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We adapt themethod of direct scaling analysis developed earlier for single-particle Andersonmodels, to the fermionicmultiparticle
models with finite or infinite interaction on graphs. Combined with a recent eigenvalue concentration bound for multiparticle
systems, the new method leads to a simpler proof of the multiparticle dynamical localization with optimal decay bounds in a
natural distance in the multiparticle configuration space, for a large class of strongly mixing random external potentials. Earlier
results required the random potential to be IID.

1. Introduction

1.1. The Model: A Brief Historical Overview. Analysis of
localization phenomena in multiparticle quantum systems
with nontrivial interaction in a random environment is a
relatively new direction in the Anderson localization theory,
where during almost half a century, since the seminal paper
by Anderson [1], most efforts were concentrated on the study
of disordered systems in the single-particle approximation,
that is, without interparticle interaction. While in numer-
ous physical models such an approximation seems fairly
reasonable, it was pointed out already in the first works
by Anderson that the multiparticle models presented a real
challenge.

The number of results on multiparticle localization
obtained in the physical and mathematical communities
still remains rather limited. We do not review here results
obtained by physicists (cf. [2, 3]), based on the methods of
theoretical physics and considered as firmly established by
the physical community. The rigorous mathematical results
on multiparticle localization obtained so far (cf., e.g., [4–7])
apply to 𝑁-particle systems with arbitrary, but fixed 𝑁 > 1,
and the range of parameters (such as the amplitude of the
disorder and/or the proximity to the edge(s) of the spectrum)
is rapidly degrading as𝑁 → ∞.

In this paper, we study spectral properties of the multi-
particle random Hamiltonians of the form

H (𝜔) = H
0
+ 𝑔V (𝜔) + U, 𝑔 ∈ R, (1)

describing 𝑁 > 1 fermionic particles in the configuration
spaceZ assumed to be a finite or countable graph. For clarity,
we present first our method in the particular case where
Z = Z1 and then describe how to adapt the arguments
to more general graphs Z with polynomial growth of balls
(cf. Section 8). In (1), H

0
is a finite-difference operator

representing the kinetic energy, for example, the nearest-
neighbor discrete negative Laplacian (−Δ), U is the operator
of multiplication by the interaction potential x → U(x), and
V(𝜔) is the operator ofmultiplication by the random function

x → V (x; 𝜔) = 𝑉 (𝑥
1
; 𝜔) + ⋅ ⋅ ⋅ + 𝑉 (𝑥

𝑁
; 𝜔) , (2)

where 𝑉 : Z × Ω → R is a random field relative to some
probability space (Ω,F,P). 𝑔 > 0 is a parameter measuring
the amplitude of disorder. (All notations are explained in
detail in Section 2.)

We consider only the restriction ofH(𝜔) to the fermionic
subspace. The bosonic subspace can be treated essentially in
the same way.
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1.2.Motivation forThisWork. The twomost popularmethods
of the rigorous Anderson localization theory, the Multiscale
Analysis developed in [8–11] and the Fractional Moments
Method developed in [12, 13], start with the analysis of the
Green functions (GFs) of a given random operator, and
then one has to translate the upper bounds on the GFs
obtained for a fixed energy (cf. [8, 11–13]) or in an energy
interval (cf. [8, 10]) into the language of the eigenfunctions
(EFs) and eigenfunction correlators (EFCs). In a prior work
[14] we proposed an alternative approach, called the Direct
Scaling Analysis of eigenfunctions, which focuses essentially
on the eigenfunctions in finite domains of the configuration
space, from the very beginning. It keeps some important
advantages of the MSA, namely, a greater tolerance than in
FMM to lower regularity of the disorder, and is close in spirit
to the KAM (Kolmogorov-Arnold-Moser) approach, which
often requires a tedious inductive scheme. In fact, work [14]
has been inspired by the KAM approach to quasi-periodic
Hamiltonians proposed earlier by Sinai [15]. Compared to the
KAM method, the DSA has a simpler structure of the scale
induction, similar to that of theMSA, although it also inherits
somewhat weaker probabilistic bounds typical of the MSA.

Furthermore, as was said, there are two kinds of theMSA:
with a fixed energy (FEMSA) and with a variable energy
(VEMSA); the latter is often referenced to as the energy-
interval MSA, for it treats the decay properties of the Green
functions in an entire interval of energies at once.TheFEMSA
is slightly simpler than VEMSA in the single-particle case,
but in the realm of multiparticle random Hamiltonians with
a nontrivial interaction, the variable-energy variant of the
(multiparticle) MSA is considerably more complex. Some of
the components of the VEMPMSA are simply eliminated
with the (MP)DSA approach, and the counterparts of some
other components become quite elementary. A good example
of such kind is Lemma 21 (see Section 4.3), the proof of
which is very simple and fits in a few lines, while its analog
in the variable-energy MPMSA (cf., e.g., [4, Lemma 3]) is
substantially more involved.

This constatation has been the principal motivation for
the present work. A reader familiar with the techniques of
the papers [4, 16, 17] can see that the multiparticle variant
of the DSA (MPDSA) from the present paper is much closer
in its logical structure to the FEMSA, yet it leads directly to
the VEMSA-type decay bounds on the entire eigenbases in
arbitrarily large finite domains.

In preprint [18], which has been a starting point for the
present paper, we gave the first proof of exponential decay of
multiparticle eigenfunctions in presence of an infinite-range
interaction decaying at infinity at a fractional-exponential
rate, 𝑟 → e−𝑟

𝜁

, 0 < 𝜁 < 1. In a recent work [7], Aizenman
and Warzel, further developing the techniques of [6], proved
fractional-exponential decay of EF correlators (EFCs) for
subexponentially decaying interactions of infinite range. Due
to the logical structure of the FMM, the decay analysis of
the eigenfunctions is subordinate to that of the EFCs, and
this explains why [7] established only a subexponential decay
of eigenfunctions. The DSA is free from this limitation, and
this allows us to prove a genuine exponential decay of the

multiparticle EFs even in the case where the interaction decay
is subexponential.

1.3. Novelty. Apart from simplifications of the Multiparticle
Multiscale Analysis (MPMSA) developed in [4], the novelty
of this paper is that the external random potential is not
necessarily IID (with independent and identically distributed
values) but is strongly mixing. Earlier publications, including
[19], required the common external random potential acting
on the particles to be IID.

1.4. Structure of the Paper. The structure of the paper is as
follows:

(i) The principal assumptions andmain results are stated
in Sections 2.4–2.6.

(ii) The deterministic techniques of scaling analysis are
presented in Section 3.

(iii) In Section 4, we treat first the case of finite-range
interactions, in order to present the logical structure
and the methodological advantages of the MPDSA in
the most transparent way.

(iv) In Section 7, our analysis is adapted to the interac-
tions of infinite range.

(v) Sections 5 and 6 are devoted to the derivation of
spectral and dynamical localization from the final
results of the MPDSA.

2. Preliminaries, Assumptions,
and Main Results

2.1. Configurations of Indistinguishable Particles in Z1. In the
first part of this paper, we work with configurations of 𝑁 ≥
1 quantum particles in the one-dimensional lattice, Z =

Z1. In quantum mechanics, particles of the same kind are
considered indistinguishable; more precisely, depending on
the nature of the particles, the wave functions describing
𝑁 > 1 particles have to be either symmetric (Bose-Einstein
quantum statistics) or antisymmetric (Fermi-Dirac quantum
statistics). We choose here the fermionic case; this gives rise
to slightly simpler notations and constructions.

For clarity, we use often boldface symbols for the objects
related to the multiparticle systems.

Quantum states of an 𝑁-particle fermionic system in Z

are elements of the Hilbert spaceHN
=H𝑁,−, formed by all

square-summable antisymmetric functions Ψ : Z𝑁
→ C,

with the inner product ⟨⋅ | ⋅⟩ inherited from the Hilbert
space ℓ2(Z𝑁

) = (H1
)
⊗𝑁. In this particular case where

the “physical” configuration space is one-dimensional, H𝑁

admits a simple representation which we will use.
First, note that any antisymmetric function

x = (𝑥
1
, . . . , 𝑥

𝑁
) → Ψ (𝑥

1
, . . . , 𝑥

𝑁
) (3)

vanishes on all hyperplanes {x : 𝑥
𝑖
= 𝑥

𝑗
}, 1 ≤ 𝑖 < 𝑗 ≤ 𝑁.

Further, any function defined on the “positive sector”ZN
>
=

{(𝑥
1
, . . . , 𝑥

𝑁
) : 𝑥

1
> 𝑥

2
> ⋅ ⋅ ⋅ > 𝑥

𝑁
} admits a unique
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antisymmetric continuation to ZN
:= Z𝑁. An orthonormal

basis inHN can be chosen in the usual form

Φa (x) =
1

√𝑁!

∑

𝜋∈S𝑁

(−1)
𝜋

𝑁

⨂

𝑗=1

1
𝑎
𝜋−1(𝑗)
, (4)

where a ∈ZN with #{𝑎
1
, . . . , 𝑎

𝑁
} = 𝑁 and 1

𝑎
is the indicator

function of the single-point set {𝑎}. HereS
𝑁
is the symmetric

group acting inZ𝑁 by permutations of the particle positions,
𝜋(a) = (𝑎

𝜋
−1
(1)
, . . . , 𝑎

𝜋
−1
(𝑁)
), and (−1)𝜋 ∈ {+1, −1} denotes

the parity of the permutation 𝜋. It is readily seen thatHN is
unitarily isomorphic to the Hilbert space ℓ2(ZN

>
) of square-

summable functions on ZN
>
; equivalently, one can consider

square-summable functions on the setZN
≥
= {𝑥

1
≥ ⋅ ⋅ ⋅ ≥ 𝑥

𝑁
}

vanishing on the boundary ZN
=
= {x ∈ ZN

≥
: ∃𝑖 ̸= 𝑗, 𝑥

𝑖
=

𝑥
𝑗
}. Indeed, the isomorphism is induced by the bijection

between the orthonormal bases {Φa} and {1a}:

Φa ←→ 1a = 1
𝑎1
⊗ ⋅ ⋅ ⋅ ⊗ 1

𝑎𝑁
, a ∈ZN

>
. (5)

The subspace HN is invariant under any operator commut-
ing with the action of the symmetric groupS

𝑁
.

An advantage of the above representation is that ZN
>

inherits its explicit, natural graph structure from Z𝑁. For
more general graphs Z, one has to resort to the general
construction of the so-called symmetric powers of graphs; see
the details in Section 8.

2.2. Fermionic Laplacians. Any unordered finite or countable
connected graph (G,E) with the set of vertices G and the
set of edges E is endowed with the canonical graph distance
(𝑥, 𝑦) → dG(𝑥, 𝑦) (defined as the length 𝑓 the shortest
path 𝑥  𝑦 over the edges) and with the canonical graph
Laplacian ΔZ:

(ΔG𝑓) (𝑥) = ∑

⟨𝑥,𝑦⟩

(𝑓 (𝑦) − 𝑓 (𝑥))

= −𝑛G (𝑥) 𝑓 (𝑥) + ∑

⟨𝑥,𝑦⟩

𝑓 (𝑦) ;

(6)

here ⟨𝑥, 𝑦⟩ denotes a pair of nearest neighbors, and 𝑛G(𝑥)
is the coordination number of the point 𝑥 in G, that is, the
number of its nearest neighbors.

In particular, one can take G = Z𝑁 (or a subgraph
thereof) with the edges ⟨𝑥, 𝑦⟩ formed by vertices 𝑥, 𝑦 with
|𝑥 − 𝑦|

1
:= |𝑥

1
− 𝑦

1
| + ⋅ ⋅ ⋅ + |𝑥

𝑁
− 𝑦

𝑁
| = 1. In other words,

the vector norm | ⋅ |
1
induces the graph distance on Z𝑁. The

Laplacian on Z𝑁, which we will now denote by Δ, can be
written as follows:

Δ =

𝑁

∑

𝑗=1

(

𝑗−1

⨂

𝑖=1

1(𝑖)) ⊗ Δ(𝑗) ⊗ (
𝑁

⨂

𝑘=𝑗+1

1(𝑘)) , (7)

where 1(𝑖) is the identity operator acting on the 𝑖th variable
and Δ(𝑗) is the one-dimensional negative lattice Laplacian in
the 𝑗th variable:

(Δ
(𝑗)
𝑓) (𝑥

𝑗
) = −2𝑓 (𝑥

𝑗
) + 𝑓 (𝑥

𝑗
− 1) + 𝑓 (𝑥

𝑗
+ 1) ,

𝑥
𝑗
∈ Z.

(8)

The restriction to the subspace HN of antisymmetric func-
tions can be equivalently defined in terms of functions
supported by the positive sector ZN

>
, hence vanishing on its

borderZN
=
. Indeed, the matrix elements of Δ in the basisΦa

can be nonzero only for pairsΦa,Φb with |a−b|1 = 1, so that,
for some 𝑗 ∈ [1,𝑁], |𝑎

𝑗
− 𝑏

𝑗
| = 1, while for all 𝑖 ̸= 𝑗, 𝑎

𝑖
= 𝑏

𝑖
.

