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We consider the orbital stability of solitary traveling wave solutions of an equation describing the free surface waves of moderate
amplitude in the shallowwater regime. Firstly, we rewrite this equation inHamiltonian form and construct two invariants ofmotion.
Then using the abstract stability theorem of solitary waves proposed by Grillakis et al. (1987), we prove that the solitary traveling
waves of the equation under consideration are orbital stable.

1. Introduction

In this paper, we consider an equation for surface waves of
moderate amplitude in the shallow water regime as follows:

𝑢
𝑡
+ 𝑢
𝑥
+

3𝛼

2

𝑢𝑢
𝑥
−

3𝛼
2

8

𝑢
2
𝑢
𝑥
+

3𝛼
3

16

𝑢
3
𝑢
𝑥

+

𝛽
2

12

(𝑢
𝑥𝑥𝑥

− 𝑢
𝑥𝑥𝑡
) +

7𝛼𝛽
2

24

(𝑢𝑢
𝑥𝑥𝑥

+ 2𝑢
𝑥
𝑢
𝑥𝑥
) ,

(1)

where the parameters 𝛼 and 𝛽 denote amplitude and shal-
lowness. The nonlinear evolution equation (1) arises as an
approximation of the Euler equations [1, 2]. Based on an
equation first derived by Johnson [3], on the one hand, one
can derive a Camassa-Holm equation at a certain depth
below the fluid surface for small amplitude waves [4], on the
other hand, for the free surface, a corresponding equation
(1) can be derived for waves of moderate amplitude in the
shallow water regime. The Camassa-Holm (CH) equation is
completely integrable and bi-Hamiltonian, which possesses
soliton, peakon, and compacton solutions [5–12], especially
breaking waves; that is, the solution remains bounded but
its slope becomes unbounded [13]. Besides, the solutions of
CH equation also include global weak solutions [11, 14, 15].
The stability problems of the solutions for the CH equation
and its generalized forms were investigated [16–21], orbital
stability of smooth solitary waves, peaked solitary waves and
multisolitons were proved. As described the above, many

results for waves of small amplitude have been obtained
via the CH equation and its generalized forms. However,
it is interesting and necessary to study waves of moderate
amplitude.Therefore, the moderate amplitude wave equation
(1) was investigated and some results were obtained. For
instance, the problems of local well-posedness were con-
sidered and the existence and uniqueness of solutions were
proved [2]. Only in the special case of parameters 𝛼 = 4 and
𝛽 = √12, the orbital stability of solitary traveling waves was
proved by a method proposed by Grillakis et al. [22, 23].
Nevertheless, the stability problems of solutions for (1) are not
solved yet when parameters 𝛼 and 𝛽 take any values.

In this letter, by a solitary wave we mean a localized
traveling wave. The notion of stability is orbital stability,
which is the appropriate notion for model equations whose
solitary waves are such that the height is proportional to the
speed. Indeed, in this case the only type of stability is that of
the shape of the wave, a fact that is captured by the notion
of orbital stability, as pioneered by considerations made in
celestial mechanics. Set a solitary wave 𝑢(𝑥, 𝑡) = 𝜑(𝜉), 𝜉 =

𝑥 − 𝑐𝑡, where 𝑐 > 0 is wave speed. Substituting 𝑢(𝑥, 𝑡) = 𝜑(𝜉)
into (1), we have

(1 − 𝑐) 𝜑

+

3𝛼

2

𝜑𝜑

−

3𝛼
2

8

𝜑
2
𝜑

+

3𝛼
3

16

𝜑
3
𝜑


+

𝛽
2

12

(𝜑

+ 𝑐𝜑

) +

7𝛼𝛽
2

24

(𝜑𝜑

+ 2𝜑

𝜑

) = 0.

(2)

Hindawi Publishing Corporation
Advances in Mathematical Physics
Volume 2015, Article ID 925715, 7 pages
http://dx.doi.org/10.1155/2015/925715



2 Advances in Mathematical Physics

x

y

h0
𝜆

2a

Figure 1: Surface traveling wave.

By integration with respect to 𝜉, we obtain from (2) that
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(3)

where 𝐶 is an integration constant. Due to the solutions
considered which satisfy the property that they are localized
and that 𝜑 and its derivatives decay at infinity, in (3) the
constant of integration 𝐶 = 0.

