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Based on the stability and orthogonal polynomial approximation theory, the ordinary, dislocated, enhancing, and random feedback
control methods are used to suppress the Neimark-Sacker bifurcation to fixed point in this paper. It is shown that the convergence
rate of enhancing feedback control and random feedback control can be faster than those of dislocated and ordinary feedback con-
trol.The random feedback controlmethod, which does not require any adjustable control parameters of themodel, just only slightly
changes the random intensity. Finally, numerical simulations are presented to verify the effectiveness of the proposed controllers.

1. Introduction

The studies of biological models gradually become one of
hot spots in nonlinear dynamics. The biological models have
great research background and actual significance; therefore,
a growing number of researchers have shown great interests
in the research of biological models. In many biological
models and practical problems, bifurcation and chaos are
undesirable behaviors. Thus, we need to control them. In
1976, a population model,

𝑥
𝑛+1

= 𝑟𝑥
𝑛
(1 − 𝑥

𝑛
) , 𝑟 ∈ [0, 4] , 𝑥 ∈ (0, 1) , (1)

is given by Ecologist May for the first time. A one-
dimensional deterministic delayed population model,

𝑥
𝑛+1

= 𝑟𝑥
𝑛
(1 − 𝑥

𝑛−1
) , 𝑟 ∈ [0, 2.28] , 𝑥 ∈ (0, 1) , (2)

is investigated by Sun et al. [1].
Recently, theHopf bifurcation has been givenmuch atten-

tion, and those works about bifurcation mainly include the
validated existence of bifurcation and its control [2–5]. The
aim of bifurcation control is to design a controller to modify
the bifurcation properties of a given nonlinear system and
then achieve the other desirable dynamical behaviors. OGY
feedback control method is studied by Ott et al. [6]. Chen
et al. have investigated the feedback control in continuous-time
systems [7, 8]. The control ofHopf bifurcation in time-delayed

neural network system is investigated byZhou et al. [9]. Bifur-
cation analysis and tracking control of an epidemic model
with nonlinear incidence rate are investigated by Yi et al. [10].
Wen and Xu studied feedback control of Hopf–Hopf interac-
tion bifurcation with development of torus solutions in high-
dimensional maps [11]. Feedback control of bifurcation and
chaos in dynamical systems is investigated byAbed andWang
[12].TheHopf bifurcation control via dynamic state-feedback
control is studied by Nguyen and Hong in [13]. Amplitude
control of limit cycle from Hopf bifurcation is studied in
[14, 15]. Hopf bifurcation control of the system based on
washout filter controller is investigated by Wu and Sun [16].
Liu and Xiao have studied complex dynamic behaviors of a
discrete-time predator-prey system [17].

However, owing to the uncertain factors of external
environment, manufacture, material, and installation, some
parameters in practical model are not constant and will
be characterized as bound random parameters [18]. The
stochastic system can accurately represent the original system
better. Therefore the study of stochastic system is more
meaningful than deterministic systems.TheHopf bifurcation
control is investigated in stochastic system with random
parameter [18–20]. It is of interest to examine the stochastic
method in biological system and explore its implications.

The rest of this letter is organized as follows. In Section 2,
the conditions for the emergence of Neimark-Sacker bifur-
cation are reviewed. In Section 3, the ordinary, dislocated,
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enhancing, and random feedback controls for controlling
Neimark-Sacker bifurcation are proposed. And numerical
simulations are presented to verify the effectiveness of the
proposed bifurcation control methods. Finally, conclusions
are given in Section 4.

2. Neimark-Sacker Bifurcation

Let us consider the logistic population model [1] for a single
species:

𝑥
𝑛+1

= 𝑟𝑥
𝑛
(1 − 𝑥

𝑛
) , (3)

where 𝑥
𝑛
stands for the population size at time 𝑛 and 𝑟 is the

growth rate. In the real environment, the population size is
determined not only by the current population size but also
by its size in the past. So, we consider

𝑥
𝑛+1

= 𝑟𝑥
𝑛
(1 − 𝑥

𝑛−1
) , (4)

where 𝑥
𝑛−1

stands for the population size at time 𝑛 − 1 and
𝑟 is the growth rate. If we introduce 𝑦

𝑛
= 𝑥
𝑛−1

in model (4),
a two-dimensional discrete-time dynamical model [2] can be
rewritten as

𝑥
𝑛+1

= 𝑟𝑥
𝑛
(1 − 𝑦

𝑛
) ,

𝑦
𝑛+1

= 𝑥
𝑛
.