If a, b ∈ ZN
>
, then ⟨Φa|Δ|Φb⟩ = (1/𝑁!)⟨1a|Δ|1b⟩. If, say,

a ∈ZN
=
, then the respective matrix element of the Laplacian’s

restriction to ZN
>

with Dirichlet boundary conditions on
ZN

=
vanishes, and so does the function Φa (which is no

longer an element of the basis in HN). Therefore, up to a
constant factor, the restriction of the 𝑁-particle Laplacian
to the fermionic subspace HN is unitarily equivalent to the
standard graph Laplacian onZN

>
. From this point on, we will

work with the latter.
It will be convenient in the course of the scaling analysis to

use a different kind of metric onZN
>
⊂ Z𝑁, the max-distance

defined by

𝜌 (x, y) = max
1≤𝑗≤𝑁

dZ (𝑥𝑗, 𝑦𝑗) , (9)

and to work with the balls relative to the max-distance,

B
𝐿
(x) = {y : 𝜌 (x, y) ≤ 𝐿} =

𝑁

⨉

𝑗=1

𝐵
𝐿
(𝑥

𝑗
) . (10)

Here 𝐵
𝐿
(𝑥) = [𝑥 − 𝐿, 𝑥 + 𝐿] ∩ Z.

In the positive sector ZN
>
, the above factorization of 𝜌-

balls is subject to the condition that the RHS of (10) is itself a
subset of the positive sectorZN

>
(but the inclusion “⊂” always

holds true). Considering configurations x = {𝑥
1
, . . . , 𝑥

𝑛
}

as subsets of Z, one can define the distance between two
configurations x ∈Z(n)

>
and x ∈Z(n)

>
in a usual way:

dist (x, x) = min
𝑢∈x

min
V∈x
|𝑢 − V| . (11)

Lemma 1. Let x ∈ ZN
>
be a union of two subconfigurations

x ∈ Z(n)
>

and x ∈ Z(n)
>

, such that dist(x, x) > 2𝐿. Then
the following identity holds true:

B(𝑁)

𝐿
(x) = B(𝑛


)

𝐿
(x) × B(𝑛


)

𝐿
(x) . (12)

The proof is straightforward and will be omitted.
The graph distance dZN

>
will be useful in some geomet-

rical constructions and definitions, referring to the graph
structure inherited fromZN.

Given a subgraph Λ ⊂ ZN
>
, we define its internal, exter-

nal, and the so-called graph (or edge) boundary, in terms
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of the canonical graph distance (below Λ𝑐 stands for the
complement of Λ):

𝜕
−
Λ = {y ∈ Λ : dZN

>
(y,Λ𝑐) = 1} ,

𝜕
+
Λ = 𝜕

−
Λ

𝑐

𝜕Λ = {(x, y) ∈ Λ × Λ𝑐 : dZN
>
(x, y) = 1} .

(13)

We also define the occupation numbers of a site 𝑦 in
the 1-particle configuration space relative to a configuration
x = {𝑥

1
, . . . , 𝑥

𝑁
}. Namely, define a function nx : Z → N by

nx(𝑦) = #{𝑗 : 𝑥
𝑗
= 𝑦}, 𝑦 ∈ X.

2.3. Multiparticle Fermionic Hamiltonians. Given a finite
subsetΛ ⊂ZN

>
, letΣ(H

Λ
) be the spectrumof the operatorH

Λ

andG
Λ
(𝐸) = (H

Λ
−𝐸)

−1 its resolvent.Thematrix elements of
resolvents for𝐸 ∉ Σ(H

Λ
), in the canonical delta-basis, usually

referred to as theGreen functions, are denoted byG
Λ
(x, y; 𝐸).

In the context of random operators, the dependence upon
the element 𝜔 ∈ Ω will be often omitted for brevity, unless
required or instructive. Similar notations will be used for
infinite Λ.

Given a real-valued functionW : ZN
>
→ R, we identify

it with the operator of multiplication by W and consider the
fermionic𝑁-particle random Hamiltonian

H (𝜔) = H
0
+W, (14)

where H
0
is a second-order finite-difference operator, for

example, the negative graph Laplacian (−Δ). Furthermore, in
our model the potential energy is random:

W (x) =W (x; 𝜔) = 𝑔V (x; 𝜔) + U (x) , (15)
where 𝑔V(⋅; 𝜔) is the external random potential energy of the
form

𝑔V (x; 𝜔) = 𝑔𝑉 (𝑥
1
; 𝜔) + ⋅ ⋅ ⋅ + 𝑔𝑉 (𝑥

𝑁
; 𝜔) , (16)

of amplitude 𝑔 > 0, and𝑉 : Z ×Ω → R is a random field on
Z relative to a probability space (Ω,F,P). The expectation
relative to the measure P will be denoted by E[⋅]. Our
assumptions on 𝑉 are listed below (cf. (W1)–(W3)). See also
Remark 4where how (W1)–(W3) can be relaxed is explained.

Further, U is the interaction energy operator; for nota-
tional brevity, we assume that it is generated by a two-body
interaction potential 𝑈,

U (x) = ∑
𝑖 ̸=𝑗

𝑈(

𝑥
𝑖
− 𝑥

𝑗


) , (17)

satisfying one of hypotheses (U0)-(U1) (see below).
Note that, without loss of generality, if ‖H

0
‖ < ∞

and 𝑉 is a.s. bounded, then the random operator has a.s.
bounded norm; hence its spectrum is a.s. covered by some
bounded interval 𝐼 ⊂ R. In Remark 3, we explain that
the boundedness of the potential is not crucial for the
spectral localization, although the statement of the result
on the dynamical localization is to be slightly modified for
unbounded potentials.

One can also consider higher-order finite-difference
operators H

0
; this requires only minor technical modifica-

tions.

2.4. Assumptions on the Random Potential. We formulate the
assumptions in the general situation where the 1-particle
configuration space is a graphZwith graph-distance dZ; this
includes the caseZ = Z1.

We assume that the random field 𝑉 : Z × Ω → R

is (possibly) correlated, but strongly mixing; this includes of
course the IID potentials treated earlier in [4, 6]. Let

𝐹
𝑉,𝑥
(𝑡) = P {𝑉 (𝑥; 𝜔) ≤ 𝑡} , 𝑥 ∈Z (18)

be the marginal probability distribution functions (PDF) of
the random field 𝑉 and

𝐹
𝑉,𝑥
(𝑡 | F

̸=𝑥
) := P {𝑉 (𝑥; 𝜔) ≤ 𝑡 | F

̸=𝑥
} (19)

the conditional distribution functions (CDF) of the random
field 𝑉 given the sigma-algebra F𝑉

̸=𝑥
generated by random

variables {𝑉(𝑦; 𝜔), 𝑦 ̸= 𝑥}. Our assumptions on correlated
potentials are as follows:

(W1) The marginal CDFs are uniformly Lipschitz continu-
ous: for some 𝐶 ∈ (0, +∞) and all 𝑠 ∈ (0, 1]

sup
𝑥∈Z

sup
𝑎∈R

[𝐹
𝑉,𝑥
(𝑎 + 𝑠 | F

𝑉

̸=𝑥
) − 𝐹

𝑉,𝑥
(𝑎 | F

𝑉

̸=𝑥
)] ≤ 𝐶𝑠. (20)

The LHS of (20) is a conditional probability, hence, a
random variable, so (20) holds P-a.s.

To formulate the next assumption, introduce the follow-
ing notation: given a subset Λ ⊂ Z, we denote by F𝑉

Λ
the

sigma-algebra generated by the values of the random poten-
tial {𝑉(𝑥; 𝜔), 𝑥 ∈ Λ}.

(W2) (Rosenblatt strong mixing) For any pair of subsets 𝐵,
𝐵

⊂ Z with dZ(𝐵


, 𝐵


) ≥ 𝐿 ≥ 1, any events E

∈

F𝑉

𝐵
 , E

∈ F𝑉

𝐵
 and some 𝐶 > 0


P {E


∩E


} − P {E


}P {E


}

≤ e−𝐶 ln2𝐿

. (21)

One can easily check that, for any 𝑝 > 0, 𝛼 ∈ (1, 2), some
𝜗 ∈ (0, 1), 𝑎 > 0, and 𝐿

0
∈ N large enough,

e−𝐶 ln2(𝐿0)𝛼
𝑘

< ((𝐿
0
)
𝛼
𝑘

)

−𝑎𝑝(1+𝜃)
𝑘

, 𝑘 ≥ 0. (22)

The rate of decay of correlations indicated in the RHS of
(22) is required to prove dynamical localization bounds with
decay rate of EF correlators faster than polynomial, and it can
be relaxed to a power-law decay, if one aims to prove only a
power-law decay of EF correlators.

Assumptions (W1)-(W2) are sufficient for the proof of
spectral and strong dynamical localization in multiparticle
systems. In particular, the role of (W1) is to guarantee
the eigenvalue concentration (EVC) estimates used in the
MPMSA scheme. However, it was discovered in [4, 6] that
the traditional EVC estimates do not provide all necessary
information for efficient decay bounds on the eigenfunctions
of multiparticle operators. More precisely, conventional EVC
bounds seem so far insufficient for the proof of the exponen-
tial decay of eigenfunctions and EF correlators with respect
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to a norm in the configuration space of 𝑁-particle systems,
starting from 𝑁 = 3. For this reason, we proposed earlier
[20] a new method for comparing spectra of two strongly
correlated multiparticle subsystems and improved the EVC
estimate from [4]. For the newmethod to apply, one needs an
additional assumption on the random potential field which
we will describe now.

First, introduce the following notations. Given a finite
subset 𝑄 ⊂ Z, we denote by 𝜉

𝑄
(𝜔) the sample mean of the

random field 𝑉 over 𝑄,

𝜉
𝑄
(𝜔) := |𝑄|

−1
∑

𝑥∈𝑄

𝑉 (𝑥, 𝜔) , (23)

and define the “fluctuations” of𝑉 relative to the samplemean,
𝜂
𝑥
:= 𝑉(𝑥, 𝜔)−𝜉

𝑄
(𝜔),𝑥 ∈ 𝑄. Denote byF

𝑄
the sigma-algebra

generated by {𝜂
𝑥
, 𝑉

𝑦
: 𝑥 ∈ 𝑄, 𝑦 ∉ 𝑄}.

We will assume that the random field 𝑉 fulfills the
following condition:

(W3) There exist𝐶
, 𝐴


, 𝑏


∈ (0, +∞) such that for any finite

subset 𝑄 ⊂Z of cardinality |𝑄| and anyF
𝑄
-measur-

able function 𝜆 and all 𝑠 ∈ (0, 1]

P {𝜉
𝑄
(𝜔) ∈ [𝜆 (𝜔) , 𝜆 (𝜔) + 𝑠]} ≤ 𝐶


|𝑄|

𝐴


𝑠
𝑏


. (24)

In the particular case of a Gaussian IID field, for example,
with zero mean and unit variance, it is well-known from the
standard courses of probability that 𝜉

𝑄
is independent of the

“fluctuations” 𝜂
𝑥
, so it is Gaussian with variance |𝑄|−1 (if

𝑉(𝑥; 𝜔) has unit variance) that its probability density 𝑝
𝑄
is

bounded, although ‖𝑝
𝑄
‖
∞
∼ |𝑄|

1/2
→ ∞ as |𝑄| → ∞.

Property (W3) has been recently proven for a larger class of
IID potentials (cf. [21]).

Specifically, (W3) has been established in [21] for IID ran-
dom potentials with marginal probability measure 𝜇 which
admits a representation of the form 𝜇 = 𝜇

1
∗ 𝜇

2
, where 𝜇

2
is

an arbitrary probability measure onR and 𝜇
1
is supported by

some bounded interval [𝑎, 𝑏] and admits probability density
𝜌
1
(⋅) which fulfills the following condition:

0 < 𝜌
∗
≤ 𝜌

1 (𝑡) ≤ 𝜌 < ∞,

𝜌


1
(𝑡)

𝜌
1
(𝑡)
≤ 𝐶

1
< ∞,

∀𝑡 ∈ (𝑎, 𝑏) .

(25)

A prototypical example is the uniform distribution on [𝑎, 𝑏].

2.5. Assumptions on the Interaction Potential. We assume that
the interaction potential 𝑈 generating the interaction energy
U satisfies one of the following decay conditions:

(U0) There exists 𝑟
0
< ∞ such that

𝑈 (𝑟) = 0, ∀𝑟 ≥ 𝑟
0
. (26)

(U1) There are some 𝐶 ∈ (0, +∞), 𝛿 ∈ (0, 1/14), and 𝜁 ∈
(0, 𝛿/(1 + 𝛿)) such that

|𝑈 (𝑟)| ≤ 𝐶e−𝑐𝑟
1−𝜁

, ∀𝑟 ≥ 0. (27)

Naturally, (U0) ⇒ (U1). We will prove the multiparticle
localization first under the strongest assumption (U0) (lead-
ing to a simpler proof), to illustrate the general structure of
the DSA procedure, and then extend the proof to the infinite-
range interactions satisfying (U1).

2.6. Main Results

Theorem 2. Assume that a bounded random field 𝑉 fulfills
conditions (W1)–(W3), and the interactionU fulfills one of the
conditions (U0) and (U1). There exists 𝑔

0
∈ (0, +∞) such that

for |𝑔| ≥ 𝑔
0
the following holds true.