2. Preliminaries

In (1), the so called amplitude and shallowness parameters
𝛼 and 𝛽 relate the average length 𝜆, amplitude 𝑎, and water
depth ℎ

0
satisfying 𝛼 = 𝑎/ℎ

0
> 0, 𝛽 = ℎ

0
/𝜆 > 0 (see Figure 1).

Let us now give the appropriate notion of solitary waves
of (1) and their orbital stability.

The following two quantities 𝐸 and 𝐹 are critically
important to the proof of the stability:

𝐸 (𝑢) = ∫

𝑅

(

1

2

𝑢
2
+

𝛽
2

24

𝑢
2

𝑥
)𝑑𝑥,

𝐹 (𝑢) = ∫

𝑅

(

1

2

𝑢
2
+

𝛼

4

𝑢
3
−

𝛼
2

32

𝑢
4
+

3𝛼
3

320

𝑢
5

−

𝛽
2

24

𝑢
2

𝑥
−

7𝛼𝛽
2

48

𝑢𝑢
2

𝑥
)𝑑𝑥;

(4)

these are constants of the motion; that is, along solutions
these expressions are independent of time. The role of these
integrals of motion in stability considerations was pioneered
in [16].

Definition 1. Let 0 ⩽ 𝑇 < ∞. A function 𝑢(𝑥, 𝑡) ∈ 𝐶([0, 𝑇);
𝐻
2
(𝑅)) is called a solution to (1) if it satisfies (1) in the

distribution sense on [0, 𝑇) and the quantities 𝐸(𝑢) and 𝐹(𝑢)
are conserved.

Definition 2. A solitary wave solution 𝜑 of (1) is called orbital
stable if for every 𝜖 > 0 there exists 𝛿 > 0 such that the
following holds: if 𝑢 ∈ (𝐶[0, 𝑇);𝐻

2
) is a solution of (1) for

some 𝑇 ∈ (0, +∞) with ‖𝑢
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𝐻
2 < 𝜖. (5)

Otherwise, the solution is called unstable.

Equation (1) can be rewritten as the following Hamilto-
nian form:

𝑢
𝑡
= 𝐽𝐹

(𝑢) , (6)

where 𝐽 = −(1 − (𝛽/12)𝜕2
𝑥
)
−1
𝜕
𝑥
is a skew-symmetry operator

and 𝐹(𝑢) is the Fréchet derivative of 𝐹(𝑢).
Using a theorem of Grillakis et al. [22], we deduce

the stability problem of solitary waves for (1) from the
the convexity of a scalar function, which is relative to the
conserved quantities 𝐸(𝑢) and 𝐹(𝑢). Themethod used in [22]
is described as follows.

Firstly, the following sufficient conditions (C1)–(C3) are
presented.
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(𝑅), 𝑠 > 3/2, there exists a solu-
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there exist functionals 𝐸(𝑢) and 𝐹(𝑢) which are
conserved for solutions of (1).

(C2) For every 𝑐 ∈ (1, +∞), there exists a traveling wave
solution 𝜑 ∈ 𝐻2 of (1), where 𝜑 > 0 and 𝜑

𝑥
̸= 0. The

mapping 𝑐 → 𝜑(𝑥 − 𝑐𝑡) is 𝐶1((1, +∞);𝐻
2
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(𝜑) = 0, where𝐸 and𝐹 are the variational

derivatives of 𝐸 and 𝐹, respectively.

(C3) For every 𝑐 ∈ (1, +∞), the linearized Hamiltonian
operator around 𝜑 defined by
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(7)

has exactly one negative simple eigenvalue, its kernel
is spanned by 𝜑

𝑥
, and the rest of its spectrum is

positive and bounded away from zero.

Then under conditions (C1)–(C3), the relative theorem of
stability is as follows.

Theorem 3. If the conditions (C1)–(C3) hold, then solitary
waves of (1) are orbital stable if and only if the scalar function

𝑑 (𝑐) = 𝑐𝐸 (𝜑) − 𝐹 (𝜑) (8)

is convex in a neighborhood of 𝑐.

3. Stability of Solitary Waves

In this section, we show that the conditions (C1)–(C3) of
Theorem 3 hold for (1) and then give the result of this paper.
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Lemma 4. The quantities 𝐸(𝑢) and 𝐹(𝑢) are invariants of
motion.