(5)

By a simple computation with mathematical software, it
is straightforward to obtain the following proposition.

Proposition 1. (a) For all parameter values, model (5) has one
fixed point, 𝑂(0, 0).

(b) If 𝑟 > 1, then model (5) has, additionally, a nontrivial
positive fixed point, 𝑂∗(𝑥∗, 𝑦∗), where 𝑥∗ = 𝑦

∗

= 1 − 1/𝑟.
The Jacobian matrix of model (5) evaluated at the fixed

point (𝑥, 𝑦) is given by

𝐽 = (

𝑟 − 𝑟𝑦 −𝑟𝑥

𝑥 0

) , (6)

and the characteristic equation of Jacobian matrix of model (5)
can be written as

𝑓 (𝜆) = 𝜆
2

+ 𝑝 (𝑥, 𝑦) 𝜆 + 𝑞 (𝑥, 𝑦) = 0, (7)

where 𝑝(𝑥, 𝑦) = 𝑟𝑦 − 𝑟, 𝑞(𝑥, 𝑦) = −𝑟𝑥.

Next, according to the point of view of biology, we study
the stability of the nonzero fixed points. Note that the local
stability of a fixed point is determined by the modules of
eigenvalues of the characteristic equation at the fixed point.
From the mathematical software and Lemma 2.2 [17], the
following proposition shows the local stability of the fixed
point 𝑂∗(𝑥∗, 𝑦∗).

Proposition 2. (a) 𝑂∗(𝑥∗, 𝑦∗) is a sink if 1 < 𝑟 < 2.
(b) 𝑂∗(𝑥∗, 𝑦∗) is a source if 𝑟 > 2.
(c) 𝑂∗(𝑥∗, 𝑦∗) is not hyperbolic if 𝑟 = 2.

When the term (c) of Proposition 2 holds, we can obtain
that the eigenvalues of the matrix 𝐽 at the fixed point
𝑂
∗

(𝑥
∗

, 𝑦
∗

) are a pair of conjugate complex numbers, the
modules of which are one. The condition in term (c) of
Proposition 2 can be written as the set

𝐻
𝑐
= {(𝑟) : 𝑟 = 2} ; (8)

the fixed point𝑂∗(𝑥∗, 𝑦∗) can undergo Neimark-Sacker bifur-
cation when parameters vary in the small neighborhood of𝐻

𝑐
.

By a simple computation, all eigenvalues of (7) are

𝜆
1,2

=

1

2

± √
5

4

− 𝑟; (9)

when 𝑟 = 𝑟
𝑐
= 2, we can obtain eigenvalues

𝜆
1,2

=

1

2

±

√3

2

𝑖. (10)

Obviously, the transversality condition, the nondegeneracy
condition, and the additional nondegeneracy condition of
Neimark-Sacker bifurcation hold (see [3]). Thus, the nontrivial
fixed point loses stability in the small neighborhood of 𝐻

𝑐
.

The bifurcation diagram and phase portrait for model (5) are
depicted in Figure 1.

3. Neimark-Sacker Bifurcation Control

Without control, model (5) undergoesNeimark-Sacker bifur-
cations at the point (0.5025, 0.5025) corresponding to the
value of bifurcation parameter as 𝑟 = 2.01, as shown in
Figure 1. To control the Neimark-Sacker bifurcation to the
fixed point, the ordinary, dislocated, enhancing, and random
feedback control methods are introduced as shown in the
following.

3.1. Ordinary Feedback Control. For the ordinary feedback
control, the system variable is oftenmultiplied by a coefficient
as the feedback gain, and the feedback gain is added to
the right-hand side of the corresponding equation. Let the
feedback control input 𝑢 = 𝑘

1
(𝑦
𝑛
− 𝑦
∗

), and the controlled
model is given by

𝑥
𝑛+1

= 𝑟𝑥
𝑛
(1 − 𝑦

𝑛
) ,

𝑦
𝑛+1

= 𝑥
𝑛
+ 𝑘
1
(𝑦
𝑛
− 𝑦
∗

) ,

(11)

where 𝑘
1
is the feedback coefficient.

