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In two-dimensional Euclidean plane, existence of second-order integrals of motion is investigated for integrable Hamiltonian
systems involving spin (e.g., those systems describing interaction between two particles with spin 0 and spin 1/2) and it has been
shown that no nontrivial second-order integrals of motion exist for such systems.

1. Introduction

In classical mechanics, existence of 𝑛 functionally indepen-
dent integrals of motion defines integrability (in Liouville
sense) of a Hamiltonian system with 𝑛 degrees of freedom.
These integrals, including the Hamiltonian itself, must be
well-defined functions on phase space and be in involution.
This concept of integrability is extended to define superinte-
grability by requiring the existence of at least one and at most
𝑛 − 1 (in order to have dynamics in the system) additional
integrals of motion. The total set of integrals of motion
must be functionally independent; however, the additional
ones are not necessarily in involution among themselves, nor
with the already existing 𝑛 integrals of motion (except the
Hamiltonian itself). All these concepts are also introduced
in quantum mechanics through well-defined linear integrals
of motion operators which are supposed to be algebraically
independent [1–3].

In quantum mechanics, superintegrable systems are of
physical interest because superintegrability entails exact solv-
ability, meaning that the bound state energy levels can be
calculated algebraically and the wave functions, expressed in
terms of polynomials in the appropriate variables, possibly
multiplied by an overall factor. It has been conjectured [3]
that all maximally (having 2𝑛 − 1 integrals of motion)
superintegrable systems are also exactly solvable and this has
been supported by many examples [3, 4].

Systematic investigation of the superintegrable systems
and their properties was initiated by the works of Smorodin-
sky, Winternitz, and collaborators in 1965 [1, 2]. Most of

the earlier work was devoted to the quadratic superintegra-
bility (i.e., with integrals of motion that are second-order
polynomials in the momenta) and directly related with the
multiseparability in two- and three-dimensional Euclidean
spaces [1, 2]. Recently an extended review article has been
published describing the current status of the subject [5].

Superintegrability properties are also investigated for
Hamiltonian systems involving particles with spin [6–11].
Systematic search for superintegrable systems with spin was
initiated in [6], where the authors considered two nonrela-
tivistic quantum particles, one with spin 1/2 and the other
with spin 0. Physically, the most interesting Hamiltonian for
such systems is

𝐻 = −
ℏ
2

2𝑚
Δ+𝑉0 ( ⃗𝑟) +

1
2
{𝑉1 ( ⃗𝑟) , (�⃗�, �⃗�)} , (1)

where {, } denotes an anticommutator and 𝜎1, 𝜎2, and 𝜎3
are the usual Pauli matrices. 𝑉0( ⃗𝑟) and 𝑉1( ⃗𝑟) are scalar and
interaction potentials, respectively.ThisHamiltonian given in
𝐸3 would describe, for instance, a low energy (nonrelativistic)
pion-nucleon interaction.

In [6] first-order integrability and superintegrability were
studied in𝐸2. Articles [8, 9]were devoted to systematic search
of first- and second-order superintegrability in 𝐸3.

In this paper we will consider Hamiltonian (1) in 𝐸2 and
investigate the existence of second-order integrals of motion
in order to classify further the superintegrable systems with
spin in 𝐸2. For simplicity, we will set the reduced mass 𝑚 of
the two-particle system equal to𝑚 = 1 and use units in which
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the Planck constant is ℏ = 1. Keeping ℏ in the Hamiltonian
and integrals of motion does not change any of the conclu-
sions. In particular 𝑉0 and 𝑉1 do not depend on ℏ. In (1) 𝐻
is a matrix operator acting on a two-component spinor and
we will decompose it in terms of the 2 × 2 identity matrix 𝐼
and 𝜎3 (the matrix 𝐼 will be dropped whenever this does not
cause confusion). 𝐿 is the angular momentum operator.

In the next section we give the first-order integrable
and superintegrable Hamiltonian systems, obtained from the
analysis of the commutativity condition [𝐻,𝑋1] = 0, where
𝑋1 is the general first-order integral of motion in 𝐸2. For
details see [6]. In Section 3, we search for the existence of
second-order integrals of motion in 𝐸2 for the two integrable
cases obtained in Section 2. Finally, in the last section we give
some conclusions.