Proof. Multiplying both sides of (1) by 𝑢 and integrating over
the real line, we have
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proving 𝐸(𝑢) is an invariant.
To prove that 𝐹(𝑢) is conserved, the Hamiltonian struc-

ture of (1) and the skew-symmetry of 𝐽 is used:
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that is,
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proving Lemma 4.
For (C1) holds due to Lemma 4 and the existence is

proved in [24].
For (C2), by virtue of the existence in [2] and by direct

calculation of the variational derivatives of 𝐸 and 𝐹, which is
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(2) can be rewritten as

𝑐𝐸
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(𝜑) = 0, (13)

proving (C2).
For (C3), by direct calculation, we get the second order

variational derivatives of invariants 𝐸(𝑢) and 𝐹(𝑢) as follows:
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Substituting 𝐸 and 𝐹 into𝐻
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In order to prove (C3) holds, we consider the spectral
problem of 𝐻

𝑐
. We show that, for every 𝑐 > 1, the operator
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The spectral equation𝐻
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The linearized Hamiltonian operator𝐻
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second order differential operator. So its eigenvalues𝜆 are real
and simple, and its essential spectrum is given by [𝑐 − 1,∞)
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Due to the fact that the solitary wave solutions of (1) have a
unique maximum, 𝜑
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has only one zero. By Sturm-Liouville

Theorem, zero is the second eigenvalue of𝐻
𝑐
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𝑐

has exactly one negative simple eigenvalue, and the rest of the
spectrum is positive and bounded away from zero.

Under the conditions (C1)–(C3), the stability problem of
solitary waves for (1) can be transformed to the problem of
convex of the scalar function 𝑑(𝑐). We have the following
theorem.

Theorem 5. For each wave speed 𝑐 > 1, the scalar function
𝑑(𝑐) is convex in a neighborhood of 𝑐. Therefore, all solitary
wave solutions of (1) are orbital stable.
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Equation (3) can be rewritten as the following plane system:
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The first integral of the above plane system is
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where ℎ is the integral constant. Since 𝜑 → 0, 𝜑 (or 𝑦)→ 0

as 𝜉 → ∞, so the integral constant ℎ = 0. From (18), we can
get that solitary traveling wave solutions 𝜑 of (1) satisfy
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In the last equality, we use the transformation 𝜑(𝑥) = 𝜂

and employ the fact that 𝜑(𝑥) takes a unique maximum
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straightforward differentiation of 𝑑(𝑐). To prove 𝑑(𝑐) > 0,
another way is to show the existence of 𝑑(𝑐) and then 𝑑(𝑐)
is an increasing function.

Lemma 7. For any wave speed 𝑐 > 1, the derivative of 𝑑(𝑐)
exists.

Proof. It was presented in [2] that the function 𝑀(𝑐) :

[1,∞) → [0,∞) is bijective and strictly monotonically
increasing;𝑀(1) = 0 and lim

𝑐→∞
𝑀(𝑐) = ∞. Let𝐻 = 𝑀(𝑐);

by (22) we have

𝑐 = 𝑀
−1
(𝐻) = 1 +

𝛼

2

𝐻 −

𝛼
2

16

𝐻
2
+

3𝛼
3

160

𝐻
3
. (24)

Substituting𝐻 = 𝑀(𝑐) and 𝐶 = 𝑀
−1
(𝐻) into (23) yields

𝑑

(𝑐)

= ∫

𝐻

0

𝜂

12𝑓
1
(𝜂,𝑀

−1
(𝐻)) + 𝛽

2
𝑓
2
(𝜂,𝑀

−1
(𝐻))

12√𝑓
1
(𝜂,𝑀

−1
(𝐻)) 𝑓

2
(𝜂,𝑀

−1
(𝐻))

𝑑𝜂

= ∫

1

0

𝐻
2
𝜏

12𝑓
1
(𝐻𝜏,𝑀

−1
(𝐻)) + 𝛽

2
𝑓
2
(𝐻𝜏,𝑀

−1
(𝐻))

12√𝑓
1
(𝐻𝜏,𝑀

−1
(𝐻)) 𝑓

2
(𝐻𝜏,𝑀

−1
(𝐻))

𝑑𝜏,

(25)

where we havemade a transformation 𝜂 = 𝐻𝜏.The integrand
in the above integral is singular only when 𝜏 = 1 according to
the transformation made; thus the integral is well defined on
(0, 1).
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Let 𝑓(𝜏,𝐻) denote the integrand in (25). For any interval
[𝐻
1
, 𝐻
2
]with𝐻