Theorem 3. The necessary and sufficient condition for the
controlled delayed species model (11) to be asymptotically stable
at fixed point is 𝑟 − 1 > 0, 2𝑘

1
+ 𝑟 + 1 > 0, and 𝑘

1
+ 𝑟 − 2 < 0.

Proof . The Jacobi matrix of model (11) is

𝐽 = (

1 −𝑟 + 1

1 𝑘
1

) , (12)
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Figure 1: (a) Bifurcation diagram of model (5) with bifurcation parameter 𝑟 covering [1.8, 2.25] and (b) phase portrait corresponding to
bifurcation parameter 𝑟 = 2.01. The initial values are [𝑥(0) = 0.2, 𝑦(0) = 0.2].
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Figure 2: Time history diagram of the controlled delayed species model (11) for 𝑘
1
= −0.05 and 𝑟 = 2.01; the initial values are [𝑥(0) =

0.2, 𝑦(0) = 0.2].

and the characteristic equation of Jacobi matrix 𝐽 is

𝑓 (𝜆) = 𝜆
2

− (𝑘
1
+ 1) 𝜆 + 𝑘

1
+ 𝑟 − 1 = 0; (13)

according to Lemma 2.2 [17], the eigenvalues lie inside unit
circle if and only if 𝑓(1) > 0, 𝑓(−1) > 0, and 𝑞(𝑥

∗

, 𝑦
∗

) <

1. By a simple computation, we can obtain the following
conditions: (a) 𝑟 − 1 > 0, (b) 2𝑘

1
+ 𝑟 + 1 > 0, and (c)

𝑘
1
+𝑟−2 < 0.Thus, when (a), (b), and (c) hold, the controlled

delayed speciesmodel (11) will gradually converge to the fixed
point.

Numerical simulations are used to investigate the con-
trolled delayed species model (11). From Theorem 3 we
conclude that our model (11) will gradually converge to the
point (0.5025, 0.5025) for 𝑘

1
∈ (−1.505, −0.01), when 𝑟 =

2.01. The feedback coefficient is given by 𝑘
1

= −0.05. The
initial values in model (11) are taken as [𝑥(0) = 0.2, 𝑦(0) =

0.2]. The behaviors of the states (𝑥(𝑛), 𝑦(𝑛)) of the controlled
delayed species model (11) with time 𝑛 are displayed in
Figure 2, respectively.

3.2. Dislocated Feedback Control. For the dislocated feedback
control, a system variable multiplied by a coefficient is added
to the right-hand side of another equation.Then, thismethod
is called dislocated feedback control. Let feedback control
input 𝑢 = 𝑘

2
(𝑥
𝑛
− 𝑥
∗

), and the controlled model is given by
𝑥
𝑛+1

= 𝑟𝑥
𝑛
(1 − 𝑦

𝑛
) ,

𝑦
𝑛+1

= 𝑥
𝑛
+ 𝑘
2
(𝑥
𝑛
− 𝑥
∗

) ,

(14)

where 𝑘
2
is the feedback coefficient.
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Figure 3: Time history diagram of the controlled delayed species model (14) for 𝑘
2
= −0.03 and 𝑟 = 2.01. The initial values are [𝑥(0) =

0.2, 𝑦(0) = 0.2].

Theorem 4. The necessary and sufficient condition for the
controlled delayed species model (14) to be asymptotically stable
at fixed point is 𝑟 + 𝑟𝑘

2
− 𝑘
2
− 1 > 0, 𝑟𝑘

2
+ 𝑟 − 𝑘

2
+ 1 > 0, and

𝑟𝑘
2
+ 𝑟 − 𝑘

2
− 2 < 0.