2. First-Order Integrability and
Superintegrability in 𝐸

2

In this section let us briefly review the results obtained in
[6]. Considering that the motion is constrained to Euclidean
plane (i.e., assuming Ψ( ⃗𝑟) = Ψ(𝑥, 𝑦) and setting 𝑝3 = 0,
𝑧 = 0), we have the following Hamiltonian:

𝐻 =
1
2
(𝑝1

2
+𝑝2

2
) +𝑉0 (𝑥, 𝑦) +𝑉1 (𝑥, 𝑦) 𝜎3𝐿3

+
1
2
𝜎3 (𝐿3𝑉1 (𝑥, 𝑦))

(2)

with
𝑝1 = − 𝑖𝜕

𝑥
,

𝑝2 = − 𝑖𝜕
𝑦
,

𝐿3 = 𝑖 (𝑦𝜕
𝑥
−𝑥𝜕
𝑦
) ,

𝜎3 = (

1 0
0 −1

) .

(3)

The general first-order integral of motion to consider would
be

𝑋1 =
1
2
{F1, 𝑝1} +

1
2
{F2, 𝑝2} +F3, (4)

where
F
𝜇
= F
𝜇0 +F𝜇1𝜎3, 𝜇 = 1, 2, 3. (5)

All six functions F
𝜇] (𝜇 = 1, 2, 3 and ] = 0, 1) are

real functions of 𝑥 and 𝑦. Our aim is to find at least one
such integral of motion from the analysis of the commu-
tativity condition [𝐻,𝑋1] = 0. This condition provides 12
determining equations for the 6 functions F

𝜇], as well as
the unknown potentials 𝑉0(𝑥, 𝑦) and 𝑉1(𝑥, 𝑦). Six of the
determining equations, which are obtained from equating the
coefficients of the second-order terms to zero, give

F1] = 𝜔]𝑦+ 𝑎],

F2] = −𝜔]𝑥+ 𝑏],

] = 0, 1,

(6)

where 𝜔], 𝑎], and 𝑏] are real constants and the rest of the
determining equations are

F3],𝑥 = 𝛿],1−𝜉 [−𝑏𝜉𝑉1 − (𝜔𝜉𝑦+ 𝑎𝜉) 𝑦𝑉1,𝑥

+ (𝜔
𝜉
𝑥− 𝑏
𝜉
) 𝑦𝑉1,𝑦] ,

F3],𝑦 = 𝛿],1−𝜉 [𝑎𝜉𝑉1 + (𝜔𝜉𝑦+ 𝑎𝜉) 𝑥𝑉1,𝑥

− (𝜔
𝜉
𝑥− 𝑏
𝜉
) 𝑥𝑉1,𝑦] ,

(𝜔]𝑦+ 𝑎]) 𝑉0,𝑥 + (−𝜔]𝑥+ 𝑏]) 𝑉0,𝑦 = 𝛿],1−𝜉 (𝑥F3𝜉,𝑦

−𝑦F3𝜉,𝑥)𝑉1,

(], 𝜉) = (0, 1) .

(7)

The analysis of determining equations (7) is summarized
as follows.
(1) Superintegrable System. There exists only one first-order
superintegrable system with 𝑉1 ̸= 0:

𝐻 = −
1
2
Δ+

1
2
𝛾
2
(𝑥

2
+𝑦

2
) + 𝛾𝜎3𝐿3, 𝛾 = const. (8)

It allows an eight-dimensional Lie algebra L of first-order
integrals of motion with a basis given by

𝐿
±
= 𝑖 (𝑦𝜕

𝑥
−𝑥𝜕
𝑦
) 𝐼
±
,

𝑋
±
= (𝑖𝜕
𝑥
∓ 𝛾𝑦) 𝐼

±
,

𝑌
±
= (𝑖𝜕
𝑦
± 𝛾𝑥) 𝐼

±
,

𝐼
±
= 𝐼 ± 𝜎3.