(A) With probability one, the fermionic operator H(𝜔) =
−Δ + 𝑔V(𝜔) + U has pure point spectrum and all
its eigenfunctions Ψ

𝑗
(𝜔) are exponentially decaying at

infinity: for each Ψ
𝑗
, some x̂

𝑗
, and all x with 𝜌(x̂

𝑗
, x)

large enough,


Ψ

𝑗
(x, 𝜔) ≤ e−𝑚𝜌(x̂𝑗,x), 𝑚 > 0. (28)

(B) For some 𝐶, 𝑎, 𝑐 > 0 and any x, y ∈ZN
>

E[sup
𝑡∈R


⟨1y

e−i𝑡H(𝜔)

1x⟩

] ≤ 𝐶e−𝑎 ln

1+𝑐
𝜌(x,y)
. (29)

Consequently, for any finite subset K ⊂ZN
>

E[sup
𝑡∈R


e(𝑎/2) ln

1+𝑐Xe−i𝑡H(𝜔)1K

] < ∞, (30)

where XK is the operator of multiplication by the
function x → (𝜌(K, x) + 1).

Remark 3. The assumption of boundedness of the random
potential is inessential for the proof of spectral localization
(exponential decay of all eigenfunctions) and for the analog
of the decay bound (29) on eigenfunction correlators in
arbitrary large but finite subset Λ ⊂ ZN

>
of the 𝑁-particle

configuration space (cf. Corollary 27).Without any condition
on the rate of decay of the tail probabilities P{|𝑉(𝑥; 𝜔)| ≥ 𝑠}
as 𝑠 → +∞, the propagator e−i𝑡H(𝜔) in (29)-(30) has to be
replaced with 𝑃

𝐼
(H(𝜔))e−i𝑡H(𝜔), where 𝐼 ⊂ R is an arbitrary

bounded interval, and 𝑃
𝐼
(H(𝜔)) is the spectral projection for

H(𝜔) on 𝐼.

Remark 4. Exponential spectral localization can be proved
without condition (W3), with (W1) relaxed to Hölder conti-
nuity. Indeed, one can use the EVCbound from [4, Lemma 2],
valid for the pairs of balls distant in the so-called Hausdorff
pseudo-metric dH in the multiparticle configuration space,
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defined as follows: for the configurations x = {𝑥
1
, . . . , 𝑥

𝑁
},

y = {𝑦
1
, . . . , 𝑦

𝑁
},

dH (x, y) := max [max
𝑖

dZ (𝑥𝑖, y) , max
𝑖

dZ (𝑦𝑖, x)] , (31)

where

dZ (𝑥, y) = min
𝑗

dZ (𝑥, 𝑦𝑗) . (32)

In this case, the decay bounds on the eigenfunction correla-
tors would also be established with respect to dH replacing
the max-distance 𝜌:

E[sup
𝑡∈R


⟨1y

e−i𝑡H(𝜔)

1x⟩

] ≤ 𝐶 (x) e−𝑎 ln

1+𝑐dH(x,y)
. (33)

Observe that the RHS bound is not uniform as in (29) but
depends upon x; this is an artefact of the EVC bounds based
on the Hausdorff distance (cf. [4, 6, 7, 17]). Of course, the
roles of x and y in the LHS of (33) are similar, so the factor
𝐶(x) in the RHS can be replaced by 𝐶(y) or, more precisely,
by some function 𝐶

(diam (x) ∧ diam (y)). As to the proofs,
they require only minor notational modifications, for they
adapt easily to any kind of pseudometric in the 𝑁-particle
configuration space for which an EVC bound of the general
form (64) can be proved, with some ℎ

𝐿
(𝑠) ≤ 𝐶𝐿

𝐴
𝑠
𝑛, 𝐶,𝐴 ∈

(0, +∞), and 𝑏 ∈ (0, 1].

3. Deterministic Bounds

3.1. Geometric Resolvent Inequality. The most essential part
of the Direct Scaling Analysis concerns the finite-volume
approximations H

Λ
(𝜔) of the random Hamiltonian H(𝜔),

acting in finite-dimensional spacesH
Λ
, withΛ ⊂ZN

>
, |Λ| ≡

card Λ < ∞. We define

H
Λ (𝜔) := 1

Λ
H (𝜔) 1Λ ↾HΛ, (34)

where the indicator function 1
Λ
is identifiedwith the operator

of multiplication by 1
Λ
.H
Λ
is a bounded, finite-dimensional

Hermitian operator, so its spectrum Σ(H
Λ
) is real.

Operator (−Δ) can be represented as follows:

−Δ = −𝑛ZN + ∑

⟨x,y⟩
(Γxy + Γyx) ,

(Γxy𝑓) (x) := 𝛿xy𝑓 (y) ,
(35)

and 𝛿xy is the Kronecker symbol.
Recall that we denote byG

Λ
(𝐸) = (H

Λ
−𝐸)

−1 the resolvent
of H
Λ
and by G(x, y; 𝐸) the matrix elements thereof in the

standard delta-basis (the Green functions).
The so-called Geometric Resolvent Inequality (GRI) for

the Green functions can be easily deduced from the second
resolvent identity (we omit 𝐸 for brevity):

GB𝐿 (x, y)



≤ 𝐶
ℓ

max
k∈𝜕−Bℓ(x)


GBℓ(x) (x, k)


max

k∈𝜕+Bℓ(x)


GB𝐿 (k


, y) ,

(36)

where

𝐶
ℓ
=
𝜕Bℓ

(k) ≤ 𝐶 (𝑁) ℓ
𝑁
. (37)

See, for example, [22]. Clearly, (36) implies the inequality


G

𝐵𝐿
(x, y)

≤ (𝐶
ℓ
max

𝜌(x,k)=ℓ


GBℓ(x) (x, k)


) max

𝜌(u,k)≤ℓ+1


GB𝐿 (k


, y) .

(38)

Sometimes we use another inequality stemming from (36):


GB𝐿 (x, y; 𝐸)



≤ 𝐶
ℓ


GBℓ(u) (𝐸)


max

k:𝜌(u,k)≤ℓ+1


GB𝐿 (k, y; 𝐸)


.

(39)

Similarly, for the solutions 𝜓 of the eigenfunction equation
H𝜓 = 𝐸𝜓 one has, with x ∈ B

ℓ
(u),

𝜓 (x)
 ≤ 𝐶ℓ


GBℓ(x) (𝐸)


max

y:𝜌(x,y)≤ℓ+1
𝜓 (y)

 , (40)

provided that 𝐸 is not an eigenvalue of the operatorHBℓ(u).

3.2. Dominated Decay Bounds for the Green Functions and
Eigenfunctions. The analytic statements of this subsection
apply indifferently to any discrete Schrödinger operators, on
fairly general graphs, regardless of their single- or multiparti-
cle structure of the potential energy. To avoid any confusion,
in this subsection we denote the underlying graph by G; in
applications to 𝑁-particle models in Z, one has to set G =
ZN

>
.

Definition 5. Fix an integer ℓ ≥ 0 and a number 𝑞 ∈ (0, 1).
Consider a finite connected subgraph Λ ⊂ G and a ball
𝐵
𝑅
(𝑢) ⊊ Λ. A function 𝑓 : 𝐵

𝑅
(𝑢) → R

+
is called (ℓ, 𝑞)-

dominated in 𝐵
𝑅
(𝑢) if for any ball 𝐵

ℓ
(𝑥) ⊂ Λ

𝑅
(𝑢) one has

𝑓 (𝑥) ≤ 𝑞 max
𝑦:d(𝑥,𝑦)≤ℓ

𝑓 (𝑦) . (41)

Lemma 6. Let be given integers 𝐿 ≥ ℓ ≥ 0 and a number
𝑞 ∈ (0, 1). If 𝑓 : Λ → R

+
on a finite connected graph Λ is

(ℓ, 𝑞)-dominated in a ball 𝐵
𝐿
(𝑥) ⊊ Λ, then

𝑓 (𝑥) ≤ 𝑞
⌊(𝐿+1)/(ℓ+1)⌋

M (𝑓, 𝐵)

≤ 𝑞
(𝐿−ℓ)/(ℓ+1)

M (𝑓, 𝐵) ,

M (𝑓, Λ) := max
𝑥∈Λ

𝑓 (𝑥)
 .

(42)

Proof. The claim follows from (41) by induction (“radial
descent”):

𝑓 (𝑥) ≤ 𝑞M (𝑓, 𝐵ℓ+1) ≤ ⋅ ⋅ ⋅ ≤ 𝑞
𝑗
M (𝑓, 𝐵

𝑗(ℓ+1)
) ≤ ⋅ ⋅ ⋅

≤ 𝑞
⌊(𝐿+1)/(ℓ+1)⌋

M (𝑓, 𝐵) .

(43)
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Lemma 7. Let Λ be a finite connected graph and 𝑓 : Λ×Λ →
R

+
, (𝑥, 𝑥) → 𝑓(𝑥, 𝑥), a function which is separately (ℓ, 𝑞)-

dominated in 𝑥 ∈ 𝐵
𝑟
(𝑢


) ⊊ Λ and in 𝑥 ∈ 𝐵

𝑟
(𝑢


) ⊊ Λ, with

d(𝑢, 𝑢) ≥ 𝑟 + 𝑟 + 2. Then

𝑓 (𝑢

, 𝑢


) ≤ 𝑞

⌊(𝑟

+1)/(ℓ+1)⌋+⌊(𝑟


+1)/(ℓ+1)⌋

M (𝑓, 𝐵)

≤ 𝑞
(𝑟

+𝑟

−2ℓ)/(ℓ+1)

M (𝑓, 𝐵) .

(44)

Proof. Fix any point 𝑦 ∈ 𝐵
𝑟

+1
(𝑢


) and consider the func-

tion

𝑓
𝑦
 : 𝑦


→ 𝑓 (𝑦


, 𝑦


) (45)

which is (ℓ, 𝑞)-dominated in 𝐵
𝑟
(𝑢


) ⊊ Λ, so by Lemma 6,

𝑓
𝑦
 (𝑢


) = 𝑓 (𝑢


, 𝑦


) ≤ 𝑞

⌊(𝑟

+1)/(ℓ+1)⌋

M (𝑓, Λ × Λ) . (46)

Now introduce the function �̃�
𝑢
 : 𝑦


→ 𝑓(𝑢


, 𝑦


) which is

(ℓ, 𝑞)-dominated in 𝐵
𝑟
(𝑢


) ⊊ Λ and bounded by the RHS of

(46). Applying again Lemma 6, the claim follows.

The relevance of the above notions and results is illus-
trated by Lemma 10, stated in the next subsection. It could
be stated in a general form, for arbitrary countable graphs,
but its formulation relies on the notions of “nonsingular”
and “nonresonant” balls. For our model, these are given in
Definitions 8 and 9. However, the proof given in [14] (cf. [14,
Lemma 4]) applies indifferently to arbitrary graphs.

3.3. Localization and Tunneling in Finite Balls. From this
point on, we will work with a sequence of length scales,
positive integers {𝐿

𝑘
, 𝑘 ≥ 0} defined recursively by 𝐿

𝑘+1
=

⌈𝐿
𝛼

𝑘
⌉, 𝐿

0
> 2. For clarity, we keep the value 𝛼 = 4/3; observe

that 𝛼2 < 2. In several arguments we will require the initial
scale 𝐿

0
to be large enough.

Definition 8. Given a sample of the random potential𝑉(⋅; 𝜔),
a ball B

𝐿
(u) is called

(i) 𝐸-nonresonant (𝐸-NR) if ‖GB(𝐸; 𝜔)‖ ≤ e+𝐿
𝛽

and 𝐸-
resonant (𝐸-R) otherwise;

(ii) completely 𝐸-nonresonant (𝐸-CNR) if it does not
contain any 𝐸-R ball B

ℓ
(u) ⊆ B

𝐿
(u) with ℓ ≥ 𝐿1/𝛼

and 𝐸-partially resonant (𝐸-PR) otherwise.

Definition 9. Given a sample 𝑉(⋅; 𝜔), a ball B
𝐿
(u) is called

(𝐸,𝑚)-nonsingular ((𝐸,𝑚)-NS) if

max
y∈𝜕−B𝐿(u)


GB𝐿(u) (u, y; 𝐸; 𝜔)


≤ e−𝛾(𝑚,𝐿)𝐿+2𝐿

𝛽

, (47)

where

𝛾 (𝑚, 𝐿) := 𝑚 (1 + 𝐿
−𝜏
) , 𝜏 =

1

8
. (48)

Otherwise, it is called (𝐸,𝑚)-singular ((𝐸,𝑚)-S).

Lemma 10 (cf. [14, Lemma 4]). Consider a ballB
𝐿𝑘
(u) and an

operatorH = HB𝐿𝑘 (u)
with fixed (nonrandom) potentialW. Let

{𝜓
𝑗
, 𝑗 = 1, . . . , |B

𝐿𝑘
(u)|} be the normalized eigenfunctions of

H. Pick a pair of points x
0
, y

0
∈ B

𝐿𝑘
(u)withd(x

0
, y

0
) > 𝐿

𝑘−1
+1

and an integer

𝑅 ∈ [𝐿
𝑘−1
, d (x

0
, y

0
) − 𝐿

𝑘−1
+ 1] . (49)

Suppose that any ball B
𝐿𝑘−1
(k) ⊂ B

𝑅
(x

0
) is (𝐸,𝑚)-NS, and set

𝑞 = e−𝛾(𝑚,ℓ)ℓ
. (50)

Then

(A) the kernel Π
𝜓𝑗
(x, y

0
) of the spectral projection Π

𝜓𝑗
=

|𝜓
𝑗
⟩⟨𝜓

𝑗
|, considered as a function of x, is (ℓ + 1, 𝑞)-

dominated in x ∈ B
𝑅
(x

0
) and globally bounded by 1;

(B) if the ball B
𝐿𝑘
(u) is also 𝐸-NR, then the Green function

B
𝑅
(x

0
) ∋ x →


GB𝐿𝑘 (u)

(x, y; 𝐸)


(51)

is (ℓ + 1, 𝑞)-dominated in x ∈ B
𝑅
(x

0
) and globally

bounded by e𝐿
𝛽

.