Proof . The Jacobi matrix of model (14) is

𝐽 = (

1 −𝑟 + 1

1 + 𝑘
2

0

) , (15)

and the characteristic equation of Jacobi matrix 𝐽 is

𝑓 (𝜆) = 𝜆
2

− 𝜆 + 𝑟𝑘
2
+ 𝑟 − 𝑘

2
− 1 = 0; (16)

according to Lemma 2.2 [17], the eigenvalues lie inside unit
circle if and only if 𝑓(1) > 0, 𝑓(−1) > 0, and 𝑞(𝑥

∗

, 𝑦
∗

) <

1. By a simple computation, we can obtain the following
conditions: (a) 𝑟 + 𝑟𝑘

2
− 𝑘
2
− 1 > 0; (b) 𝑟𝑘

2
+ 𝑟 − 𝑘

2
+ 1 > 0;

(c) 𝑟𝑘
2
+ 𝑟 − 𝑘

2
− 2 < 0. Thus, when (a), (b), and (c) hold, the

controlled delayed species model (14) will gradually converge
to the fixed point.

Numerical simulations are used to investigate the con-
trolled delayed species model (14). From Theorem 3, we
conclude that our model (14) will gradually converge to the
point (0.5025, 0.5025) for 𝑘

2
∈ (−1, −0.00990099), when 𝑟 =

2.01. The feedback coefficient is given by 𝑘
2

= −0.03. The
initial values in model (14) are taken as [𝑥(0) = 0.2, 𝑦(0) =

0.2]. The behaviors of the states (𝑥(𝑛), 𝑦(𝑛)) of the controlled
delayed species model (14) with time 𝑛 are displayed in
Figure 3, respectively.

3.3. Enhancing FeedbackControl. For the enhancing feedback
control, it is difficult for a complex system to be controlled by
only one feedback variable, and in such cases the feedback
gain is always very large. So we consider using multiple
variables multiplied by a coefficient as the feedback gain.This
method is called enhancing feedback control. Let feedback

control inputs 𝑢
1
= 𝑘
3
(𝑥
𝑛
− 𝑥
∗

), 𝑢
2
= 𝑘
3
(𝑦
𝑛
− 𝑦
∗

), and the
controlled model is given by

𝑥
𝑛+1

= 𝑟𝑥
𝑛
(1 − 𝑦

𝑛
) + 𝑘
3
(𝑥
𝑛
− 𝑥
∗

) ,

𝑦
𝑛+1

= 𝑥
𝑛
+ 𝑘
3
(𝑦
𝑛
− 𝑦
∗

) ,

(17)

where 𝑘
3
is the feedback coefficient.

Theorem 5. The necessary and sufficient condition for the
controlled delayed species model (17) to be asymptotically stable
at equilibrium point is −1 − 𝑘

3
+ 𝑘
2

3
+ 𝑟 + (1/𝑟)(𝑘

3
− 𝑘
2

3
) > 0,

1+3𝑘
3
+𝑘
2

3
+𝑟+(1/𝑟)(𝑘

3
+𝑘
2

3
) > 0, and 𝑘

3
+𝑘
2

3
+𝑟−(1/𝑟)𝑘

2

3
−2 < 0.

Proof. The Jacobi matrix of system (17) is

𝐽 = (

1 + 𝑘
3
(1 −

1

𝑟

) −𝑟 + 1

1 𝑘
3

) , (18)

and the characteristic equation of Jacobi matrix 𝐽 is

𝑓 (𝜆) = 𝜆
2

+ (−1 − 2𝑘
3
+

𝑘
3

𝑟

) 𝜆 + 𝑘
3
+ 𝑘
2

3
+ 𝑟 −

𝑘
2

3

𝑟

− 1 = 0;

(19)

according to Lemma 2.2 [17], the eigenvalues lie inside unit
circle if and only if 𝑓(1) > 0, 𝑓(−1) > 0, and 𝑞(𝑥

∗

, 𝑦
∗

) <

1. By a simple computation, we can obtain the following
conditions: (a) −1 − 𝑘

3
+ 𝑘
2

3
+ 𝑟 + (1/𝑟)(𝑘

3
− 𝑘
2

3
) > 0; (b)

1+3𝑘
3
+𝑘
2

3
+𝑟+(1/𝑟)(𝑘

3
+𝑘
2

3
) > 0; (c) 𝑘

3
+𝑘
2

3
+𝑟−(1/𝑟)𝑘

2

3
−2 <

0. Thus, when (a), (b), and (c) hold, the controlled delayed
species model (17) will gradually converge to the fixed point.

