
Research Article
A Note on the Discrete Spectrum of Gaussian Wells (I):
The Ground State Energy in One Dimension

G. Muchatibaya,1 S. Fassari,2,3 F. Rinaldi,2,3 and J. Mushanyu1

1Department of Mathematics, University of Zimbabwe, P.O. Box MP167, Mount Pleasant, Harare, Zimbabwe
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The ground state energy 𝐸
0
(𝜆) of 𝐻

𝜆
= −𝑑
2
/𝑑𝑥
2
− 𝜆𝑒
−𝑥
2

is computed for small values of 𝜆 by means of an approximation of an
integral operator in momentum space. Such an approximation leads to a transcendental equation for which 𝜖

0
(𝜆) = |𝐸

0
(𝜆)|
1/2 is

the root.

1. Introduction

In this brief note, we are concernedwith the calculation of the
ground state energy of the Hamiltonian:

𝐻
𝜆
= −
𝑑
2

𝑑𝑥2
− 𝜆𝑒
−𝑥
2 (1)

with the latter being regarded as a self-adjoint operator on
the domain𝐻2,2(−∞,∞), that is, the second Sobolev space.
Its form domain 𝑄(𝐻

𝜆
) is obviously the first Sobolev space.

Although the general features of the spectrum of our
Hamiltonian are not different from those of the well-known
rectangular well, we can take advantage of some special
features of the Gaussian attractive potential to determine the
ground state of𝐻

𝜆
with great accuracy when 𝜆 is small.

From the point of view of possible applications, the
spectroscopy of such a potential might be of interest in
relation to models of “artificial atoms” in the growing field of
nanotechnology. For example, in a review article [1], a model
of an artificial atom is given by using the two-dimensional
harmonic oscillator potential. Although the latter provides
a good approximation for the lowest eigenenergies, it is
not exactly what we should expect of an atom, due to the
absence of the absolutely continuous spectrum. It is therefore
interesting to investigate the spectrum of Gaussian wells,

since the latter potentials have the typical properties of short-
range potentials but also those of the harmonic oscillator near
the bottom of the well.

2. Calculation of the Ground State Energy

As is well known to the mathematical physics community,
the Birman-Schwinger kernel is a very useful tool to study
the bound states of one-dimensional Hamiltonians with
potentials belonging to 𝑆

𝑑
= 𝐿
1
(−∞,∞; (1 + |𝑥|)

𝑑
𝑑𝑥), 𝑑 =

1, 2 (see [2–6]), and also, recently, the work of Fernández
[7, 8]. Used in combination with the Fredholm determinant
or similar perturbative arguments, the B-S kernel leads to the
well-known approximation for the ground state energy as a
function of the coupling constant 𝜆:

𝜖
0
(𝜆) =

󵄨󵄨󵄨󵄨𝐸0 (𝜆)
󵄨󵄨󵄨󵄨

1/2

=
𝜆 ‖𝑉‖1

2
−
𝜆
2

2 ‖𝑉‖1

∬𝑉(𝑥)
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 𝑉 (𝑦) 𝑑𝑥 𝑑𝑦

+ 𝑜 (𝜆
2
)

(2)

for the rather general case −𝑑2/𝑑𝑥2 − 𝜆𝑉, 𝑉(𝑥) ≥ 0, 𝑉 ∈ 𝑆
1
.

We would like to point out that a similar expansion can
also be obtained by means of the so-called Titchmarsh-Weyl
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𝑚-function [9–11]. In our specific case, it is clear that, due
to the exponential decay of the Gaussian, we could continue
the expansion without limit to get the Taylor series for 𝜖

0
(𝜆).

However, that is not what we are going to do in the following,
since we are rather interested in an approximation that could
give a better evaluation using a smaller number of terms.

Let us check how accurate (2) is in our particular case for
a certain value of the coupling constant. Setting 𝜆 = 0.1 and
omitting the error term, we get, after calculating exactly the
double integral,

󵄨󵄨󵄨󵄨𝐸0 (𝜆)
󵄨󵄨󵄨󵄨

1/2
= 0.05√𝜋 −

0.005√2𝜋

√𝜋
(3)

leading to

𝐸
0 (0.1) ≅ −6.65 × 10

−3
. (4)

It is important to note that the 𝜆2-correction term 0.005√2 is
relatively large, roughly, 7 × 10−3, which is approximately 8%
of the first term 0.05√𝜋 in the expansion. This shows that,
even for a relatively small value of the coupling constant, it
is necessary to include the 𝜆2-correction term to get a good
evaluation. Hence, as soon as 𝜆 increases, more and more
terms are required to get a correct evaluation.