(9)

The algebraL is isomorphic to the direct sum of two central
extensions of the Euclidean Lie algebra 𝑒(2). Consider

L ∼ 𝑒
+
(2) ⊕ 𝑒

−
(2) ,

𝑒
±
(2) = {𝐿

±
, 𝑋
±
, 𝑌
±
, 𝐼
±
} .

(10)

(2) Integrable Systems. The only integrable systems with one
integral of motion in addition to 𝐻 that we found are given
as follows.

(a) Integrable system with rotationally invariant poten-
tials:

𝑉0 = 𝑉0 (𝑟) ,

𝑉1 = 𝑉1 (𝑟) ,

𝑟 = √𝑥
2
+ 𝑦

2
,

𝑋 = (𝜔0 +𝜔1𝜎3) 𝐿3,

𝜔] = const, ] = 0, 1.

(11)
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(b) Integrable system with a 𝑥-dependent interaction
potential:

𝑉1 = 𝑉1 (𝑥) ,

𝑉0 =
𝑦
2

2
𝑉1

2
(𝑥) + 𝐹 (𝑥) ,

𝑋 = − 𝑖𝜕
𝑦
−𝜎
3
∫𝑉
1
(𝑥) 𝑑𝑥.

(12)

The above results should be understood up to gauge
transformations of the form

�̃� = 𝑈
−1
𝐻𝑈,

𝑈 = (

𝑒
𝑖𝛼 0

0 𝑒
−𝑖𝛼
) ,

𝛼 = 𝛼 (𝜅) ,

𝜅 =
𝑦

𝑥
,

(13)

which leaves Hamiltonian (2) form invariant. However, the
potentials transform accordingly. Consider

�̃�1 = 𝑉1 +
�̇�

𝑥
2 ,

�̃�0 = 𝑉0 +(1+
𝑦
2

𝑥
2)(

1
2
�̇�
2

𝑥
2 + �̇�𝑉1) .

(14)

3. Second-Order Superintegrability in 𝐸
2

The system obtained in Section 2 with a constant interaction
potential term is maximally superintegrable and hence all the
higher-order integrals of motion can be expressed in terms
of the first-order ones, given in (9). However, for integrable
systems (11) and (12) it is worth searching for the existence of
second-order integrals of motion in order to classify further
the superintegrable systems with spin in 𝐸2. In this section,
we investigate the existence of such second-order integrals of
motion.

3.1. The Potentials 𝑉0 = 𝑉0(𝑟) and 𝑉1 = 𝑉1(𝑟). For these
rotationally invariant potentials Hamiltonian (2) becomes

𝐻 =
1
2
(𝑝1

2
+𝑝2

2
) +𝑉0 +𝑉1𝜎3𝐿3, (15)

where𝑉0 and𝑉1 are functions of 𝑥
2
+𝑦

2.The general second-
order integral of motion to consider would be

𝑋2 =
1
2
{A1, 𝑝1

2
} + {A2, 𝑝1𝑝2} +

1
2
{A3, 𝑝2

2
} +𝑋1, (16)

where

A
𝜇
= A
𝜇0 +A𝜇1𝜎3, 𝜇 = 1, 2, 3, (17)

and 𝑋1 is the first-order integral of motion given in (4). All
six functionsA

𝜇] (𝜇 = 1, 2, 3 and ] = 0, 1) are real functions

of 𝑥 and 𝑦. From the commutativity condition [𝐻,𝑋2] =

0, we search for the existence of second-order integrals of
motion. The highest-order determining equations (i.e., the
determining equations, obtained by equating the coefficients
of the third-order terms to zero in the commutativity equa-
tion [𝐻,𝑋2] = 0) read

A1],𝑥 = 0,

A3],𝑦 = 0,

A1],𝑦 + 2A2],𝑥 = 0,

2A2],𝑦 +A3],𝑥 = 0,

(] = 0, 1) .

