

the value of the function 𝑉(𝑥, 𝑦) is 𝑉
𝐷
±

= −𝑛
2
/2 at the

two points 𝐷
±
. By a similar extreme value analysis, the

point 𝑂(0, 0) is the only local maximum value point of the
function 𝑉(𝑥, 𝑦). 𝐷

+
and 𝐷

−
are two local maximum value

points of the function 𝑉(𝑥, 𝑦). The amplitude of the rational
solution V(𝑥, 𝑦, 𝑡) depends on the parameter 𝑛. Thus, by
controlling the parameter 𝑛 we can control the amplitudes of
the rational solution V(𝑥, 𝑦, 𝑡). Moreover, with the change of
the parameter 𝑛, the property of extreme value point does not
alter. So, the structure of rational solution V(𝑡, 𝑥, 𝑦) does not
change as the parameter 𝑛 is varied. Figure 2 shows the profile
of rational solution𝑉(𝑥, 𝑦). It a typical Peregrine-soliton-like
structure, a hump and two holes, two holes separated by a
hump. From Figure 2 we can also observe that the profile
does not change as the parameter 𝑘 is varied, except for the
increase or decrease of theminimumormaximumvalues and
the slight rotation of the hump orientation.

From the above analysis and numerical simulations, we
can obtain that these rational solitary waves are localized
in both time and space and decay algebraically to the
background plane wave.

3. Rational Solution of
the Standard KP Equation

The standard KP equation [2, 3, 6, 7, 26] can be written as
follows:

(𝜓
𝑡
+ 6𝜓𝜓

𝑥
+ 𝜓
𝑥𝑥𝑥

)
𝑥

+ 𝜆𝜓
𝑦𝑦

= 0, 𝜆 = ±1. (16)

It was given by Kadomtsev and Petviashvili [2, 3] to discuss
the stability of (1 + 1)-dimensional soliton to the transverse
long-wave disturbances, which is known as the KP equation.
The propagation property of solitary wave solution depends
on the sign of 𝜆 in (16).The coefficient 𝜆 is defined as follows:
𝜆 = 1 for negative dispersion and 𝜆 = −1 for positive
dispersion. When 𝜆 = −1, (16) is usually called KP-I, while
for 𝜆 = 1, it is usually called KP-II.

By the above method we can obtain the rational solitary
solution of the standard KP equation:

𝜓 (𝑥, 𝑦, 𝑡) = 8(
1

𝜉2 + 𝜂2 − 24/𝜆 (𝑞 − 𝑛)
2

−
(𝜉 + 𝜂)

2

(𝜉2 + 𝜂2 − 24/𝜆 (𝑞 − 𝑛)
2
)
2 ) ,

(17)

where 𝜉 = 𝑥 + 𝑞𝑦 + (1/2)𝜆((𝑛 − 𝑞)
2

− 2𝑞
2
)𝑡, 𝜂 = 𝑥 +

𝑛𝑦 − (1/2)𝜆((𝑛 + 𝑞)
2

− 2𝑞
2
)𝑡, and 𝑞, 𝑛 are real valued

constants. This solution is a little different from that given in
[2, 7]. It can be expressed by (17) and can be regard as the
two-wave solution about spatiotemporal variable (𝑥, 𝑦, 𝑡)

because of 𝜓(𝑥, 𝑦, 𝑡) = 𝜓(𝜉(𝑥, 𝑦, 𝑡), 𝜂(𝑥, 𝑦, 𝑡)). From (17),
this solution is clearly nonsingular with 𝜆 = −1. It is a
nonsingular rational solution. When 𝜆 = 1, the denom-
inator of this family of solution has poles. Therefore this
solution is not very well behaved. It is a singular rational solu-
tion.
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Considering the the maxima and minima for the analyt-
ical formulation 𝜓(𝑥, 𝑦, 𝑡) with 𝜆 = −1, 𝜓(𝑥, 𝑦, 0) possesses
extreme at

(𝑥, 𝑦) = (0, 0) , (±
6

𝑞 − 𝑛
, 0) . (18)

The local maximum is located at (𝑥, 𝑦) = (0, 0), and the max-
ima are (𝑞 − 𝑛)

2
/3. The local minimum is located at (𝑥, 𝑦) =

(±6/(𝑞 − 𝑛), 0), and the minima are (𝑞 − 𝑛)
2
/24. The maxima

are eight times as large as theminima.The profile is similar to
V. As the parameters 𝑞 and 𝑛 are varied, the profile does not
change.

4. Conclusions

In this paper, with the help of the Hirota method and Taylor
series (the long wave limits), the integrable Kadomtsev-Pet-
viashvili-based system has been investigated. The breather-
like solution (a pulsating mode) and rational solution are
presented. Some very interesting and valuable feature can be
observed by changing the wave number of the plane wave. To
summarize the theoretical analysis and computer simulation
from Section 2.4, we can divide the type of the short-wave
rational solution into three cases.

(i) If 𝛿
2

∈ (0, 1/3], the function 𝑢(𝑥, 𝑦, 𝑡) shows bright
solitary wave feature (see Figure 1(a)).

(ii) If 𝛿
2

∈ (1/3, 3), the function 𝑢(𝑥, 𝑦, 𝑡) shows four-
lump type solitary wave feature (see Figure 1(b)).

(iii) If 𝛿
2

∈ [3, +∞), the function 𝑢(𝑥, 𝑦, 𝑡) shows dark
solitary wave feature (see Figure 1(c)).

These analyses also show that the structures of the breather-
like and rational solutions are instable. We perhaps control
the the behavior of rational solitary wave by controlling
the parameter 𝛿. However, the long-wave rational solution
does not possess this feature. Finally, we have discussed
the structure of the rational solitary wave solution for the
standard KP equation. The singularity of the the rational
solitary wave solution depends on the sign of the parameter
𝜆. It is expected that these results may provide us with
some valuable information on the dynamics of the relevant
nonlinear sciences fields. Following these ideas in this work,
further study may be needed further to see whether system
(1) has another type of specially spatiotemporal structure of
the solutions such as the higher-order rational solitary wave
and how to find them.
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