By using an alternative technique, however, we have
found out that it is possible to compute the ground state
energy with greater accuracy by determining the root of a
transcendental equation.

The crucial step is to use the trace class operator 𝐵(𝜖)with
integral kernel in momentum space given by

𝐵 (𝑝, 𝑝
󸀠
; 𝜖) = (𝑝

2
+ 𝜖
2
)
−1/2 𝑉̂ (𝑝 − 𝑝

󸀠
)

(2𝜋)
1/2

(𝑝
󸀠2
+ 𝜖
2
)
−1/2 (5)

in place of the corresponding B-S kernel, following the ideas
used in [12].

After computing the Fourier transform of our specific
potential, the kernel can be rewritten as

𝐵 (𝑝, 𝑝
󸀠
; 𝜖) =

1

2√𝜋

𝑒
−𝑝
2
/4

(𝑝2 + 𝜖2)
1/2
𝑒
𝑝𝑝
󸀠
/2 𝑒

−𝑝
󸀠2
/4

(𝑝󸀠2 + 𝜖2)
1/2
. (6)

Using the Taylor expansion of the central exponential, our
trace class operator can be rewritten as an infinite sum of
rank-one operators; namely,

𝐵 (𝜖) =
1

2√𝜋

∞

∑

𝑛=0

1

2𝑙𝑙!

󵄨󵄨󵄨󵄨𝑓𝑙 (𝜖)⟩ ⟨𝑓𝑙 (𝜖)
󵄨󵄨󵄨󵄨 , (7)

where

𝑓
𝑙
(𝑝; 𝜖) =

𝑝
𝑙
𝑒
−𝑝
2
/4

(𝑝2 + 𝜖2)
1/2
. (8)

Obviously,

‖𝐵 (𝜖)‖1 =
1

2√𝜋
∫

∞

−∞

𝑑𝑝

𝑝2 + 𝜖2
=
√𝜋

2𝜖
(9)

using a well-known result for the explicit calculation of
the trace class norm of positive integral operators with
continuous kernels (see [13], page 65). Of course, apart from
the two subsets of even- and odd-labeled rank-one operators,
the operators in the series are not mutually orthogonal.
However, it is not difficult, at least conceptually, to transform
the sum of all the even-labeled (odd-labeled, resp.) rank-
one operators into an infinite sum of mutually orthogonal
projectors and a sum of nilpotent rank-one operators by
constructing an orthogonal system for the functions 𝑓

𝑙
(𝑝; 𝜖).

For example, the function𝑓
2
(𝑝; 𝜖) = 𝑝

2
𝑒
−𝑝
2
/4
/(𝑝
2
+𝜖
2
)
1/2 can

be expressed as

𝛼
2
(𝜖)

𝑒
−𝑝
2
/4

(𝑝2 + 𝜖2)
1/2
+

[𝑝
2
− 𝛼
2
(𝜖)] 𝑒
−𝑝
2
/4

(𝑝2 + 𝜖2)
1/2

, (10)

where

𝛼
2 (𝜖) =

(2𝜋)
1/2

󵄩󵄩󵄩󵄩𝑓0 (𝜖)
󵄩󵄩󵄩󵄩

2

2

− 𝜖
2
. (11)

It is immediate to check that the second summand in (10) is
orthogonal to the first.

If we are interested in the case of small 𝜆’s, for which the
ground state is the only bound state, a fairly good evaluation
of the ground state energy can be obtained by neglecting
all the nilpotent operators and taking only the first rank-
one operator |𝑓

0
(𝜖)⟩⟨𝑓

0
(𝜖)| among the diagonal rank-one

operators, since the normof𝑓
0
(𝜖) is the only one that diverges

as 𝜖 → 0
+
. Then, in place of the correct equation det (𝐼 −

𝜆𝐵(𝜖)) = 0 determining the eigenvalues 𝜖
𝑙
(𝜆), we can use the

much simpler equation:

det [𝐼 − 𝜆

2√𝜋

󵄨󵄨󵄨󵄨𝑓0 (𝜖)⟩ ⟨𝑓0 (𝜖)
󵄨󵄨󵄨󵄨 [1 − 𝜆𝑀 (𝜖)]