(18)

First four of the above equations imply A1] is a function of
𝑦 only and A3] is a function of 𝑥 only. Then the last four
determining equations in (18) give

A2],𝑥𝑥 = 0,

A2],𝑦𝑦 = 0,

(] = 0, 1) ,

(19)

which can immediately be integrated. Hence the general
second-order integral of motion can be expressed as

𝑋2 = G1 (𝐿3𝑝1 +𝑝1𝐿3) +G2 (𝐿3𝑝2 +𝑝2𝐿3)

+G3 (𝑝1
2
−𝑝2

2
) + 2G4𝑝1𝑝2 +𝑋1,

(20)

where G
𝜏
(𝜏 = 1, . . . , 4) are now constants and all the

determining equations, obtained by equating the coefficients
of the third-order terms to zero in the commutativity equa-
tion, are trivially satisfied. Since the potentials are rotationally
invariant, the term proportional to 𝐿23 is absent in (20) (i.e.,
it commutes with the Hamiltonian given in (15)). Notice that
the constantsG

𝜏
(𝜏 = 1, . . . , 4) are considered as

G
𝜏
= G
𝜏0 +G𝜏1𝜎3, 𝜏 = 1, . . . , 4,

F
𝜇
= F
𝜇0 +F𝜇1𝜎3, 𝜇 = 1, 2, 3.

(21)

The determining equations, obtained by equating the
coefficients of the second-order terms to zero in the commu-
tativity equation [𝐻,𝑋2] = 0, read

2𝜎3 ((G4 −G2𝑦)𝑉1 (𝑥
2
+𝑦

2
)

+ 2𝑦 [G3𝑥+𝑦 (G4 −G1𝑥−G2𝑦)]𝑉


1 (𝑥
2
+𝑦

2
))

+F1,𝑥 = 0,

(22)
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2𝜎3 ((G4 +G1𝑥)𝑉1 (𝑥
2
+𝑦

2
)

+ 2𝑥 [−G3𝑦+𝑥 (G4 +G1𝑥+G2𝑦)]

⋅ 𝑉


1 (𝑥
2
+𝑦

2
)) −F2,𝑦 = 0,

(23)

2𝜎3 ((G2𝑥+G1𝑦− 2G3) 𝑉1 (𝑥
2
+𝑦

2
)

− 2 [G3 (𝑥
2
+𝑦

2
) − 2𝑥𝑦 (G1𝑥+G2𝑦)]

⋅ 𝑉


1 (𝑥
2
+𝑦

2
)) +F1,𝑦 +F2,𝑥 = 0,

(24)

where  denotes the derivative with respect to the argument.
From (22)–(24) we obtain compatibility conditions for F1]
andF2] (] = 0, 1), which are in polar form expressed as

Γ] (𝑟
3
𝑉1,𝑟𝑟𝑟 + 7𝑟

2
𝑉1,𝑟𝑟 + 9𝑟𝑉1,𝑟)

+Λ ] (𝑟
2
𝑉1,𝑟𝑟𝑟 + 3𝑟𝑉1,𝑟𝑟 − 3𝑉1,𝑟) = 0, ] = 0, 1,

(25)

where

Γ] = G1] cos 𝜃 +G2] sin 𝜃,

Λ ] = G4] cos 2𝜃 −G3] sin 2𝜃,

] = 0, 1.

(26)

In general, (25) represents an overdetermined system of two
different equations for the potentials 𝑉1, namely,

𝑟
3
𝑉1,𝑟𝑟𝑟 + 7𝑟

2
𝑉1,𝑟𝑟 + 9𝑟𝑉1,𝑟 = 0, (27)

𝑟
2
𝑉1,𝑟𝑟𝑟 + 3𝑟𝑉1,𝑟𝑟 − 3𝑉1,𝑟 = 0, (28)

simultaneous solutions of which give

𝑉1 (𝑟) = −
𝛾1
2𝑟2

+ 𝛾2, (29)

where 𝛾1 and 𝛾2 are constants. Comparing (29) with (14)
we see that we can cancel the constant 𝛾1 by a gauge trans-
formation. Hence, we have a constant spin-orbit interaction
potential that is found in Section 2. This system is maximally
first-order superintegrable and thus all the higher-order

integrals of motion can be expressed in terms of the first-
order ones given in (9).

When Γ0 = 𝜆Γ1 and Λ 0 = 𝜆Λ 1 with 𝜆 = constant, an
exception occurs and the two equations (25) coincide. Hence,
bearing in mind that 𝑉1 does not depend on 𝜃, now (25)
implies either (27) together with Λ ] is zero, or (28) together
with Γ] is zero. Thus we have the following two cases.