Numerical simulations are used to investigate the con-
trolled delayed species model (17). From Theorem 3 we
conclude that our model (17) will gradually converge to the
point (0.5025, 0.5025) for 𝑘

3
∈ (−1.980048, −0.010050), when
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Figure 4: Time history diagram of the controlled delayed species model (17) for 𝑘
3
= −0.41 and 𝑟 = 2.01. The initial values are [𝑥(0) =

0.2, 𝑦(0) = 0.2].

𝑟 = 2.01. The feedback coefficient is given by 𝑘
3
= −0.41. The

initial values in model (17) are taken as [𝑥(0) = 0.2, 𝑦(0) =

0.2]. The behaviors of the states (𝑥(𝑛), 𝑦(𝑛)) of the controlled
delayed species model (17) with time 𝑛 are displayed in
Figure 4, respectively.

3.4. Random Feedback Control. To achieve the control objec-
tives, we need to adjust the control gains for the feedback
control methods above. Thus, we use the random feedback
control method to control them. If a system variable mul-
tiplied by a random coefficient is added to the right-hand
side of equation, then this method is called random feedback
control. Let 𝑢

𝑛
= 𝑥
𝑛
− 𝑥
∗, V
𝑛
= 𝑦
𝑛
− 𝑦
∗; after applying the

coordinate transformation, the fixed point is converted to the
origin 𝑂(0, 0); then we have the following system:

𝑢
𝑛+1

= 𝑢
𝑛
− 𝑟𝑢
𝑛
V
𝑛
− (𝑟 − 1) (𝑢

𝑛
+ V
𝑛
) ,

V
𝑛+1

= 𝑢
𝑛
.

(20)

Let feedback control input 𝑢 = 𝑘(𝑢
𝑛
+ V
𝑛
); 𝑘 is a random

parameter; 𝑘 = 𝛼𝑘
4
+𝛽𝛿𝜉. Taking this controller into the right

side of the second equation in (20), the controlled delayed
species model can be written as

𝑢
𝑛+1

= 𝑢
𝑛
− 𝑟𝑢
𝑛
V
𝑛
− (𝑟 − 1) (𝑢

𝑛
+ V
𝑛
) ,

V
𝑛+1

= 𝑢
𝑛
+ (𝛼𝑘

4
+ 𝛽𝛿𝜉) 𝑢

𝑛
+ (𝛼𝑘

4
+ 𝛽𝛿𝜉) V

𝑛
,

(21)

where 𝑘
4
is the statistic parameter of 𝑘, 𝛼 and 𝛽 are the

input direction of state variable and random variable in the
controller, 𝛿 is random intensity, and 𝜉 is the random variable
defined on nonnegative set integer with the probability

density function 𝑝
𝜉
. According to the orthogonal polynomial

approximation [18–20] of discrete random function in the
Hilbert space, the response of (21) can be expressed by the
following series:

𝑢 (𝑛, 𝜉) =

𝑀

∑

𝑖=0

𝑢
𝑖
(𝑛) 𝐶
𝑖
(𝜉) ,

V (𝑛, 𝜉) =
𝑀

∑

𝑖=0

V
𝑖
(𝑛) 𝐶
𝑖
(𝜉) ,

𝑢
𝑖
(𝑛) =

𝑁

∑

𝑘=0

𝑝
𝜉
𝑢 (𝑛, 𝜉) 𝐶

𝑖
(𝜉) ,

V
𝑖
(𝑛) =

𝑁

∑

𝑘=0

𝑝
𝜉
V (𝑛, 𝜉) 𝐶

𝑖
(𝜉) ,

(22)

where 𝐶
𝑖
(𝑘) is the 𝑖th Charlier orthogonal polynomial and

𝑀 is the largest order of the polynomials we have taken.
Substituting (22) into (21), we have

𝑀

∑

𝑖=0

𝑢
𝑖
(𝑛 + 1) 𝐶

𝑖
(𝜉)

=

𝑀

∑

𝑖=0

𝑢
𝑖
(𝑛) 𝐶
𝑖
(𝜉)