By Hermitian symmetry of the Green functions, the
counterparts of assertions (A) and (B) relative to the second
argument, y ∈ B

𝑅
(y

0
), also hold true, with x = x

0
fixed.

In the next definition, we use a parameter  = (𝛼 − 1)/2;
with 𝛼 = 4/3, one obtains  = 1/6 and (1 + )/𝛼 = 7/8.

Definition 11. A ball B
𝐿
(u) is called 𝑚-localized (𝑚-Loc,

in short) if every eigenfunction 𝜓
𝑗
of the operator HB𝐿(u)

satisfies

𝜓

𝑗
(x)𝜓

𝑗
(y) ≤ e−𝛾(𝑚,𝐿)𝜌(x,y) (52)

for any points x, y ∈ B
𝐿
(u) with 𝜌(x, y) ≥ 𝐿(1+)/𝛼 ≡ 𝐿7/8.

Definition 12. A pair of balls B
𝐿
(x), B

𝐿
(y) is called distant iff

𝜌(x, y) ≥ 𝐶
𝑁
𝐿, with 𝐶

𝑁
= 2𝐴

𝑁
+ 3, 𝐴

𝑁
= 4𝑁.

(The role of the constants 𝐴
𝑁
and 𝐶

𝑁
will become clear

in Section 4.3.)

Definition 13. A ball B
ℓ
𝛼(u) is called 𝑚-tunneling (𝑚-T) if it

contains a pair of distant𝑚-NLoc balls B
ℓ
(x), B

ℓ
(y) and𝑚-

nontunneling (𝑚-NT), otherwise.

It is to be emphasized that, unlike the property of 𝐸-
resonance or (𝐸,𝑚)-singularity, the tunneling property is not
related to a specific value of energy 𝐸, and tunneling even in a
single ball occurswith a small probability.This is an advantage
of the DSA compared to the fixed-energy MSA; yet, as was
said in Introduction, the DSA provides final decay bounds
for the Green functions in an entire range of energies, like
the variable-energyMSA.However, unlike theMSA, theDSA
also provides bounds on the eigenbases in the finite balls.

Lemma 14. Let be given 𝑚-localized ball B = B
𝐿
(u). If, for

some 𝐸 ∈ R, B is also 𝐸-NR, then it is (𝐸,𝑚)-NS.
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Proof. The matrix elements of the resolvent GB(𝐸) can be
assessed as follows:

GB (x, y; 𝐸)
 ≤ ∑

𝐸𝑗∈Σ(HB)


𝜓

𝑗
(x)

𝜓

𝑗
(y)


𝐸 − 𝐸

𝑗



. (53)

Here Σ(HB) is the spectrum of the operatorHB.
If dist (𝐸, Σ(HB)) ≥ e−𝐿

𝛽

and ln (2𝐿 + 1)𝑁 ≤ 𝐿𝛽, then the
𝑚-Loc property implies

GB (x, y; 𝐸)
 ≤ e−𝛾(𝑚,𝐿)𝐿+𝐿

𝛽
+ln|B|

≤ e−𝛾(𝑚,𝐿)𝐿+2𝐿
𝛽

. (54)

Observe that, with 𝑚 ≥ 1 and 1 − 𝜏 > 𝛽, one has for 𝐿
0

large enough (hence, 𝐿
𝑘
large enough, 𝑘 ≥ 0)

𝑚(1 + 𝐿
−𝜏

𝑘
) 𝐿

𝑘
− 2𝐿

𝛽

𝑘
= 𝑚𝐿

𝑘
+ 𝑚𝐿

1−𝜏

𝑘
− 2𝐿

𝛽

𝑘

≥ 𝑚(1 +
1

2
𝐿
−𝜏

𝑘
) 𝐿

𝑘
.

(55)

We will see that the condition 𝑚 ≥ 1 is fulfilled for |𝑔| large
enough (cf. Lemma 17).

Notice that the above proof uses the following fact: the
cardinality of an 𝑁-particle ball of radius 𝐿 is polynomially
bounded in L. This will be used in Section 8. The same
remains true for the symmetric powers of graphsZ satisfying
the growth condition (129); this includes all latticesZ = Z𝑑,
𝑑 ≥ 1.

Lemma 15. There is �̃�(1) ∈ N such that for 𝐿
0
≥ �̃�

(1)

(A) if a ball B
𝐿𝑘+1
(u) is 𝐸-CNR and contains no pair of

distant (𝐸,𝑚)-S balls B
𝐿𝑘
(k), B

𝐿𝑘
(w), then it is also

(𝐸,𝑚)-NS;
(B) if a ball B

𝐿𝑘+1
(u) is 𝑚-NT and 𝐸-CNR, then it is also

(𝐸,𝑚)-NS.

Proof. (A) By assumption, either B
𝐿𝑘+1
(u) is 𝐸-CNR and

contains no (𝐸,𝑚)-S ball of radius 𝐿
𝑘
or there is a point

w ∈ B
𝐿𝑘+1
(u) such that any ball B

𝐿𝑘
(k) ⊂ B

𝐿𝑘
(u) with

𝜌(w, k) ≥ 𝐶
𝑁
𝐿
𝑘
is (𝐸,𝑚)-NS. We will obtain the required

bound without using the balls with 𝜌(w, k) < 𝐶
𝑁
𝐿
𝑘
.

In the former case, such an exclusion is unnecessary, but
in order to treat both situations with one argument, we can
formally set w = u (in fact, the choice of the center of a
“fictitious” singular ball does not really matter).

Fix arbitrary points x, y with 𝑅 := 𝜌(x, y) > 𝐿1+
𝑘

; as
before,  = 1/6. By the triangle inequality,

𝜌 (x,B
(𝐶𝑁−1)𝐿𝑘

(w)) + 𝜌 (y,B(𝐶𝑁−1)𝐿𝑘
(w))

≥ 𝑅 − (2𝐶
𝑁
− 2) 𝐿

𝑘
.

(56)

Assume first that

𝑟

:= 𝜌 (x,B

(𝐶𝑁−1)𝐿𝑘
(w)) ≥ 𝐿

𝑘
+ 1,

𝑟

:= 𝜌 (y,B

(𝐶𝑁−1)𝐿𝑘
(w)) ≥ 𝐿

𝑘
+ 1.

(57)

Inside B
𝑟
(x) ∪ B

𝑟
(y), all the balls of radius 𝐿

𝑘
are auto-

matically disjoint from B
2𝐿𝑘
(w); thus they are (𝐸,𝑚)-NS.

Furthermore,

𝑟

+ 𝑟


≥ 𝑅 − 2 (𝐶

𝑁
− 1) 𝐿

𝑘
− 2 ≥ 𝑅 − 2𝐶

𝑁
𝐿
𝑘
. (58)

Consider the set B = B
𝑟
(x) × B

𝑟
(y) and the function

𝑓 : B → Cdefined by𝑓(x, x) = GB𝐿𝑘+1
(x, x; 𝐸). Since𝐸 is

not a pole of the resolventGB𝐿𝑘+1 (u)
(⋅), its matrix elements are

well defined, hence bounded on a finite set. By Lemma 10,𝑓 is
(𝐿

𝑘
, 𝑞)-dominated both in x and in x, with 𝑞 ≤ e−𝛾(𝑚,𝐿𝑘 ,𝑛).

Therefore, one can write, with the convention −ln 0 = +∞,
using Lemma 7,

− ln𝑓 (u, y)

≥ −ln [(e−𝑚(1+(1/2)𝐿
−𝜏
𝑘 )𝐿𝑘)

(𝑅−2𝐶𝑁𝐿𝑘−2𝐿𝑘)/(𝐿𝑘+1)

e𝐿
𝛽

𝑘+1]

= 𝑚(1 +
1

2
𝐿
−𝜏

𝑘
)
𝐿
𝑘

𝐿
𝑘
+ 1
𝑅 (1 − 3C

𝑁
𝑅
−1
𝐿
𝑘
) − 𝐿

𝛽

𝑘+1

= 𝑚𝑅[(1 +
1

2
𝐿
−𝜏

𝑘
) (1 − 𝐿

−1

𝑘
) (1 − 3𝐶

𝑁
𝐿
−

𝑘
)

−
𝐿
𝛽

𝑘+1

𝑚𝑅
] ≥ 𝑚(1 +

1

4
𝐿
−𝜏

𝑘
)𝑅 ≥ 𝛾 (𝑚, 𝐿

𝑘+1
) 𝑅.

(59)

If 𝑟 = 0 (resp., 𝑟 = 0), the required bound follows from the
dominated decay of the function 𝑓(x, x) in x (resp., in x).

(B)Assume otherwise.Then, by assertion (A), the𝐸-CNR
ball B

𝐿𝑘+1
(u) must contain a pair of distant (𝐸,𝑚)-S balls

B
𝐿𝑘
(x), B

𝐿𝑘
(y). Both of them are 𝐸-NR, since B

𝐿𝑘+1
(u) is 𝐸-

CNR. By virtue of Lemma 14, both B
𝐿𝑘
(x) and B

𝐿𝑘
(y) must

be𝑚-NLoc, so thatB
𝐿𝑘+1
(u)must be𝑚-T, which contradicts

the hypothesis.

Lemma 16. There is �̃�(2) ∈ N such that, for all 𝐿
0
≥ �̃�

(2), if for
any 𝐸 ∈ R a ball B

𝐿𝑘+1
(u) contains no pair of distant (𝐸,𝑚)-S

balls of radius 𝐿
𝑘
, then it is𝑚-Loc.

Proof. One canproceed as in the proof of the previous lemma,
but with the functions 𝑓

𝑗
: (k, k) → |𝜓

𝑗
(k)𝜓

𝑗
(k)|, where

𝜓
𝑗
, 𝑗 ∈ [1, |B

𝐿𝑘+1
(u)|], are normalized eigenfunctions of oper-

atorHB𝐿𝑘+1 (u)
. Notice that the 𝐸

𝑗
-nonresonance condition for

B
𝐿𝑘+1
(u) is not required here, since one has ‖𝜓

𝑗
‖ = 1, so the

function 𝑓
𝑗
is globally bounded by 1. Let x, y ∈ B

𝐿𝑘+1
(u) and

assume 𝜌(x, y) = 𝑅 ≥ 𝐿1+
𝑘

.
Arguing as in the previous lemma and using the domi-

nated decay of the function 𝑓
𝑗
(⋅, ⋅) (cf. Lemma 10), we obtain,

for any pair of points with 𝜌(y, y) ≥ 𝐿1+
𝑘

,

− ln 𝜓𝑗 (x)𝜓𝑗 (y)


≥ −ln [(e−𝑚(1+(1/2)𝐿
−𝜏
𝑘 )𝐿𝑘)

(𝑅−2𝐶𝑁𝐿𝑘−2𝐿𝑘)/(𝐿𝑘+1)

] .

(60)

A direct comparisonwith the RHS of the first equation in (59)
shows that the RHS of (60) is bigger, owing to the absence of
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the large factor e𝐿
𝛽

𝑘 . Therefore, it admits the same (or better)
lower bound as in (59).

Below we summarize the relations between the parame-
ters used in the above proof:

𝜌 (x, y) ≥ 𝐿1+
𝑘−1
,

0 < 𝜏 < 𝜌,

1 +  < 𝛼,

𝛽 < 1 − 𝜏.

(61)

These conditions are fulfilled, for example, with

𝛼 =
4

3
,

𝜌 =
1

6
,

𝜏 =
1

8
,

𝛽 =
1

2
.

(62)

4. Scaling Analysis of Eigenfunctions:
Finite-Range Interaction

4.1. Initial Scale Estimates

Lemma 17 (initial scale bound). For any 𝐿
0
> 2, 𝑚 ≥ 1, and

𝑝 > 0 there is 𝑔
0
= 𝑔

0
(𝑚, 𝑝, 𝐿

0
) < ∞ such that for all 𝑔 with

|𝑔| ≥ 𝑔
0
, any ball B

𝐿0
(𝑢), and any 𝐸 ∈ R

P {B
𝐿0
(u) 𝑖𝑠 (𝐸,𝑚) -𝑆} ≤ 𝐿−𝑝

0
,

P {B
𝐿0
(u) 𝑖𝑠 𝑚-NL𝑜𝑐} ≤ 𝐿

−𝑝

0
.

(63)

See the proof in the Appendix.

4.2. EVC Bounds for Distant Pairs of Balls. The following
statement reflects the progress achieved in the area of mul-
tiparticle eigenvalue concentration (EVC) estimates since the
time when manuscript [18] had appeared.