Case 1. Λ ] = 0 (] = 0, 1) and

𝑉1 (𝑟) = −
1
2𝑟2

{𝛾1 +
3
2
𝛾2 + 3𝛾2 log 𝑟} + 𝛾3, (30)

where 𝛾1, 𝛾2, and 𝛾3 are constants.
Case 2. Γ] = 0 (] = 0, 1) and

𝑉1 (𝑟) =
1
2
𝑟
2
𝜒1 −

1
2𝑟2

𝜒2 +𝜒3, (31)

where 𝜒1, 𝜒2, and 𝜒3 are constants.
Let us investigate these cases in detail.

Case 1. From (22) and (23) together with (24) we obtain the
following forms ofF1] andF2] (] = 0, 1), which we present
in polar form

F1] = 𝛿],1−𝜉 [
1
4
((G1𝜉 cos 2𝜃 +G2𝜉 sin 2𝜃)

⋅ (2𝛾1 + 3𝛾2 + 4𝛾3𝑟
2
+ 6𝛾2 log 𝑟) + 6G1𝜉𝛾2 log

1
𝑟
)

−G1𝜉𝑟
2
𝛾3 + 3G2𝜉𝛾2𝜃] + 𝛾4]𝑟 sin 𝜃 + 𝛾5],

(32)

F2] = 𝛿],1−𝜉 [
1
4
((G1𝜉 sin 2𝜃 −G2𝜉 cos 2𝜃)

⋅ (2𝛾1 + 3𝛾2 + 4𝛾3𝑟
2
+ 6𝛾2 log 𝑟) + 6G2𝜉𝛾2 log

1
𝑟
)

−G2𝜉𝑟
2
𝛾3 − 3G1𝜉𝛾2𝜃] − 𝛾4]𝑟 cos 𝜃 + 𝛾6],

(33)

where 𝛾4], 𝛾5], and 𝛾6] are constants and (], 𝜉) = (0, 1).
Introducing (32) and (33) into the determining equations,
obtained by equating the coefficients of the lower-order
terms to zero in the commutativity equation, we obtain
compatibility conditions forF3] (] = 0, 1). One has

(16𝑟3 (2𝑉0,𝑟 + 𝑟𝑉0,𝑟𝑟)

+ (60𝛾1𝛾2 − 4𝛾1
2
+ 63𝛾2

2
− 24𝑟2𝛾2𝛾3 − 48𝑟

4
𝛾3

2
+ 12𝛾2 (3𝛾2 (log(

1
𝑟
) − (log 𝑟 − 5) log 𝑟) − 2𝛾1 log 𝑟)))

+(
24𝛾2𝛾5] cos 𝜃 + 72G2]𝛾2

2
𝜃 cos 𝜃 + 24𝛾2𝛾6] sin 𝜃 − 72G1]𝛾2

2
𝜃 sin 𝜃

G1] cos 𝜃 +G2] sin 𝜃
) = 0.

(34)
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The invariance of potential implies that the term inside
the last parenthesis in (34) should be a constant, and from
its form we see that it can only be the constant 0, which
implies 𝛾2 = 0. After setting 𝛾2 = 0, 𝑉0 can be obtained
from (34). However, setting 𝛾2 = 0 in (30) and considering
(14) we see that we can cancel the constant 𝛾1 by a gauge
transformation. Hence, again we have a constant spin-orbit
interaction potential.

Case 2. For this case (22) and (23) together with (24) imply
the following forms ofF1] andF2] (] = 0, 1):

F1] = 𝛿],1−𝜉 [
𝑟
4
𝜒1 + 𝜒2 + 2𝑟2𝜒3

𝑟
(G3𝜉 sin 𝜃

−G4𝜉 cos 𝜃) −
2𝑟3𝜒1
3

(G3𝜉 sin 3𝜃 −G4𝜉 cos 3𝜃)]