− 𝑟(

𝑀

∑

𝑖=0

𝑢
𝑖
(𝑛) 𝐶
𝑖
(𝜉))(

𝑀

∑

𝑖=0

V
𝑖
(𝑛) 𝐶
𝑖
(𝜉))

− (𝑟 − 1)(

𝑀

∑

𝑖=0

𝑢
𝑖
(𝑛) 𝐶
𝑖
(𝜉) +

𝑀

∑

𝑖=0

V
𝑖
(𝑛) 𝐶
𝑖
(𝜉)) ,
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𝑀

∑

𝑖=0

V
𝑖
(𝑛 + 1) 𝐶

𝑖
(𝜉)

=

𝑀

∑

𝑖=0

𝑢
𝑖
(𝑛) 𝐶
𝑖
(𝜉) + (𝛼𝑘

4
+ 𝛽𝛿𝜉)

𝑀

∑

𝑖=0

𝑢
𝑖
(𝑛) 𝐶
𝑖
(𝜉)

+ (𝛼𝑘
4
+ 𝛽𝛿𝜉)

𝑀

∑

𝑖=0

V
𝑖
(𝑛) 𝐶
𝑖
(𝜉) .

(23)

Using the orthogonal polynomial approximation theory, the
nonlinear term in the right side of (23) can be further reduced
into a linear combination of related single polynomials. It is
written as

(

𝑀

∑

𝑖=0

𝑢
𝑖
(𝑛) 𝐶
𝑖
(𝑘))(

𝑀

∑

𝑖=0

V
𝑖
(𝑛) 𝐶
𝑖
(𝑘))

=

2𝑀

∑

𝑖=0

𝑋
𝑖
(𝑛) 𝐶
𝑖
(𝑘) .

(24)

We obtained

𝑀

∑

𝑖=0

𝑢
𝑖
(𝑛 + 1) 𝐶

𝑖
(𝜉)

=

𝑀

∑

𝑖=0

𝑢
𝑖
(𝑛) 𝐶
𝑖
(𝜉) − 𝑟

2𝑀

∑

𝑖=0

𝑋
𝑖
(𝑛) 𝐶
𝑖
(𝜉)

− (𝑟 − 1)(

𝑀

∑

𝑖=0

𝑢
𝑖
(𝑛) 𝐶
𝑖
(𝜉) +

𝑀

∑

𝑖=0

V
𝑖
(𝑛) 𝐶
𝑖
(𝜉)) ,

𝑀

∑

𝑖=0

V
𝑖
(𝑛 + 1) 𝐶

𝑖
(𝜉)

=

𝑀

∑

𝑖=0

𝑢
𝑖
(𝑛) 𝐶
𝑖
(𝜉) + (𝛼𝑘

4
+ 𝛽𝛿𝜉)

𝑀

∑

𝑖=0

𝑢
𝑖
(𝑛) 𝐶
𝑖
(𝜉)

+ (𝛼𝑘
4
+ 𝛽𝛿𝜉)

𝑀

∑

𝑖=0

V
𝑖
(𝑛) 𝐶
𝑖
(𝜉) .

(25)

The recurrence formula for Charlier polynomial is

𝜉𝐶
𝑖
(𝜉) = 𝐶

𝑖+1
(𝜉) + (𝑖 + 𝜆) 𝐶

𝑖
(𝜉) + 𝑖𝜆𝐶

𝑖−1
(𝜉) . (26)

In order to facilitate the numerical analysis of this paper,
we take 𝑀 = 1, 𝜆 = 1. Based on the orthogonality of

orthogonal polynomials, we can finally obtain the equivalent
deterministic equation:

𝑢
0
(𝑛 + 1)

= 𝑢
0
(𝑛) − 𝑟 (𝑢

0
(𝑛) V
0
(𝑛) + 𝑢

1
(𝑛) V
1
(𝑛))

− (𝑟 − 1) (𝑢
0
(𝑛) + V

0
(𝑛)) ,

V
0
(𝑛 + 1)

= 𝑢
0
(𝑛) + 𝛼𝑘

4
𝑢
0
(𝑛) + 𝛼𝑘

4
V
0
(𝑛) + 𝛽𝛿𝑢

0
(𝑛)