−1
] = 0, (12)

where𝑀(𝜖) = 𝐵(𝜖) − (1/2√𝜋)|𝑓
0
(𝜖)⟩⟨𝑓

0
(𝜖)|. By taking only

the 0th term in the expansion of [1 − 𝜆𝑀(𝜖)]−1, (12) reduces
to

𝜆

2√𝜋

󵄩󵄩󵄩󵄩𝑓0 (𝜖)
󵄩󵄩󵄩󵄩

2

2
=
𝜆

2√𝜋
∫

∞

−∞

𝑒
−𝑝
2
/2

𝑝2 + 𝜖2
𝑑𝑝 = 1. (13)

The latter integral has been used in relation to the calculation
of the eigenvalues of the Hamiltonian of the harmonic
oscillator perturbed by the rational interaction 𝜆𝑥2/(1+𝑔𝑥2)
(see [14–16]). Its explicit value, as a function of 𝜖, is

𝜋

𝜖
exp(𝜖

2

2
) erfc( 𝜖

√2

) . (14)

Using such an approximation, the equation for the ground
state reads

𝜖

𝜆
=
𝜋

𝜖
exp(𝜖

2

2
) erfc( 𝜖

√2

) . (15)

Using Matlab software, the above equation (15) is solved
for 𝜖
0
(𝜆) for different values of 𝜆; the ground state energy
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𝐸
0
(𝜆) is then determined. In the case of 𝜆 = 0.1, we obtain
𝐸
0
(0.1) = −6.89617 × 10

−3. This value is more accurate than
that previously determined by taking the first two terms in
the perturbation expansion of (2).

Of course, an even more accurate evaluation can be
obtained by including the first order term in the series
defining [1 − 𝜆𝑀(𝜖)]−1.Then, the equation reads

𝜆

2√𝜋

󵄩󵄩󵄩󵄩𝑓0 (𝜖)
󵄩󵄩󵄩󵄩

2

2
+
𝜆
2

4𝜋

∞

∑

𝑛=1

(𝑓
0 (𝜖) , 𝑓2𝑙 (𝜖))

2

22𝑙 (2𝑙)!
= 1. (16)

It would be possible to write (16) almost explicitly by means
of (6) and (9) in [14], where the integrals

∫

∞

0

𝑝
2𝑙 exp (−𝑝2)
1 + 𝑔𝑝2

𝑑𝑝 (17)

are thoroughly investigated. However, we have chosen to use
a slightly different strategy that enables us to improve the
accuracy of our calculations without increasing heavily the
mathematical complexity. Essentially, it is sufficient to take
only the first two even-labeled rank-one operators in series
(7) defining the trace class operator 𝐵(𝜖). As a consequence
of (10), the second even rank-one operator can be written as

1

16√𝜋
[𝛼
2

2
(𝜖)
󵄨󵄨󵄨󵄨𝑓0⟩ ⟨𝑓0

󵄨󵄨󵄨󵄨

+ 𝛼
2 (𝜖) (

󵄨󵄨󵄨󵄨𝑓0⟩ ⟨𝑓2

󵄨󵄨󵄨󵄨󵄨
+ [𝑓
2
⟩ ⟨𝑓
0

󵄨󵄨󵄨󵄨) +
󵄨󵄨󵄨󵄨󵄨
𝑓
2
⟩ ⟨𝑓
2

󵄨󵄨󵄨󵄨󵄨
] ,

(18)

where we have omitted the 𝜖 dependence of the functions to
make the notation less heavy and denoted the second sum-
mand in (10) by 𝑓

2
. As we have anticipated, it is reasonable to

neglect the two nilpotent operators in (18) since their norm
goes like√𝜖 and, therefore, is small when 𝜆 is small. This can
be shown as follows:

𝛼
2 (𝜖)

16√𝜋

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑓0⟩ ⟨𝑓2

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
≤
𝛼
2 (𝜖)

16√𝜋

󵄩󵄩󵄩󵄩𝑓0
󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩
𝑓
2

󵄩󵄩󵄩󵄩󵄩2
. (19)