+𝜒4]𝑟 sin 𝜃 +𝜒5],

F2] = 𝛿],1−𝜉 [
𝑟
4
𝜒1 + 𝜒2 + 2𝑟2𝜒3

𝑟
(G3𝜉 cos 𝜃

+G4𝜉 sin 𝜃) +
2𝑟3𝜒1
3

(G3𝜉 cos 3𝜃 +G4𝜉 sin 3𝜃)]

−𝜒4]𝑟 cos 𝜃 +𝜒6],

(35)

where 𝜒4], 𝜒5], and 𝜒6] are constants and (], 𝜉) = (0, 1).
Introducing (35) into the determining equations, obtained
by equating the coefficients of the lower-order terms to
zero in the commutativity equation, we obtain compatibility
conditions forF3] (] = 0, 1). One has

Λ ] (17𝑟
8
𝜒1

2
+ 3𝜒2

2
+ 36𝑟6𝜒1𝜒3 + 3𝑟

3
(𝑉0,𝑟 − 𝑟𝑉0,𝑟𝑟))

− 6𝑟5𝜒1 (𝜒5] cos 𝜃 −𝜒6] sin 𝜃) = 0.
(36)

From this compatibility condition (36) we conclude that we
must have either 𝜒1 = 0 or 𝜒5] = 0 and 𝜒6] = 0.

If 𝜒1 = 0, then, considering (14), we can annihilate the
constant 𝜒2 in (31) by a gauge transformation and hence again
we have a constant spin-orbit interaction potential.

If 𝜒5] = 0 and 𝜒6] = 0, then (36) implies

𝑉0 (𝑟) =
17𝑟6𝜒1

2

72
+
𝜒2

2

8𝑟2
+
3
2
𝑟
4
𝜒1𝜒2 +

1
2
𝑟
2
𝜖1, (37)

where 𝜖1 is a constant. Upon introduction of this𝑉0 back into
the determining equations coming from first- and zeroth-
order terms, this forces us to set 𝜒1 = 0 in which case
we are back in the previous case with a constant spin-orbit
interaction potential.

3.2. The Potentials 𝑉0 = (𝑦
2
/2)𝑉1

2
(𝑥) + 𝐹(𝑥) and 𝑉1 = 𝑉1(𝑥).

For these potentials, Hamiltonian (2) becomes

𝐻 =
1
2
(𝑝1

2
+𝑝2

2
) +

𝑦
2

2
𝑉1

2
(𝑥) + 𝐹 (𝑥)

+𝑉1 (𝑥) 𝜎3𝐿3 +
1
2
𝜎3 (𝐿3𝑉1 (𝑥)) ,

(38)

and the general second-order integral of motion to consider
would be the one given in (16). However, by making a similar
analysis given in Section 3.1, we see that the determining
equations, obtained by equating the coefficients of the third-
order terms to zero in the commutativity equation [𝐻,𝑋2] =
0, force us to write the general form of the second-order
integral of motion as

𝑋2 = G1 (𝐿3𝑝1 +𝑝1𝐿3) +G2 (𝐿3𝑝2 +𝑝2𝐿3)

+G3 (𝑝1
2
−𝑝2

2
) + 2G4𝑝1𝑝2 +G5𝐿

2
3 +𝑋1,

(39)

whereG
𝜏
(𝜏 = 1, . . . , 5) are constants and𝑋1 is the first-order

integral of motion given in (4). These are considered as

G
𝜏
= G
𝜏0 +G𝜏1𝜎3, 𝜏 = 1, . . . , 5,

F
𝜇
= F
𝜇0 +F𝜇1𝜎3, 𝜇 = 1, 2, 3.

(40)

Notice that a term proportional to 𝐿23 is present in (39), since
it does not commute with the Hamiltonian given in (38).

The determining equations, obtained by equating the
coefficients of the second-order terms to zero in the commu-
tativity equation [𝐻,𝑋2] = 0, read

2𝜎3 ((G4 −G2𝑦)𝑉1 +𝑦 (G3 − 2G1𝑦+G5𝑦
2
)𝑉1,𝑥)

+F1,𝑥 = 0,
(41)

2𝜎3 ((G4 +G1𝑥)𝑉1 +𝑥 (G4 +G1𝑥− (G2 +G5𝑥) 𝑦)

⋅ 𝑉1,𝑥) −F2,𝑦 = 0,
(42)

2𝜎3 ((2G3 −G2𝑥−G1𝑦)𝑉1

+ (G3𝑥− (G4 + 3G1𝑥) 𝑦 + (G2 + 2G5𝑥) 𝑦
2
)𝑉1,𝑥)

−F1,𝑦 −F2,𝑥 = 0.