Theorem 18 (cf. [21, Theorem 4], [19, Lemma 2.4]). Let 𝑉 :
Z×Ω → R be a randomfield satisfying (W3) with parameters
𝑏, 𝑏


∈ (0, 1], 𝐴

∈ (0, +∞). For all 𝐿 > 0 large enough, any
distant pair of balls B(𝑁)

𝐿
(u
), B(𝑁)

𝐿
(u
) the following bound

holds for any 𝑠 ∈ (0, 1]:

P {dist (Σ
𝐿,u , Σ𝐿,u) ≤ 𝑠} ≤ (3𝐿)

2𝑁
ℎ
𝐿 (2𝑠) , (64)

where Σ
𝐿,u , Σ𝐿,u are the respective spectra of HB𝐿(u) and

HB𝐿(u), and

ℎ
𝐿 (𝑠) := 𝐶


𝐿
𝐴


𝑠
𝑏∧𝑏


, 𝑏 ∧ 𝑏

≡ min [𝑏, 𝑏] , (65)

and 𝐴
= 𝐴


(𝐴


, 𝑁) ∈ (0, +∞). Consequently, this implies

the following bound for 𝛽 ∈ (0, 𝛽), all 𝐿 large enough and any
pair u, u, with d(u

, u
) > 4𝑁𝐿:

P {∃𝐸 ∈ R : B
𝐿
(u
) , B

𝐿
(u
) 𝑎𝑟𝑒 𝐸-𝑃𝑅} ≤ e−𝐿

𝛽

. (66)

A considerable advantage of the above EVC bound,
compared to [4, Lemma 2], is that it holds for any distant pair
of balls. In [4], as well as in [17], a similar bound is established
only for pairs of balls sufficiently distant with respect to the
so-called Hausdorff (pseudo)metric; such a bound did not
cover some pairs distant with respect to the more natural
symmetrized distance, like 𝜌. As a result, one could not prove
uniform decay of eigenfunction correlators in the physically
relevant distance in the multiparticle configuration space. A
similar difficulty was encountered in [6].

4.3. Partially Interactive𝑁-Particle Balls

Definition 19. An 𝑁-particle ball B
𝐿
(u) is called partially

interactive (PI, in short) if diam u > 𝐴
𝑁
𝐿, 𝐴

𝑁
= 4𝑁, and

fully interactive (FI) otherwise.

The local HamiltonianH(𝑁)

B𝐿(u)
with a finite-range interac-

tion in a PI ball is algebraically decomposable as follows:

H(𝑁)

B𝐿(u) = H(𝑛

)

B𝐿(u)
⊗ 1(𝑛


)
+ 1(𝑛


)
⊗H(𝑛


)

B𝐿(u)
(67)

with 𝑛+𝑛 = 𝑁, u = (u
, u
), u
∈Zn

>
, u
∈Zn

>
, while for

a fully interactive ball one cannot guarantee such a property.
(In the case of a rapidly decaying interaction, the RHS is close
in norm to the LHS.)

Lemma 20. (A) If B
𝐿
(x) is PI, then there exists a partition of

[[1,𝑁]] into nonempty complementary subsetsJ,J𝑐 such that
𝜌(ΠJB𝐿

(x), ΠJ𝑐B𝐿
(x)) > 2𝐿.

(B) If B
𝐿
(x), B

𝐿
(y) are two FI balls with 𝜌(x, y) > 11𝑁𝐿,

then 𝜌(ΠB
𝐿
(x), ΠB

𝐿
(y)) ≥ 2𝐿.

Here the value 11𝑁 is obtained as 2𝐴
𝑁
+ 3.

See the proof in the Appendix, Section A.2.
Now we state a result on localization in PI balls for

the Hamiltonians with a short-range interaction (condition
(U0)).The reader may want to compare the elementary proof
of Lemma 21 below with that of Lemma 3 in [4] which is
substantially more complex. The simplification comes here
from the fact that we rely on the 𝑚-Loc property, that is,
exponential decay of all EFs of a Hamiltonian in a given ball,
and this property is nonrelated to a specific energy but covers
the entire spectrum of the Hamiltonian at hand; this results
in a few-line proof of Lemma 21 as well as of an important
probabilistic bound (Lemma 22) stemming from it.

Lemma21. Assume that the interactionU has finite range 𝑟
0
∈

[0, +∞) (cf. (U0)). Consider a PI𝑁-particle ball with canonical
factorization

B(𝑁)

𝐿𝑘
(u) = B(𝑛


)

𝐿𝑘
(u
) × B(𝑛


)

𝐿𝑘
(u
) . (68)
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If the balls B(𝑛

)

𝐿𝑘−1
(u
) and B(𝑛


)

𝐿𝑘−1
(u
) are 𝑚-Loc, then the ball

B(𝑁)

𝐿𝑘
(u) is also𝑚-Loc.

Proof. The interaction between subsystems corresponding to
u and u vanishes, soHB𝐿𝑘 (u)

admits the decomposition

HB𝐿𝑘 (u)
= HB(𝑛

)
𝐿𝑘

(u) ⊗ 1
(𝑛

)
+ 1(𝑛


)
⊗HB(𝑛

)
𝐿𝑘

(u). (69)

Thus the eigenfunctions Ψ
𝑗
of HB𝐿𝑘 (u)

can be chosen in the
formΨ

𝑗
= 𝜙

𝑗
 ⊗𝜓

𝑗
 , where 𝜙

𝑗
 are eigenfunctions ofHB(𝑛

)
𝐿𝑘

(u)
and, respectively, 𝜓

𝑗
 are eigenfunctions of HB(𝑛

)
𝐿𝑘

(u). Now

the required decay bounds on the projection kernel,

Ψ

𝑗 (x)Ψ𝑗 (y)


=

𝜙
𝑗
 (x)𝜙

𝑗
 (x)𝜓

𝑗
 (y)𝜓

𝑗
 (y) ,

(70)

follow directly from the respective bounds on 𝜙 and𝜓, which
are guaranteed by the 𝑚-Loc hypotheses on the projection
balls B(𝑛


)

𝐿𝑘
(u
) and B(𝑛


)

𝐿𝑘
(u
).

Given numbers 𝑝, 𝜃 > 0, introduce the quantities

𝑃 (𝑛, 𝑘) = 2
𝑁−𝑛
𝑝 (1 + 𝜃)

𝑘
, 1 ≤ 𝑛 ≤ 𝑁; 𝑘 ≥ 0. (71)

Later it will be required that 𝜗 ∈ (0, √2 − 1).

Lemma 22. Suppose that for all 𝑛 ∈ [1,𝑁 − 1] and for a given
𝑘 ≥ 0 the following bound holds for any 𝑛-particle ball B(𝑛)

𝐿𝑘
(u):

P {B(𝑛)

𝐿𝑘
(u) 𝑖𝑠 𝑚-NL𝑜𝑐} ≤ 𝐿

−𝑃(𝑛,𝑘)

𝑘
. (72)

Then for any𝑁-particle PI ball B(𝑁)

𝐿𝑘
(u) one has

P {B(𝑁)

𝐿𝑘
(u) 𝑖𝑠 𝑚-NL𝑜𝑐} ≤ 2𝐿

−2𝑃(𝑁,𝑘)

𝑘
≤
1

4
𝐿
−𝑃(𝑁,𝑘)

𝑘
. (73)

Proof. It follows from Lemma 21 that a ballB(𝑁)

𝐿𝑘
(u) admitting

a factorization of the form (69) is 𝑚-NLoc only if at least
one of the projection balls B(𝑛


)

𝐿𝑘
(u
), B(𝑛


)

𝐿𝑘
(u
) is 𝑚-NLoc.

Therefore, with 𝐿
0
large enough, we obtain

P {B(𝑁)

𝐿𝑘
(u) is 𝑚-NL𝑜𝑐}

≤ P {B(𝑛

)

𝐿𝑘
(u
) is 𝑚-NL𝑜𝑐}

+ P {B(𝑛

)

𝐿𝑘
(u
) is 𝑚-NL𝑜𝑐}

≤ 𝐿
−𝑃(𝑛

,𝑘)

𝑘
+ 𝐿

−𝑃(𝑛

,𝑘)

𝑘
≤ 2𝐿

−2𝑃(𝑁,𝑘)

𝑘
<
1

4
𝐿
−𝑃(𝑁,𝑘)

𝑘
.

(74)

4.4. Fully Interactive 𝑁-Particle Balls. Owing to Lemma 22,
it remains to establish localization bounds for 𝑁-particle FI
balls B

𝐿𝑘+1
(x), assuming, if necessary, similar bounds:

(i) For 𝑛-particle balls of any radius 𝐿
𝑘
 , 𝑘 ≥ 0, with 𝑛 <

𝑁.
(ii) For𝑁-particle balls of any radius 𝐿

𝑘
 with 𝑘 ≤ 𝑘.

Lemma 23 (main inductive lemma). Suppose that for a given
𝑘 ≥ 0 and all 𝑖 ∈ [0, 𝑘] the following bound holds for any 𝑁-
particle ball B(𝑁)

𝐿𝑘
(u):

P {B(𝑁)

𝐿 𝑖
(u) 𝑖𝑠 𝑚-NL𝑜𝑐} ≤ 𝐿

−𝑃(𝑁,𝑖)

𝑖
. (75)

Then for any𝑁-particle FI ball B(𝑛)

𝐿𝑘+1
(x) one has

P {B(𝑁)

𝐿𝑘+1
(u) 𝑖𝑠 𝑚-NL𝑜𝑐} ≤ 𝐿

−𝑃(𝑁,𝑘+1)

𝑘+1
, (76)

provided that

𝑝 >
2𝛼

2

2 − 𝛼2
𝑁𝑑,

0 < 3𝜃 ≤ min{2 − 𝛼
2

𝛼2
−
2𝑁𝑑

𝑝
,√2 − 1} .

(77)

Furthermore, for any pair of distant balls B(𝑁)

𝐿𝑘
(u), B(𝑁)

𝐿𝑘
(k), one

has, for some 𝑎, 𝑐 > 0,

P {∃𝐸 ∈ R : B(𝑁)

𝐿𝑘
(u) ,B(𝑁)

𝐿𝑘
(k) 𝑎𝑟𝑒 (𝐸,𝑚) -𝑆}

≤ 𝐿
−𝑃(𝑁,𝑘)

𝑘
≡ 𝐿

−𝑝(1+𝜗)
𝑘

𝑘
≤ e−𝑎 ln

1+𝑐
𝐿𝑘 .

(78)

Proof. Introduce the following events:

N
𝑘+1
= {B(𝑁)

𝐿𝑘+1
(u) is 𝑚-NLo𝑐} ,

S
(2)

𝑘

= {∃𝐸∃ distant (𝐸,𝑚) -S balls B(𝑁)

𝐿𝑘
(u) ,B(𝑁)

𝐿𝑘
(k)

⊂ B(𝑁)

𝐿𝑘+1
(w)} ,

R
(2)

𝑘
= {∃𝐸∃ distant 𝐸-PR balls B(𝑁)

𝐿𝑘
(u) ,B(𝑁)

𝐿𝑘
(k)

⊂ B(𝑁)

𝐿𝑘+1
(w)} .

(79)

By virtue of Lemma 16, we have

N
𝑘+1
⊂ S

(2)

𝑘
⊂R

(2)

𝑘
∪ (S

(2)

𝑘
\R

(2)

𝑘
) , (80)

and by Theorem 18, P{R(2)

𝑘
} ≤ e−𝐿

𝛽

𝑘 , so it remains to assess
the probability P{S(2)

𝑘
\R

(2)

𝑘
}. Fix points u, k ∈ B(𝑁)

𝐿𝑘+1
(w) and

introduce the event (figuring in (78))

S
(2)

𝑘
(u, k) = {∃𝐸 : B(𝑁)

𝐿𝑘
(u) , B(𝑁)

𝐿𝑘
(k) are (𝐸,𝑚) -S} . (81)

Within the event S(2)

𝑘
(u, k) \R(2)

𝑘
, either B(𝑁)

𝐿𝑘
(u) or B(𝑁)

𝐿𝑘
(k)

must be 𝐸-CNR; w.l.o.g., assume that B(𝑁)

𝐿𝑘
(u) is 𝐸-CNR.

Since it is (𝐸,𝑚)-S, Lemma 15 implies that it must contain a
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pair of 𝑚-NL𝑜𝑐 balls B(𝑁)

𝐿𝑘−1
(y), B(𝑁)

𝐿𝑘−1
(y) with d(y, y) >

(1/2)𝐿
1+𝛿

𝑘−1
. Consider two possible situations:

(1) Both B(𝑁)

𝐿𝑘−1
(y) and B(𝑁)

𝐿𝑘−1
(y) are FI.

Apply Lemma 20, assertion (B):

𝜌 (ΠB
𝐿𝑘−1
(u) , ΠB

𝐿𝑘−1
(k)) ≥ 2𝐿

𝑘
. (82)

Using the inductive assumption (75) and the mixing condi-
tion (W2), we have, with 𝐿

𝑘−1
= 𝐿

1/𝛼
2

𝑘+1
and 𝐿

0
large enough,

P {B(𝑁)

𝐿𝑘−1
(y) , B(𝑁)

𝐿𝑘−1
(y) are 𝑚-NL𝑜𝑐}

≤ 2𝐿
−(2𝑝/𝛼

2
)(1+𝜃)

𝑘−1

𝑘+1
.