+ 𝛽𝛿V
0
(𝑛) ,

𝑢
1
(𝑛 + 1)

= 𝑢
1
(𝑛)

− 𝑟 (𝑢
0
(𝑛) V
1
(𝑛) + 𝑢

1
(𝑛) V
0
(𝑛) + 𝑢

1
(𝑛) V
1
(𝑛))

− (𝑟 − 1) (𝑢
1
(𝑛) + V

1
(𝑛)) ,

V
1
(𝑛 + 1)

= 𝑢
1
(𝑛) + 𝛼𝑘

4
V
1
(𝑛) + 𝛼𝑘

4
𝑢
1
(𝑛)

+ 𝛽𝛿 (2𝑢
1
(𝑛) + 𝑢

0
(𝑛)) + 𝛽𝛿 (2V

1
(𝑛) + V

0
(𝑛)) .

(27)

And the ensemble mean response of model (21) is

𝐸 [𝑢 (𝑛, 𝑘)] =

1

∑

𝑖=0

𝑢
𝑖
(𝑛) 𝐸 [𝑃

𝑖
(𝑘)] = 𝑢

0
(𝑛) ,

𝐸 [V (𝑛, 𝑘)] =
1

∑

𝑖=0

V
𝑖
(𝑛) 𝐸 [𝑃

𝑖
(𝑘)] = V

0
(𝑛) .

(28)

Here we will first discuss the influence of random feedback
controller on the Neimark-Sacker bifurcation. Next we will
analyze the Neimark-Sacker bifurcation control with random
feedback controller based on deterministic controlled model
(27). We suppose that the random intensity of the random
controller is from 0 to 0.1. In this section, let 𝛼 = −1, 𝛽 = 1,
𝑘
4

= 0.1, and 𝛿 = 0.001, respectively. Owing to the small
quantities of intensity 𝛿, the same initial conditions formodel
(5) and model (27) are given; namely, 𝑢

0
= 𝑢(0) = 0.2,

V
0

= V(0) = 0.2 and 𝑈(0) = [0.2, 0]
𝑇, 𝑉(0) = [0.2, 0]

𝑇.
The time history diagrams of the ensemble mean response of
controlled delayed species model are shown in Figure 5. By
using the same strategy we can discuss the Neimark-Sacker
bifurcation control for 𝛼 = 1, 𝛽 = ±1 and 𝛼 = −1, 𝛽 = −1

cases (not reported here).
For the random feedback control, which does not require

any adjustable feedback control parameters, we need to
slightly change the random intensity of random feedback
controller as the random intensity is very small. By means
of numerical simulations, we find that the random feedback
method to control the Neimark-Sacker bifurcation is avail-
able. Next we discuss the influence of the initial values for
random feedback control. Taking 𝑢

0
, V
0
as random initial

values covering [0, 0.5], according to numerical simulations,
we can find that random feedback control has robustness for
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Figure 5: Time history diagrams of the controlled delayed species model (21) for 𝛿 = 0.001, 𝑘
4
= 0.1. The initial values are [𝑢(0) = 0.2, V(0) =

0.2].
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Figure 6: Time history diagrams of the controlled delayed species model (21) for 𝛿 = 0.001, 𝑘
4
= 0.1. The initial values 𝑢(0) and V(0) take

random values covering [0, 0.5].

the random initial values. The time history diagrams of the
ensemble mean response of controlled delayed species model
(21) are shown in Figure 6.

4. Conclusions

In this paper, the ordinary, dislocated, enhancing, and ran-
dom feedback control strategies are studied for controlling
theNeimark-Sacker bifurcation in the delayed speciesmodel.
It is found that the convergence rate of variables of enhancing
feedback control and random feedback control can be faster
than those of dislocated feedback control and ordinary
feedback control. From Figure 5 we can find that the effect of

the random feedback controller on controlling the Neimark-
Sacker bifurcation is available. From Figure 6 we can find
that the random feedback controller has robustness for
random initial values. Furthermore, numerical simulations
are presented to verify the effectiveness of the proposed
controllers. Those methods proposed in this paper can be
extended to consider other dynamical behaviors such as the
double Neimark-Sacker bifurcation and chaos.
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