(43)

From (41)–(43), we obtain compatibility conditions for F1]
andF2] (] = 0, 1),

12 (G1 −G5𝑦)𝑉1,𝑥

+ 4 (G4 + 2G1𝑥− (G2 + 2G5𝑥) 𝑦)𝑉1,𝑥𝑥

+𝑥 (G4 +G1𝑥− (G2 +G5𝑥) 𝑦)𝑉1,𝑥𝑥𝑥 = 0.

(44)

Since 𝑉1 is a function of 𝑥 only, the coefficients of 𝑦 in (44)
must vanish separately (i.e., either G1 = 0 and G4 = 0 or
G2 = 0 andG5 = 0). IfG1 = 0 andG4 = 0, then (44) implies

12G5]𝑉1,𝑥 + 4 (G2] + 2G5]𝑥)𝑉1,𝑥𝑥

+𝑥 (G2] +G5]𝑥)𝑉1,𝑥𝑥𝑥 = 0, ] = 0, 1.
(45)

One of these equations, say the one with ] = 0, can be solved
for 𝑉1 and upon introducing this solution into the other
equation we obtain the following constraint on the constants:

G21
G20

=
G51
G50

= 𝜆1, (46)
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where 𝜆1 is a constant. On the other hand ifG2 = 0 andG5 =
0, then (44) implies

12G1]𝑉1,𝑥 + 4 (G4] + 2G1]𝑥)𝑉1,𝑥𝑥

+𝑥 (G4] +G1]𝑥)𝑉1,𝑥𝑥𝑥 = 0, ] = 0, 1.
(47)

Similarly, solving (47) for𝑉1 gives the following constraint on
the constants:

G11
G10

=
G41
G40

= 𝜆2, (48)

where 𝜆2 is a constant.
In both cases, the compatibility conditions for F1] and

F2] (] = 0, 1) imply the following generic form of the
interaction potential:

𝑉1 (𝑥) =
−3𝑥2𝛼1/G

2
𝜇0 + (2𝑥 + 𝜆𝑎) 𝛼2

6𝑥2 (𝑥 + 𝜆
𝑎
)
2 +𝛼3,

𝑎 = 1, 2,

(49)

where 𝛼1, 𝛼2, 𝛼3, and 𝜆𝑎 are constants and 𝜇 is either 1 or 4,
or 2 or 5.

The only exception to this generic potential occurs if we
have G

𝜇0 = 0, in which case the interaction potential 𝑉1
becomes

𝑉1 (𝑥) =
𝜁1
6𝑥2

+𝑥𝜁2 + 𝜁3, (50)

where 𝜁1, 𝜁2, and 𝜁3 are constants.
In all three cases we proceed in a similar fashion as we did

for rotationally invariant potentials. More specifically, for two
types of potentials (49) and (50), we find F1] and F2] (] =

0, 1) from (41) and (42) together with (43). Then introducing
these forms of F1] and F2] (] = 0, 1) into the determining
equations, obtained by equating the coefficients of the lower-
order terms to zero in the commutativity equation, we obtain
compatibility conditions forF3] (] = 0, 1). In order to satisfy
these compatibility conditions, either 𝜁2 must vanish in (50)
or for generic potential (49)G5 must also vanish for the case
G1 = G4 = 0 and G4 must vanish for the case G2 = G5 = 0.
Unfortunately, these equations are rather long to present here.

If 𝜁2 = 0 in (50), then, by means of gauge transformation
(14), we can annihilate the constant 𝜁1 = 0 in (50) and
have a constant spin-orbit interaction potential. If G5 = 0
in addition to G1 = G4 = 0 or G4 = 0 in addition to
G2 = G5 = 0, then we repeat the analysis from the beginning
and find the following results.