(83)

The number of such pairs y, y is bounded by
(1/2)|B(𝑁)

𝐿𝑘
(w)|2 ≤ (32𝑁/2)𝐿2𝑁

𝑘
, so in this case,

P {S
(2)

𝑘
\R

(2)

𝑘
} ≤
3
2𝑁

2
𝐿
−(2𝑝/𝛼

2
)(1+𝜃)

𝑘−1
+2𝑁

𝑘+1
. (84)

A straightforward calculation shows that, for 𝐿
0

large
enough, the RHS is bounded by (1/4)𝐿−𝑃(𝑁,𝑘+1)

𝑘+1
, under con-

ditions (77). Indeed, we need the inequality

2𝑝

𝛼2
2
𝑁−𝑁
𝑝 (1 + 𝜃)

𝑘−1
− 2𝑁𝑑 > 2

𝑁−𝑁
𝑝 (1 + 𝜃)

𝑘+1 (85)

or, equivalently,

(1 + 𝜃)
2
<
2𝑝

𝛼2
−

2𝑁𝑑

𝑝 (1 + 𝜃)
𝑘−1
. (86)

By construction, 𝜗 ∈ (0, 1), so one has (1 + 𝜃)2 < 1 + 3𝜗,
and 2𝑁𝑑/𝑝 > 2𝑁𝑑/(𝑝(1 + 𝜃)𝑘−1). Therefore, if 𝑝 > (2𝛼2/(2 −
𝛼
2
))𝑁 and

3𝜗 ≤
2 − 𝛼

2

𝛼2
−
2𝑁

𝑝
, (87)

then (85) is also satisfied, so that

P {S
(2)

𝑘
} ≤ P {R

(2)

𝑘
} + P {S

(2)

𝑘
\R

(2)

𝑘
}

≤ e−𝐿
𝛽

𝑘 +
1

4
𝐿
−𝑃(𝑁,𝑘+1)

𝑘+1
<
1

2
𝐿
−𝑃(𝑁,𝑘+1)

𝑘+1
,

(88)

yielding assertion (76) in case (1).
(2) EitherB(𝑁)

𝐿𝑘−1
(y) orB(𝑁)

𝐿𝑘−1
(y) is PI.Then by Lemma 22,

P {B(𝑁)

𝐿𝑘−1
(y) , B(𝑁)

𝐿𝑘−1
(y) is 𝑚-NL𝑜𝑐}

≤ min (P {B(𝑁)

𝐿𝑘−1
(y) is 𝑚-NL𝑜𝑐} ,

P {B(𝑁)

𝐿𝑘−1
(y) is 𝑚-NL𝑜𝑐}) ≤ 𝐿

−2𝑝(1+𝜃)
𝑘−1

𝑘−1

< 𝐿
−𝑝(1+𝜃)

𝑘+1

𝑘+1
,

(89)

provided that (1 + 𝜃)2 < 2; that is, 𝜃 < √2 − 1.

Finally, a straightforward calculation shows that for some
𝑎, 𝑐 > 0 one has the inequality

𝐿
−𝑃(𝑁,𝑘)

𝑘
≡ 𝐿

−𝑝(1+𝜗)
𝑘

𝑘
≤ e−𝑎 ln

1+𝑐
𝐿𝑘 . (90)

This completes the proof.

Applying Lemmas 17 and 22, we come by induction to the
following result.

Theorem 24 (localization at any scale). Assume that |𝑔| is
large enough, so that (63) hold true with𝑝 > (2𝛼2/(2−𝛼2))𝑁𝑑.
Then for any 𝑘 ≥ 0 and any u ∈ Z𝑁𝑑

P {B(𝑁)

𝐿𝑘
(u) 𝑖𝑠 𝑚-NL𝑜𝑐} ≤

1

4
𝐿
−𝑝(1+𝜃)

𝑘

𝑘
(91)

with 𝜃 > 0 satisfying (77). In otherwords, with probability≥ 1−
(1/4)𝐿

−𝑝(1+𝜃)
𝑘

𝑘
, for every eigenfunction Ψ

𝑗
of operator HB(𝑁)𝐿𝑘 (u)

and for all x, y ∈ B(𝑁)

𝐿𝑘
(u) such that ‖x − y‖ ≥ 𝐿(1+𝛿+𝜌)/𝛼

𝑘
one

has

Ψ
𝑗
(x) Ψ

𝑗
(y) ≤ e−𝛾(𝑚,𝐿𝑘)𝐿𝑘 < e−𝑚𝐿𝑘 . (92)

Theorem 24 marks the end of the Direct Scaling Analysis
of localized eigenfunctions in arbitrarily large finite balls.

5. Exponential Decay of Eigenfunctions

The DSA provides exponential decay bounds on the eigen-
bases in finite balls, not just on the Green functions, which
shows that quantum transport in an arbitrarily large finite
system over distances comparable with the size of the system
is strongly inhibited. The proof of exponential decay of EFs
in an infinitely extended configuration space requires an
additional argument, originally proposed by Fröhlich et al.
[9] and reformulated by von Dreifus and Klein [10]. More
than 20 years after [10], it is merely a simple exercise.

Theorem 25. For P-a.e. 𝜔 ∈ Ω every normalized eigenfunc-
tionΨ of operatorH(𝜔) satisfies the following bound: for some
𝑅(𝜔), x̂(𝜔), and all y with ‖y‖ ≥ 𝑅(𝜔)

Ψ (y)
 ≤ e−𝑚‖y‖

. (93)

Proof. Pick an arbitrary vertex z ∈ ZN
>
. By the Borel-

Cantelli lemma combined with the probabilistic bound from
Lemma 23, there is a subsetΩ

⊂ ΩwithP{Ω
} = 1 such that

for any 𝜔 ∈ Ω and some 𝑘
0
(𝜔), all 𝑘 ≥ 𝑘

0
, and any 𝐸 ∈ R

there is no pair of 𝐿1+𝛿
𝑘

-distant (𝐸,𝑚)-S ballsB
𝐿𝑘
(x),B

𝐿𝑘
(y) ⊂

B
𝐿𝑘+2
(z). Fix 𝜔 ∈ Ω.

Let Ψ be a normalized eigenfunction of H(𝜔) with
eigenvalue 𝜆. Since ‖Ψ‖

2
≤ 1 implies ‖Ψ‖

∞
≤ 1, there is

a point x̂ such that ‖Ψ‖
∞
= |Ψ(x̂)|. If �̂�

𝑛
∈ B

𝐿𝑘−1
(0), then

B
𝐿𝑘
(0) must be (𝜆,𝑚)-S; otherwise the (𝜆,𝑚)-NS property

would lead to a contradiction:

‖Ψ‖∞ = |Ψ (x̂)| ≤ e−𝑚𝐿𝑘
‖Ψ‖∞ < ‖Ψ‖∞ . (94)



12 Advances in Mathematical Physics

Thus any ball B
𝐿𝑘
(y) ⊂ B

𝐿𝑘+2
(z) with 𝜌(y, z) ∈ [𝐿

𝑘+1
, 𝐿

𝑘+2
)

(hence, with 𝜌(y, z) ≥ 𝐿𝛼
𝑘
> 2𝐿

1+𝛿

𝑘
) is (𝜆,𝑚)-NS. Note that

the function x → |Ψ
𝑛
(x)| is (𝐿

𝑘
, 𝑞)-dominated in B

𝑅
(y), with

𝑅 = 𝜌(y, z)−2𝐿1+𝛿
𝑘
−1 > (1/2)𝐿

1+2𝛿

𝑘
and 𝑞 = e−𝛾(𝑚,𝐿𝑘)𝐿𝑘 . Recall

that 𝜏 = 𝛿/4 (cf. (62)). By Lemma 6, for 𝐿
𝑘
large enough,

−
ln Ψ (y)



𝜌 (y, z)
≥ 𝑚 (1 + 𝐿

−𝜏

𝑘
) (1 −

2𝐿
𝑘
+ 1

𝜌 (y, z)
)

≥ 𝑚(1 +
1

2
𝐿
−𝜏

𝑘
) > 𝑚,

(95)

yielding assertion (93).

6. EF Correlators and Dynamical Localization

6.1. Bounds on the EFC in Finite Volumes. We use here
a finite-volume variant of a “soft” argument proposed by
Germinet and Klein in [11] and adapted in our earlier papers
to finite-volume Hamiltonians, both single-particle (cf. [14,
Memma 9]) and 𝑁-particle (cf. [19, Lemma 3.8]). Working
with finite volumes allows us to avoid a functional-analytic
complement regarding the weighted Hilbert-Schmidt norms
of spectral projections of operators H(𝜔) in the entire graph
ZN

>
and replace it with a simple application of Bessel’s

inequality.
Denote byB

1
(𝐼) the set of all Borel functions 𝜙 : R → C

with supp 𝜙 ⊂ 𝐼 and ‖𝜙‖
∞
≤ 1.

Proposition 26 (cf. [14, Lemma 9], [19, Lemma 3.8]). Fix an
integer 𝐿 ∈ N∗ and assume that the following bound holds for a
given pair of disjoint balls B

𝐿
(𝑥), B

𝐿
(𝑦) and an interval 𝐼 ⊆ R:

P {∃ 𝐸 ∈ 𝐼 : B
𝐿
(x) , B

𝐿
(y) 𝑎𝑟𝑒 (𝐸,𝑚) -S} ≤ 𝑓 (𝐿) , (96)

for some 𝑓(𝐿). Then for any connected subgraph Λ containing
the union B

𝐿
(𝑥) ∪ B

𝐿
(𝑦), one has

E[ sup
𝜙∈B1(𝐼)


⟨1x
𝜙 (HΛ (𝜔))

 1y⟩

]

≤ 𝐶𝐿
𝑑
𝑒
−𝑚𝐿
+ 𝑓 (𝐿) .

(97)

Taking into account Lemma 23 establishing the proba-
bilistic bound for the quantity 𝑓(𝐿) figuring in the RHS
of (96) and (97), we come to the following corollary of
Proposition 26.

Corollary 27. Under the hypotheses of Theorem 2, for any
x, y ∈ ZN

>
with d(x, y) > 2𝐿 + 1, any connected subset

Λ ⊃ B
𝐿
(𝑥) ∪ B

𝐿
(𝑦)

E[ sup
𝜙∈B1(R)


⟨1x
𝜙 (HΛ (𝜔))

 1y⟩

] ≤ 𝐶𝑒

−𝑎 ln1+𝑐𝜌(x,y)
. (98)

6.2. Dynamical Localization in an Infinite Graph. Here we
follow the same path as in earlier works by Aizenman et al.
(cf., e.g., [13, 23]).

Recall that if the random potential 𝑉 is a.s. bounded, the
norm of H(𝜔) is a.s. bounded by a constant, so its spectrum
is contained in some nonrandom bounded interval 𝐼. Given
an interval 𝐼 ⊂ R, denote by C

1
(𝐼) the set of all continuous

functions 𝜙 on R with supp𝜙 ⊂ 𝐼 and ‖𝜙‖
∞
≤ 1.

Theorem 28. Consider the Hamiltonian H(𝜔) of form (1)
with a bounded random potential satisfying assumptions
(W1)–(W3) and the interaction potential satisfying one of the
assumptions (U0) and (U1). There is 𝑔

0
< +∞ such that if

|𝑔| ≥ 𝑔
0
, then the following property holds true.

For any bounded interval 𝐼 ⊂ R containing the a.s.
spectrum of H(𝜔) and for all x, y ∈ ZN

>
, x ̸= y, and with the

same 𝑐, 𝑎 > 0 as in (98),

E[ sup
𝜙∈C1(𝐼)


⟨1x
𝜙 (H (𝜔))

 1y⟩

] ≤ 𝐶e−𝑎 ln

1+𝑐
𝜌(x,y)
. (99)

Proof. We prove the claim under assumption (U0), using
Corollary (97) established under this assumption. Similarly,
case (U1) will follow from the analogous results proved in
Section 7 for the infinite-range interactions.

Since both𝑉 areU are bounded, the norm of the random
operator H(𝜔) is a.s. bounded by a nonrandom constant;
hence there exists a nonrandom bounded interval 𝐼 ⊂ R

containing a.s. the spectrum Σ(H(𝜔)). For any ball B and any
points x, y ∈ B introduce a spectral measure 𝜇x,yB,𝜔 uniquely
defined by

∫𝜙 (𝜆) 𝑑𝜇
x,y
B,𝜔 (𝜆)

= ⟨1x
 𝜙 (HB (𝜔))Π𝐼

(HB (𝜔))

1y⟩ ,

(100)

where 𝜙 is an arbitrary bounded continuous function with
supp𝜙 ⊂ 𝐼 and similar spectral measures 𝜇x,y

𝜔
for the operator

H(𝜔) on the entire graphZN
>
. If {B

𝐿𝑘
} is a growing sequence

of balls, then 𝜇x,yB𝐿𝑘 ,𝜔
converge vaguely to 𝜇x,y

𝜔
as 𝑘 → ∞. Note

that this fact holds true in a much more general context of
unbounded operators: by a well-known result (cf. [24]), for
the strong resolvent convergence of operatorsH

𝑛
→ H, with

a common coreD, it suffices thatH
𝑛
𝜙 → H𝜙 for any element

𝜙 ∈ D; in turn, this implies the vague convergence of the
spectral measures ⟨𝜑, 𝜙(H

𝑛
)𝜓⟩. In our case, we can choose as

a core the subspace of all compactly supported functions, and
on such functions, the operatorsH

𝑛
converge by stabilization.