1
> 0,∫1
0
𝑓(𝜏,𝐻)𝑑𝜏 can be regarded as a para-

meter integral. It is observed that 𝑓(⋅,𝐻) ∈ 𝐿
1
[0, 1] for all

𝐻 ∈ [𝐻
1
, 𝐻
2
] and 𝑓(𝜏, ⋅) ∈ 𝐶1[𝐻

1
, 𝐻
2
] for all 𝜏 ∈ (0, 1). By

direct calculation, we have

𝜕
𝐻
𝑓 (𝜏,𝐻) =

𝐻
2
𝜏 (1 − 𝜏)𝑁 (𝜏,𝐻, 𝛼, 𝛽)

(𝑓
1
(𝜏𝐻,𝑀

−1
𝐻)𝑓
2
(𝜏𝐻,𝑀

−1
𝐻))
3/2
,

(26)

where

𝑓
1
(𝜏𝐻,𝑀

−1
𝐻)

= 1 +

𝛽
2

12

+

𝛼

2

𝐻 −

𝛼
2

16

𝐻
2
+

3𝛼
3

160

𝐻
3
+

7𝛼𝛽
2

24

𝐻𝜏,

𝑓
2
(𝜏𝐻,𝑀

−1
𝐻)

= 𝐻 (1 − 𝜏) (

𝛼

2

−

𝛼
2

16

𝐻 (1 + 𝜏) +

3𝛼
3

160

𝐻
2
(1 + 𝜏 + 𝜏

2
)) ,

(27)

and the expression of𝑁(𝜏,𝐻, 𝛼, 𝛽) can be shown as follows:

𝑁(𝜏,𝐻, 𝛼, 𝛽)