Case 1. G1 = 0,G4 = 0, andG5 = 0:

𝑉1 (𝑥) =
𝛼1
6𝑥2

+𝛼3,

𝐹 (𝑥) =
𝛼1

2

72𝑥2
+
𝑥
2
𝛼3

2

2
,

𝑉0 (𝑥, 𝑦)

=
1
72

(
𝛼1

2

𝑥
2 + 36𝑥2𝛼3

2
+

𝑦
2
(𝛼1 + 6𝑥2𝛼3)

2

𝑥
4 ) ,

(51)

where 𝛼1, 𝛼2, and 𝛼3 are constants.

Case 2. G2 = 0,G5 = 0, andG4 = 0:

𝑉1 (𝑥) = −
𝛼2
2𝑥2

+𝛼3,

𝐹 (𝑥) =
𝛼2

2

8𝑥2
+
𝑥
2
𝛼3

2

2
,

𝑉0 (𝑥, 𝑦) =
1
8
(
𝛼2

2

𝑥
2 + 4𝑥2𝛼3

2
+ 4𝑦2

(𝛼3 −
𝛼2
2𝑥2

)

2
) ,

(52)

where again 𝛼1, 𝛼2, and 𝛼3 are constants.
Notice that the potentials𝑉1(𝑥) and𝑉0(𝑥, 𝑦) given in (51)

and (52) are exactly the same (𝛼2 → −(1/3)𝛼1).

We conclude that for these two cases once again we have a
constant spin-orbit interaction potential (up to gauge trans-
formation (14)) and hence all the second-order integrals of
motion that are obtained from the analysis can be expressed
in terms of the first-order ones given in (9).

4. Conclusions

Themain result of this paper can be given as a theorem.

Theorem 1. In Euclidean plane 𝐸2, for Hamiltonians of type
(2) admitting a first-order integral, any second-order integral
can necessarily be expressed as a combination of first-order
integrals. Or, in particular, there exist no nontrivial second-
order integrals of motion of form (16) for integrable Hamilto-
nian systems (15) and (38).

This result, which is valid for the generic Hamiltonian
systems of type (2), proves that no nontrivial generic second-
order integrals of motion exist and hence carries one step
further the systematic study of the classification of integrable
and superintegrable Hamiltonian systems involving spin in
Euclidean plane 𝐸2.

In an earlier article [6] it was shown that in the presence
of spin first-order integrable and superintegrable systems
exist in 𝐸2. The superintegrable Hamiltonian of such systems
allows the separation of variables in polar and Cartesian
coordinates. Indeed, the Pauli-Schrödinger equation for them
can be exactly solved.The integrable Hamiltonians also allow
the separation of variables in polar andCartesian coordinates.
However, in order to solve them exactly the interaction
potential𝑉1(𝑟) and scalar potential𝑉0(𝑟) have to be specified.
For instance, choosing 𝑉1(𝑟) = 𝜆/𝑟

2 (𝜆 = constant) and
𝑉0(𝑟) = 𝛼𝑟

2
/2 (𝛼 = constant), the radial part of the wave

function of the Pauli-Schrödinger equation can be expressed
in terms of Laguerre polynomials.



Advances in Mathematical Physics 7

Another way of dealing with such problems is to search
for potentials admitting an additional integral of motion.
Since it was shown in [6] that there exists exactly one first-
order integral of motion for these integrable systems (see (11)
and (12)), the additional integral of motion should be higher-
order one. In this paper we search for the second-order ones
and sum up our results as Theorem 1. In a future work third-
and higher-order integrals of motion can be investigated for
such systems.

Investigation of integrability and superintegrability prop-
erties of other type of Hamiltonian systems involving spin in
Euclidean plane is in progress.
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[6] P. Winternitz and İ. Yurduşen, “Integrable and superintegrable
systems with spin,” Journal of Mathematical Physics, vol. 47, no.
10, Article ID 103509, 2006.
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dinger-Pauli equations for neutral particles,” Journal of Math-
ematical Physics, vol. 53, no. 12, Article ID 122103, 2012.

[11] A. G. Nikitin, “Laplace-Runge-Lenz vector for arbitrary spin,”
Journal of Mathematical Physics, vol. 54, no. 12, Article ID
123506, 2013.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