Using the explicit formulae for 𝛼
2
(𝜖) and 𝑓

2
, the latter

becomes

1

16√𝜋
[
(2𝜋)
1/2

󵄩󵄩󵄩󵄩𝑓0
󵄩󵄩󵄩󵄩2

− 𝜖
2 󵄩󵄩󵄩󵄩𝑓0
󵄩󵄩󵄩󵄩2
]
󵄩󵄩󵄩󵄩󵄩
𝑓
2

󵄩󵄩󵄩󵄩󵄩2

=
√𝜖

16√𝜋

[
[

[

√2 exp (−𝜖2/4)

√erfc (𝜖/√2)

− 𝜖√𝜋 exp(𝜖
2

4
)√erfc( 𝜖

√2

)
]
]

]

[√𝜋 (1 + √2𝜖
2
)

−

2𝜖 exp (−𝜖2/2)

erfc (𝜖/√2)
]

1/2

(20)

which proves our claim. Of course, the norm of |𝑓
2
⟩⟨𝑓
2
|,

namely, the quantity inside the square root in the last factor

E0(𝜆)

−0.08

−0.06

−0.04

−0.02

0.00

0.2 0.40.30.10.0

Figure 1: 𝐸
0
(𝜆) versus 𝜆.

Table 1: The ground state energy for various values of the coupling
constant.

𝜆 𝐸
0
(𝜆)

0.01 −7.7447596 × 10
−5

0.05 −1.835472435 × 10
−3

0.1 −6.902786581 × 10
−3

0.15 −1.467219033 × 10
−3

0.2 −2.474052522 × 10
−2

of (20), is not small in 𝜖 but becomes small because of
the smallness of the coupling constant by which it must be
multiplied. Therefore, the second symmetric eigenstate can
only be created when the coupling constant exceeds a certain
threshold.

As a consequence of our estimates, the more accurate
transcendental equation is obtained by simply taking account
of the term involving 𝛼2

2
(𝜖). Although the algebra is a bit

lengthy, there is no difficulty in the determination of the
new transcendental equation required. We give its final form
omitting the intermediate steps:

𝜖 (
1

𝜆
+
𝜖
2

25/2
)

=
√𝜋

2
[(1 +

𝜖
4

8
) exp(𝜖

2

2
) erfc( 𝜖

√2

)

+

𝜖
2 exp (−𝜖2/2)

4𝜋 erfc (𝜖/√2)
] .

(21)

Solving the above equation using Matlab for various small
values of 𝜆, for which the truncation is satisfactory, leads to
the values of 𝐸

0
(𝜆) shown in Figure 1 (with some particular

values singled out in Table 1) for each value of 𝜆 in the interval
[0, 0.2].

Using a Sleign2 algorithm (see [17]) for the calculation
of eigenvalues of one-dimensional Schrödinger operators for
the case of 𝜆 = 0.1, a value of 𝐸

0
(0.1) = −0.006903033148

is determined; the method developed in this paper produces
a value of 𝐸

0
(0.1) = −0.006902786581 which is a fairly good

agreement.
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Remark. Since the solution 𝜖
0
(𝜆) of (21) is near zero, where

both the Gaussian and the complementary error function
in the last term of the right hand side of the equation are
close to one, such a term does not represent a problem in
the numerical computation using Matlab. However, if one is
interested in the solution for greater values of 𝜆, it is advisable
to recast (18) into a slightly different form eliminating the
ratio exp (−𝜖2/2)/ erfc (𝜖/√2), which does become of the type
0/0, numerically speaking, very quickly due to the fast decay
of both functions.

The results presented in both Table 1 and Figure 1 com-
plete the analysis of this paper. The natural continuation
of this work would be to investigate the spectroscopy for
the one-dimensional Hamiltonian for greater values of 𝜆,
for which additional bound states appear. Furthermore, we
should use the same technique to compute the ground state
in two dimensions, even though we expect to deal with
slightly different integrals. Our preliminary calculations lead
us to believe that our technique should work also for the
case of an anisotropic Gaussian well. As is well known, the
three-dimensional situation is quite different since we have
the existence of a coupling constant threshold even for the
ground state energy. Nevertheless, we believe we should be
able to determine such a threshold and the ground state
energy also in that case.
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