=

1

256000

⋅ (𝛼 (110592000 + 119808000𝐻𝛼 + 8294400𝐻
2
𝛼
2

− 3801600𝐻
3
𝛼
3
+ 4924800𝐻

4
𝛼
4
− 979200𝐻

5
𝛼
5

+ 220320𝐻
6
𝛼
6
− 19440𝐻

7
𝛼
7
+ 1944𝐻

8
𝛼
8

+ 18432000𝛽
2
+ 16896000𝐻𝛼𝛽

2
− 1305600𝐻

2
𝛼
2
𝛽
2

+ 518400𝐻
3
𝛼
3
𝛽
2
+ 316800𝐻

4
𝛼
4
𝛽
2
− 66480𝐻

5
𝛼
5
𝛽
2

+ 18360𝐻
6
𝛼
6
𝛽
2
− 1620𝐻

7
𝛼
7
𝛽
2
+ 162𝐻

8
𝛼
8
𝛽
2

+ 768000𝛽
4
+ 576000𝐻𝛼𝛽

4
− 166400𝐻

2
𝛼
2
𝛽
4

+ 69600𝐻
3
𝛼
3
𝛽
4
− 7800𝐻

4
𝛼
4
𝛽
4
+ 1260𝐻

5
𝛼
5
𝛽
4

− 9216000𝐻𝛼𝜏 − 10137600𝐻
2
𝛼
2
𝜏 + 345600𝐻

3
𝛼
3
𝜏

+ 748800𝐻
4
𝛼
4
𝜏 − 504000𝐻

5
𝛼
5
𝜏 + 142560𝐻

6
𝛼
6
𝜏

− 19440𝐻
7
𝛼
7
𝜏 + 1944𝐻

8
𝛼
8
𝜏 + 66048000𝐻𝛼𝛽

2
𝜏

+ 32486400𝐻
2
𝛼
2
𝛽
2
𝜏 − 8121600𝐻

3
𝛼
3
𝛽
2
𝜏

+ 3240000𝐻
4
𝛼
4
𝛽
2
𝜏 − 347280𝐻

5
𝛼
5
𝛽
2
𝜏

+ 57240𝐻
6
𝛼
6
𝛽
2
𝜏 − 1620𝐻

7
𝛼
7
𝛽
2
𝜏 + 162𝐻

8
𝛼
8
𝛽
2
𝜏

+ 5568000𝐻𝛼𝛽
4
𝜏 + 1241600𝐻

2
𝛼
2
𝛽
4
𝜏

− 391200𝐻
3
𝛼
3
𝛽
4
𝜏 + 195200𝐻

4
𝛼
4
𝛽
4
𝜏

− 21840𝐻
5
𝛼
5
𝛽
4
𝜏 + 3780𝐻

6
𝛼
6
𝛽
4
𝜏

+ 1382400𝐻
2
𝛼
2
𝜏
2
+ 2073600𝐻

3
𝛼
3
𝜏
2

+ 345600𝐻
4
𝛼
4
𝜏
2
− 86400𝐻

5
𝛼
5
𝜏
2

+ 93960𝐻
6
𝛼
6
𝜏
2
− 11340𝐻

7
𝛼
7
𝜏
2

+ 1944𝐻
8
𝛼
8
𝜏
2
− 4377600𝐻

2
𝛼
2
𝛽
2
𝜏
2

− 1929600𝐻
3
𝛼
3
𝛽
2
𝜏
2
+ 1221600𝐻

4
𝛼
4
𝛽
2
𝜏
2

− 277680𝐻
5
𝛼
5
𝛽
2
𝜏
2
+ 50490𝐻

6
𝛼
6
𝛽
2
𝜏
2

− 675𝐻
7
𝛼
7
𝛽
2
𝜏
2
+ 162𝐻

8
𝛼
8
𝛽
2
𝜏
2

+ 10377600𝐻
2
𝛼
2
𝛽
4
𝜏
2
− 1087200𝐻

3
𝛼
3
𝛽
4
𝜏
2

+ 270200𝐻
4
𝛼
4
𝛽
4
𝜏
2
− 21840𝐻

5
𝛼
5
𝛽
4
𝜏
2

+ 3780𝐻
6
𝛼
6
𝛽
4
𝜏
2
+ 374400𝐻

3
𝛼
3
𝛽
2
𝜏
3

+ 552000𝐻
4
𝛼
4
𝛽
2
𝜏
3
− 66720𝐻

5
𝛼
5
𝛽
2
𝜏
3

+ 27000𝐻
6
𝛼
6
𝛽
2
𝜏
3
+ 1620𝐻

7
𝛼
7
𝛽
2
𝜏
3

− 162𝐻
8
𝛼
8
𝛽
2
𝜏
3
− 640800𝐻

3
𝛼
3
𝛽
4
𝜏
3

+ 208000𝐻
4
𝛼
4
𝛽
4
𝜏
3
− 1260𝐻

5
𝛼
5
𝛽
4
𝜏
3

+ 3780𝐻
6
𝛼
6
𝛽
4
𝜏
3
+ 93600𝐻

4
𝛼
4
𝛽
2
𝜏
4

+ 24480𝐻
5
𝛼
5
𝛽
2
𝜏
4
− 10530𝐻

6
𝛼
6
𝛽
2
𝜏
4

+ 1620𝐻
7
𝛼
7
𝛽
2
𝜏
4
− 162𝐻

8
𝛼
8
𝛽
2
𝜏
4

+ 40000𝐻
4
𝛼
4
𝛽
4
𝜏
4
+ 21840𝐻

5
𝛼
5
𝛽
4
𝜏
4

− 3780𝐻
6
𝛼
6
𝛽
4
𝜏
4
− 15120𝐻

5
𝛼
5
𝛽
2
𝜏
5

− 6480𝐻
6
𝛼
6
𝛽
2
𝜏
5
+ 675𝐻

7
𝛼
7
𝛽
2
𝜏
5
− 162𝐻

8
𝛼
8
𝛽
2
𝜏
5

+ 21840𝐻
5
𝛼
5
𝛽
4
𝜏
5
− 3780𝐻

6
𝛼
6
𝛽
4
𝜏
5

− 3780𝐻
6
𝛼
6
𝛽
4
𝜏
6
)) .

(28)

Therefore, there exists a positive constant 𝐾 related to 𝛼,
𝛽 and [𝐻

1
, 𝐻
2
] such that





𝜕
𝐻
𝑓 (𝜏,𝐻)





≤ 𝐾 (1 − 𝜏)

−1/2
∀ (𝜏,𝐻) ∈ (0, 1) × [𝐻

1
, 𝐻
2
] .

(29)

Denote 𝑔(𝜏) = 𝐾(1 − 𝜏)
−1/2; then 𝑔(𝜏) ∈ 𝐿

1
(0, 1). By the

theorem on differentiation of parameter integrals, we have

𝜕
𝐻
∫

1

0

𝑓 (𝜏,𝐻) 𝑑𝜏 = ∫

1

0

𝜕
𝐻
𝑓 (𝜏,𝐻) 𝑑𝜏; (30)
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note that 𝑓(𝜏, ⋅) ∈ 𝐶1[𝐻
1
, 𝐻
2
] for all 𝜏 ∈ (0, 1), by virtue of

the arbitrary of 𝐻
1
and 𝐻

2
, which ensures the existence of

derivative of 𝑑(𝑐) and

𝑑

(𝑐) = ∫

1

0

𝜕
𝐻
𝑓 (𝜏,𝐻) 𝑑𝜏 ⋅ 𝑀


(𝑐) . (31)

Lemma 7 is proved.