So, by Fatou’s lemma on convergent measures, for any
measurable setE ⊂ R and any growing sequence of ballsB

𝐿𝑘
,

E [
𝜇

x,y
𝜔

 (E)] ≤ lim inf
𝑘→∞

E [

𝜇
x,y
B𝐿𝑘


(E)] . (101)

Therefore, the uniform bounds in finite volumes B
𝐿𝑘
, estab-

lished in Corollary 27, remain valid in the entire infinite
graph.

Now assertion (B) of the mainTheorem 2 for finite-range
interactions follows by taking continuous functions of the
form

𝜙
𝑡
: 𝜆 → 𝑓

𝐼
(𝜆) ei𝑡𝜆, 𝑡 ∈ R, (102)
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where 𝑓
𝐼
: R → [0, 1] is an arbitrary continuous function

interpolating between 1 on an interval 𝐼 = [−𝑅, 𝑅] containing
a.s. the spectrum ofH(𝜔) and 0 on R \ [−𝑅 − 1, 𝑅 + 1].

Note also that, arguing as in [23, Sect. 2.5], one can
extend bound (99) to the compactly supported bounded
Borel functions 𝜙.

7. Adaptation to Infinite-Range Interactions

In this section, we need to adapt a certain number of
definitions and statements to rapidly decaying, infinite-range
interactions satisfying assumption (U1). In particular,

(i) given a number 𝛿 ∈ (0, 1/14), figuring in (U1), we set
now

 = 2𝛿,

𝛼 = 1 + 4𝛿,

𝜏 =
𝛿

2

(103)

and observe that 𝛼2 < 2,  − 𝛿 > 𝜏;
(ii) we replace the decay exponent 𝛾(𝑚, 𝐿) = 𝑚(1 + 𝐿−𝜏),

figuring in Definition 9 (cf. (48)), by

𝛾 (𝑚, 𝐿, 𝑛) := 𝑚 (1 + 𝐿
−𝜏
)
𝑁−𝑛+1

. (104)

Definition 29. A pair of balls B
𝐿
(x), B

𝐿
(y) is called distant iff

𝜌(x, y) ≥ 𝐶
𝑁
𝐿
1+𝛿, with 𝐶

𝑁
= 4𝑁.

Definition 30. An 𝑁-particle ball B
𝐿
(x) is called partially

interactive (PI) if diamu > 2𝐿1+𝛿 and fully interactive (FI)
otherwise.

Lemma 31. (A) If B
𝐿
(x) is PI, then there exists a partition of

[[1,𝑁]] into nonempty complementary subsetsJ,J𝑐 such that
𝜌(ΠJB𝐿

(x), ΠJ𝑐B𝐿
(x)) > 𝐿1+𝛿. Consequently, B(𝑁)

𝐿
(x) admits

a factorization

B(𝑁)

𝐿
(x) = B(𝑛


)

𝐿
(x) × B(𝑛


)

𝐿
(x) (105)

with dist(x, x) > 2𝐿1+𝛿.
(B) If B

𝐿
(x), B

𝐿
(y) are two FI balls with 𝜌(x, y) > 11𝑁𝐿,

then 𝜌(ΠB
𝐿
(x), ΠB

𝐿
(y)) ≥ 𝐿1+𝛿.

The proof repeats verbatim that of Lemma 20 in
Section A.2, but with 𝐿 replaced by 𝐿1+𝛿.

Themost important technicalmodification is required for
Lemma 21, the proof of whichwas very elementary, due to the
use of eigenfunctions.

Next, introduce the following finite-range approxima-
tionsU

𝑅
,𝑅 ≥ 𝑟

0
, of a given interactionU generated by 2-body

interaction potentials 𝑈(2)
(𝑟):

𝑈
(2)

𝑅
(𝑟) = 1

𝑟≤𝑅
𝑈

(2)
(𝑟) . (106)

Then for any configuration x = (x, x) ∈ Zn
>
× Zn

>

with 𝜌(x, x) > 𝑅, the truncated interaction decomposes

as follows: U
𝑅
(x) = U

𝑅
(x) + U

𝑅
(x). As a result, for any

factorized subset of the form B = B
𝐿
(x) × B

𝐿
(x) with

𝜌(B
𝐿
(x),B

𝐿
(x)) > 𝑅, the truncated Hamiltonian H(𝑅)

B
admits the algebraic decomposition

H(𝑅)

B = H(𝑅)

B
𝐿
(x) ⊗ 1

(𝑛

)
+ 1(𝑛


)
⊗H(𝑅)

B
𝐿

(x). (107)

Next, we fix an arbitrary𝑚 ≥ 1 and modify the definition
of a PI ball:

B(𝑁)

𝐿
(x) is called PI iff diam (x) > 𝐶

𝑁
= 4𝑚𝑁/�̃�.

Therefore, a PI ball admits a factorization B(𝑁)

𝐿
(x) =

B
𝐿
(x) × B

𝐿
(x) with dist(x, x) > (𝐶

𝑁
/2𝑁)𝐿 = 2𝑚𝐿/�̃�,

so that, with 𝑅
𝑘
= (𝐶

𝑁
/2𝑁)𝐿

𝑘
, one has

𝜖 (𝑅
𝑘
) < e−2𝑚𝐿𝑘 <

1

2
e−𝐿
𝛽

𝑘 . (108)

Lemma 32. Assume that the interaction U satisfies condition
(U1). Fix an energy 𝐸. Let an 𝑁-particle ball B(𝑁)

𝐿𝑘
(u) =

B(𝑛

)

𝐿𝑘
(uJ)×B

(𝑛

)

𝐿𝑘
(uJ𝑐) and let a sample of the random potential

𝑉(⋅; 𝜔) be such that

(a) dist(x, x) > 𝑅
𝑘
:= (𝐶

𝑁
/2𝑁)𝐿

𝑘
;

(b) B(𝑛

)

𝐿𝑘
(u
) and B(𝑛


)

𝐿𝑘
(u
) are𝑚-Loc;

(c) B(𝑁)

𝐿𝑘
(u) is 𝐸-NR.

Then the ball B(𝑁)

𝐿𝑘
(u) is (𝐸,𝑚)-NS.

Proof. Set 𝑅
𝑘
= (𝐶

𝑁
/2𝑁)𝐿

𝑘
and define U(𝑅𝑘) and H(𝑅𝑘) as

above. Denote

H(𝑅𝑘,𝑁)

u,𝑘 = H(𝑅𝑘)

B(𝑁)𝐿𝑘 (u)
,

G (𝐸) = (HB(𝑁)𝐿𝑘 (u)
− 𝐸)

−1

,

(109)

and G(𝑅𝑘)(𝐸) = (H(𝑅𝑘,𝑁)

u,𝑘 − 𝐸)
−1. The operator H(𝑅𝑘,𝑁)

u,𝑘 admits
the decomposition

H(𝑅𝑘 ,𝑁)

u,𝑘 = HB(𝑛
)
𝐿𝑘

(u) ⊗ 1
(𝑛

)
+ 1(𝑛


)
⊗HB(𝑛

)
𝐿𝑘

(x), (110)

with u = (u
, u
) ∈ Z𝑑𝑛



× Z𝑑𝑛


; thus its eigenvalues are the
sums𝐸

𝑎,𝑏
= 𝜆

𝑎
+𝜇

𝑏
, where {𝜆

𝑎
} = Σ(HB𝐿𝑘 (u


)
) is the spectrum

ofHB𝐿𝑘 (u

)
and, respectively, {𝜇

𝑏
} = Σ(HB𝐿𝑘 (u


)
). Eigenvectors

of H(𝑅𝑘 ,𝑁)

u,𝑘 can be chosen in the form Ψ
𝑎,𝑏
= 𝜙

𝑎
⊗ 𝜓

𝑏
, where

{𝜙
𝑎
} are eigenvectors of HB(𝑛

)
𝐿𝑘

(u) and {𝜓𝑏} are eigenvectors

of HB(𝑛
)
𝐿𝑘

(u). Note that, for each eigenvalue 𝐸
𝑎,𝑏
= 𝜆

𝑎
+ 𝜇

𝑏
,

that is, for each pair (𝜆
𝑎
, 𝜇

𝑏
), the nonresonance assumption
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|𝐸 − (𝜆
𝑎
+ 𝜇

𝑏
)| ≥ e𝐿

𝛽

𝑘 reads as |(𝐸 − 𝜆
𝑎
) − 𝜇

𝑏
)| ≥ e𝐿

𝛽

𝑘 and also
as |(𝐸 − 𝜇

𝑏
) − 𝜆

𝑎
)| ≥ e𝐿

𝛽

𝑘 . Therefore, we can write

G(𝑅𝑘) (u, y; 𝐸)

= ∑

𝜆𝑎

∑

𝜇𝑏

𝜙
𝑎
(u
)𝜙

𝑎
(y)𝜓

𝑏
(u
)𝜓

𝑏
(y)

(𝜆
𝑎
+ 𝜇

𝑏
) − 𝐸

= ∑

𝜆𝑎

P

𝑎
(u
, y)G(𝑅𝑘)

B𝐿𝑘 (u

)
(u
, y; 𝐸 − 𝜆

𝑎
)

= ∑

𝜇𝑏

P

𝑏
(u
, y)G(𝑅𝑘)

B𝐿𝑘 (u

)
(u
, y; 𝐸 − 𝜇

𝑏
) ,

(111)

where the resolventsG(𝑅𝑘)

B𝐿𝑘 (u

)
(𝐸−𝜇

𝑏
) andG(𝑅𝑘)

B𝐿𝑘 (u

)
(𝐸−𝜆

𝑎
) are

nonresonant:

G(𝑅𝑘)

B𝐿𝑘 (u

)
(𝐸 − 𝜇

𝑏
)


≤ e𝐿

𝛽

𝑘 ,


G(𝑅𝑘)

B𝐿𝑘 (u

)
(𝐸 − 𝜆

𝑎
)


≤ e𝐿

𝛽

𝑘 .

(112)

For any y ∈ 𝜕−B
𝐿𝑘
(u), either 𝜌(u

, y) = 𝐿
𝑘
, in which case we

infer from (b)


G(𝑅𝑘) (u, y; 𝐸) ≤


B
𝐿𝑘
(u
)

e−𝛾(𝑚,𝐿𝑘,𝑁−1)𝐿𝑘+𝐿

𝛽

𝑘 , (113)

or 𝜌(u
, y) = 𝐿

𝑘
, and then we have


G(𝑅𝑘) (u, y; 𝐸) ≤


B
𝐿𝑘
(u
)

e−𝛾(𝑚,𝐿𝑘,𝑁−1)𝐿𝑘+𝐿

𝛽

𝑘 . (114)

In either case, the LHS is bounded by

exp (−𝑚 (1 + 𝐿−𝜏
𝑘
)
𝑁−(𝑁−1)+1

𝐿
𝑘
+ 𝐿

𝛽

𝑘
+ 𝐶 ln 𝐿

𝑘
)

<
1

2
e−𝛾(𝑚,𝐿𝑘,𝑁)

.

(115)

Next, using the second resolvent identity,

G = G(𝑅𝑘) − G(𝑅𝑘) (U − U(𝑅𝑘))G, (116)

and the assumed 𝐸-NR property of the resolvents G, G(𝑅𝑘),
we conclude that


G − G(𝑅𝑘)


≤

U − U(𝑅𝑘)




G(𝑅𝑘)


‖G‖ ≤ e−2𝑚𝐿𝑘e2𝐿

𝛽

𝑘

≤
1

2
e−𝛾(𝑚,𝐿𝑘,𝑁)

.

(117)

Now the claim follows from the inequality


G (x, y; 𝐸) − G(𝑅𝑘) (x, y; 𝐸) ≤

1

2
e−𝛾(𝑚,𝐿𝑘 ,𝑁)

,

∀x, y ∈ B(𝑁)

𝐿𝑘+1
(u) .

(118)

Lemma 33. Let B
𝐿𝑘+1
(x),B

𝐿𝑘+1
(y) be two distant PI balls.

Then, for 𝐿
0
large enough,

P {B
𝐿𝑘+1
(x) , B

𝐿𝑘+1
(y) 𝑎𝑟𝑒 (𝐸,𝑚) -𝑆}

<
1

4
𝐿
−𝑃(𝑁,𝑘+1)

𝑘+1
.