It is not easy to prove 𝑑(𝑐) > 0 directly, so we turn to
show the following Lemma.

Lemma 8. For wave speed 𝑐 > 1, 𝑑(𝑐) is an increasing func-
tion with respect to 𝑐.

Proof. The function 𝑀(𝑐) : [1,∞) → [0,∞) is bijective
and strictly monotonically increasing [2]; therefore, for any
wave speeds 𝑐

2
> 𝑐
1
> 1, the corresponding height of waves

𝑀(𝑐
2
) > 𝑀(𝑐

1
), we show that 𝑑(𝑐

2
) − 𝑑

(𝑐
1
) > 0.

𝑑

(𝑐
2
) − 𝑑

(𝑐
1
)

= ∫

𝑀(𝑐
2
)

0

𝜂

12𝑓
1
(𝜂, 𝑐
2
) + 𝛽
2
𝑓
2
(𝜂, 𝑐
2
)

12√𝑓
1
(𝜂, 𝑐
2
) 𝑓
2
(𝜂, 𝑐
2
)

𝑑𝜂

− ∫

𝑀(𝑐
1
)

0

𝜂

12𝑓
1
(𝜂, 𝑐
1
) + 𝛽
2
𝑓
2
(𝜂, 𝑐
1
)

12√𝑓
1
(𝜂, 𝑐
1
) 𝑓
2
(𝜂, 𝑐
1
)

𝑑𝜂

≥ ∫

𝑀(𝑐
1
)

0

𝜂

12𝑓
1
(𝜂, 𝑐
2
) + 𝛽
2
𝑓
2
(𝜂, 𝑐
2
)

12√𝑓
1
(𝜂, 𝑐
2
) 𝑓
2
(𝜂, 𝑐
2
)

𝑑𝜂

− ∫

𝑀(𝑐
1
)

0

𝜂

12𝑓
1
(𝜂, 𝑐
1
) + 𝛽
2
𝑓
2
(𝜂, 𝑐
1
)

12√𝑓
1
(𝜂, 𝑐
1
) 𝑓
2
(𝜂, 𝑐
1
)

𝑑𝜂

= ∫

𝑀(𝑐
1
)

0

𝜂(

12𝑓
1
(𝜂, 𝑐
2
) + 𝛽
2
𝑓
2
(𝜂, 𝑐
2
)

12√𝑓
1
(𝜂, 𝑐
2
) 𝑓
2
(𝜂, 𝑐
2
)

−

12𝑓
1
(𝜂, 𝑐
1
) + 𝛽
2
𝑓
2
(𝜂, 𝑐
1
)

12√𝑓
1
(𝜂, 𝑐
1
) 𝑓
2
(𝜂, 𝑐
1
)

)𝑑𝜂

≥ ∫

𝑀(𝑐
1
)

0

𝜂(

12𝑓
1
(𝜂, 𝑐
2
) + 𝛽
2
𝑓
2
(𝜂, 𝑐
2
)

12√𝑓
1
(𝜂, 𝑐
2
) 𝑓
2
(𝜂, 𝑐
2
)

−

12𝑓
1
(𝜂, 𝑐
1
) + 𝛽
2
𝑓
2
(𝜂, 𝑐
1
)

12√𝑓
1
(𝜂, 𝑐
2
) 𝑓
2
(𝜂, 𝑐
2
)

)𝑑𝜂

= ∫

𝑀(𝑐
1
)

0

𝜂((12 (𝑓
1
(𝜂, 𝑐
2
) − 𝑓
1
(𝜂, 𝑐
1
))

+ 𝛽
2
(𝑓
2
(𝜂, 𝑐
2
) − 𝑓
2
(𝜂, 𝑐
1
)))

⋅ (12√𝑓
1
(𝜂, 𝑐
2
) 𝑓
2
(𝜂, 𝑐
2
))

−1

)𝑑𝜂

= ∫

𝑀(𝑐
1
)

0

𝜂

(12 + 𝛽
2
) (𝑐
2
− 𝑐
1
)

12√𝑓
1
(𝜂, 𝑐
2
) 𝑓
2
(𝜂, 𝑐
2
)

𝑑𝜂 > 0.

(32)

Combining Lemmas 7 and 8, we obtain 𝑑(𝑐) > 0. The
proof of Theorem 5 is completed.
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