(119)

Proof. Let

R
(2)
= {∃𝐸 : B

𝐿𝑘+1
(x) , B

𝐿𝑘+1
(y) 𝑎𝑟𝑒 𝐸-R} ,

S
(2)
= {B

𝐿𝑘+1
(x) , B𝐿𝑘+1

(y) 𝑎𝑟𝑒 (𝐸,𝑚) -S} .
(120)

ThenP{S(2)
} ≤ P{R(2)

}+P{S(2)
\R(2)

}, andwithin the event
S(2)
\R(2) one of the balls B

𝐿𝑘+1
(x), B

𝐿𝑘+1
(y) must be 𝐸-NR,

no matter how 𝐸 ∈ R is chosen.
Next, consider the canonical factorization of the PI ball

B(𝑁)

𝐿𝑘+1
(x) = B(𝑛


)

𝐿𝑘+1
(x) × B(𝑛


)

𝐿𝑘+1
(x) . (121)

By Lemma 32, if both B
𝐿𝑘+1
(x) and B

𝐿𝑘+1
(x) are𝑚-Loc and

B
𝐿𝑘+1
(x) is (𝐸,𝑚)-S, then B

𝐿𝑘+1
(x) is 𝐸-R; hence within the

complement of the event R(2), the other ball B
𝐿𝑘+1
(y) must

be 𝐸-NR. On the other hand, consider the canonical factor-
ization of the PI ball

B(𝑁)

𝐿𝑘+1
(y) = B(𝑛


)

𝐿𝑘+1
(y) × B(𝑛


)

𝐿𝑘+1
(y) . (122)

If both B(𝑛)
𝐿𝑘+1
(y) and B(𝑛)

𝐿𝑘+1
(y) are 𝑚-Loc and

B(𝑁)

𝐿𝑘+1
(y) is (𝐸,𝑚)-S, then B(𝑁)

𝐿𝑘+1
(y)must be 𝐸-R. Let

L
(4)
= {one of the balls B(𝑛


)

𝐿𝑘+1
(x) ,B(𝑛


)

𝐿𝑘+1
(x) ,

B(𝑛

)

𝐿𝑘+1
(y) ,B(𝑛


)

𝐿𝑘+1
(y) is 𝑚-NL𝑜𝑐} .

(123)

Since these four balls correspond to systems with less than𝑁
particles, we can use induction in𝑁 and write

P {L
(4)
} ≤ 4𝐿

−𝑃(𝑁−1,𝑘+1)

𝑘+1
= 4𝐿

−2𝑃(𝑁,𝑘+1)

𝑘+1
. (124)

Then, as we have noticed, S(2)
\L(4)

⊂ R(2); hence, for 𝐿
0

large enough,

P {S
(2)
} ≤ P {R

(2)
} + P {L

(4)
}

≤ e−𝐿
𝛽

𝑘 + 4𝐿
−2𝑃(𝑁,𝑘+1)

𝑘+1
<
1

4
𝐿
−𝑃(𝑁,𝑘+1)

𝑘+1
.

(125)

The statement of Lemma 15 remains unchanged, but its
proof requires a minor modification.

Proof of Lemma 15 under hypothesis (U1). (A) By assumption,
either B

𝐿𝑘+1
(u) is 𝐸-CNR and contains no (𝐸,𝑚)-S ball of

radius 𝐿
𝑘
or there is a point w ∈ B

𝐿𝑘+1
(u) such that any ball

B
𝐿𝑘
(k) ⊂ B

𝐿𝑘+1
(u)with 𝜌(w, k) ≥ 𝐶

𝑁
𝐿
1+𝛿

𝑘
is (𝐸,𝑚)-NS. In the

former case, such an exclusion is unnecessary, but in order to
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treat both situations with one argument, we can formally set
w = u (or any other point).

Fix points x, y with 𝑅 := 𝜌(x, y) > 𝐿1+
𝑘

, where  = 2𝛿 is
defined in (103). Note that for 𝐿

0
large (hence, 𝐿

𝑘
also large),

𝐿
1+

𝑘
≫ 𝐿

1+𝛿

𝑘
. By triangle inequality,

𝜌 (x,B
(𝐶𝑁−1)𝐿𝑘

(w)) + 𝜌 (y,B(𝐶𝑁−1)𝐿𝑘
(w))

≥ 𝑅 − (2𝐶
𝑁
− 2) 𝐿

1+𝛿

𝑘
.

(126)

Assume first that

𝑟

:= 𝜌 (x,B

(𝐶𝑁−1)𝐿
1+𝛿
𝑘
(w)) ≥ 𝐿

𝑘
+ 1,

𝑟

:= 𝜌 (y,B

(𝐶𝑁−1)𝐿
1+𝛿
𝑘
(w)) ≥ 𝐿𝑘 + 1.

(127)

All the balls of radius 𝐿
𝑘
both in B

𝑟
(x) and in B

𝑟
(y) are

automatically (𝐸,𝑚)-NS. Furthermore, 𝑟 + 𝑟 ≥ 𝑅 − 2(𝐶
𝑁
−

1)𝐿
1+𝛿

𝑘
− 2 ≥ 𝑅 − 2𝐶

𝑁
𝐿
1+𝛿

𝑘
.

Consider the set B = B
𝑟
(x) × B

𝑟
(y) and the function

𝑓 : B → C defined by 𝑓(x, x) = GB𝐿𝑘+1
(x, x; 𝐸).

Since 𝐸 is not a pole of the resolvent GB𝐿𝑘+1 (u)
(⋅), it is well

defined (hence, bounded, on a finite set). By Lemma 10, 𝑓 is
(𝐿

𝑘
, 𝑞)-dominated both in x and in x, with 𝑞 ≤ e−𝛾(𝑚,𝐿𝑘,𝑛).

Therefore, one can write, with the convention −ln 0 = +∞,
using Lemma 7 and setting for brevity 𝐽 := 𝑀 − 𝑛 + 1,

− ln𝑓 (u, y)

≥ −ln[(e−𝑚(1+(1/2)𝐿
−𝜏
𝑘 )
𝐽
𝐿𝑘)

(𝑅−2𝐶𝑁𝐿
1+𝛿
𝑘 −2𝐿𝑘)/(𝐿𝑘+1)

⋅ e𝐿
𝛽

𝑘+1] = 𝑚(1 +
1

2
𝐿
−𝜏

𝑘
)

𝐽
𝐿
𝑘

𝐿
𝑘
+ 1
𝑅(1 −

3𝐶
𝑁

𝑅

⋅ 𝐿
𝑘
) − 𝐿

𝛽

𝑘+1
= 𝑚𝑅[(1 +

1

2
𝐿
−𝜏

𝑘
)

𝐽

(1 − 𝐿
−1

𝑘
)

⋅ (1 −
3𝐶

𝑁
𝐿
𝑘

𝐿
1+

𝑘

) −
𝐿
𝛽

𝑘+1

𝑚𝑅
] = 𝑚𝑅[(1 +

1

2
𝐿
−𝜏

𝑘
)

𝐽

⋅ (1 − 𝐿
−1

𝑘
) (1 − 3𝐶

𝑁
𝐿
−

𝑘
) −

𝐿
𝛽

𝑘+1

𝑚𝐿
1+

𝑘

] ≥ 𝑚(1 +
1

4

⋅ 𝐿
−𝜏

𝑘
)

𝐽

𝑅 ≥ 𝛾 (𝑚, 𝐿
𝑘+1
) 𝑅.

(128)

If 𝑟 = 0 (resp., 𝑟 = 0), the required bound follows from the
dominated decay of the function 𝑓(x, x) in x (resp., in x).

(B) This assertion is proved in the same way as its
counterpart in Section 3.3.

The rest of the scaling procedure presented in Section 4
requires no modification and applies to infinite-range inter-
actions.

8. Fermionic Hamiltonians on
More General Graphs

The reduction to a standard lattice Laplacian on a subset
{(𝑥

1
, . . . , 𝑥

𝑁
) : 𝑥

1
< ⋅ ⋅ ⋅ < 𝑥

𝑁
} with Dirichlet boundary

conditions is no longer possible for particle systems on
lattices Z𝑑 with 𝑑 > 1. Instead, one has to work with a
symmetric power of the lattice, considered as a graph. So
it seems reasonable to consider a fairly general, countable
connected graph Z satisfying the condition of polynomial
growth of balls:

∀𝑥 ∈Z ∀𝐿 ≥ 1
𝐵𝐿 (𝑥)

 ≤ 𝐶𝑑
𝐿
𝑑
, (129)

where 𝐵
𝐿
(𝑥) = {𝑦 ∈ Z : dZ(𝑥, 𝑦) ≤ 𝐿}. In particular,

this gives a uniform bound on the coordination numbers,
𝑛Z(𝑥) ≤ 𝐶𝑑

(of course, this bound may be nonoptimal).
An orthonormal basis in the Hilbert space of square-

summable antisymmetric functionsΨ :Z𝑁
→ C is formed

by the functions

Φa =
1

√𝑁!

∑

𝜋∈S𝑁

𝑁

⨂

𝑗=1

1
𝑎
𝜋−1(𝑗)
, (130)

where a = {𝑎
1
, . . . , 𝑎

𝑁
} with #{𝑎

1
, . . . , 𝑎

𝑁
} = 𝑁.

Further, define the graph (ZN
>
,EN

>
) as follows: the vertex

set is

Z
N
>

= {a = {𝑎
1
, . . . , 𝑎

𝑁
} : 𝑎

𝑗
∈Z, # {𝑎

1
, . . . , 𝑎

𝑁
} = 𝑁} .

(131)

Two vertices a, b form an edge iff

(i) the symmetric difference a ⊖ b has cardinality 1; that
is, a = {𝑎

1
, 𝑐

2
, . . . , 𝑐

𝑁
}, b = {𝑏

1
, 𝑐

2
, . . . , 𝑐

𝑁
}, with

#{𝑎
1
, 𝑏

1
, 𝑐

2
, . . . , 𝑐

𝑁
} = 𝑁 + 1;

(ii) dZ(𝑎1, 𝑏1) = 1.

Next, define onZN
>
the max-distance,

𝜌 (x, y) = min
𝜋∈S𝑁

max
1≤𝑗≤𝑁

dZ (𝑥𝜋−1(𝑗), 𝑦𝑗) , (132)

and introduce the balls B
𝐿
(x) relative to the distance 𝜌(⋅, ⋅).

Now one can define the fermionic (negative) Laplacian
(−Δ) on ZN

>
and random Hamiltonians H(𝜔) = −Δ +

𝑔V(x; 𝜔) + U(x), where

U (x) = ∑
𝑖 ̸=𝑗

𝑈(d (𝑥
𝑖
, 𝑥

𝑗
)) , 𝑈 : N → R, (133)

and the external random potential energy,

V (x; 𝜔) = 𝑉 (𝑥
1
; 𝜔) + ⋅ ⋅ ⋅ + 𝑉 (𝑥

𝑁
; 𝜔) , (134)

is generated by a random field 𝑉 :Z × Ω → R.
The method presented in Sections 3–7 applies to strongly

disordered random Hamiltonians H(𝜔) = −Δ + 𝑔V(x; 𝜔) +
U(x) describing fermionic systems on connected graphs Z
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with polynomial growth of balls; indeed, one can see that
we did not use particular properties of the one-dimensional
lattice Z = Z other than polynomially bounded growth of
balls.

Strongly disordered bosonic systems can be treated in a
similar way; the onlymodification required here concerns the
explicit form of the matrix elements of the Laplacian, which
remains a second-order finite-difference operator.

Appendix

A. Proofs of Auxiliary Statements

A.1. Proof of Lemma 17. We start with the second assertion.
The random potential energy V(𝜔) reads as follows:

V (𝑥
1
, . . . , 𝑥

𝑁
; 𝜔) = ∑

𝑦∈x
n
𝑦
𝑉 (𝑦; 𝜔) . (A.1)

Therefore, if 𝜌(x, y) ̸= 0, then there exists a point𝑤 ∈ ΠB
𝐿
(u)

such that n
𝑤
(x) ̸= n

𝑤
(y). As a result,

V (x; 𝜔) − V (y; 𝜔) = (n
𝑤
(x) − n

𝑤
(y)) 𝑉 (𝑤; 𝜔)

+ ∑

V ̸=𝑤

𝑐V𝑉 (V; 𝜔) ,
(A.2)

where the explicit form of the integer coefficients

𝑐V = nV (x) − nV (y) (A.3)

is irrelevant for our argument: it suffices to know that the sum
in the RHS of (A.2) is measurable with respect to the sigma-
algebra F

̸=𝑤
generated by the random variables {𝑉(V; ⋅), V ̸=

𝑤}, while

n
𝑤
(x) − n

𝑤
(y) =: 𝑐

𝑤
∈ Z \ {0} , hence 𝑐𝑤

 ≥ 1. (A.4)

Therefore,

P {
𝑔V (x; 𝜔) − 𝑔V (y; 𝜔)

 ≤ 𝑠}

= E [P {
V (x; 𝜔) − V (y; 𝜔)

 ≤
𝑔


−1
𝑠 | F

̸=𝑤
}]

= E [P {
𝑐𝑤𝑉 (𝑤; 𝜔) | z (𝜔)

 ≤
𝑔


−1
𝑠 | F

̸=𝑤
}]

(A.5)

with some F
̸=𝑤
-measurable random variable z(𝜔), rendered

nonrandom by conditioning on F
̸=𝑤
. The event figuring in

the above conditional probability has the form

{𝜔 : 𝑐
𝑤
𝑉 (𝑤; 𝜔) ∈ [z (𝜔) −

𝑔


−1
𝑠, z (𝜔) +

𝑔


−1
𝑠]}

= {𝜔 : 𝑉 (𝑤; 𝜔)

∈ [z (𝜔) −
𝑠
𝑔


−1

𝑐
𝑤

, z (𝜔) +
𝑠
𝑔


−1

𝑐
𝑤

]} .

(A.6)

Since |𝑐
𝑤
| ≥ 1 has length 2𝑠, we conclude that

P {
V (x; 𝜔) − V (y; 𝜔)

 ≤
𝑔


−1
𝑠}

≤ sup
𝑎∈R

(𝐹
𝑉,𝑤
(𝑎 + 2𝑠) − 𝐹

𝑉,𝑤
(𝑎)) ,

(A.7)

where 𝐹
𝑉,𝑤
(⋅) is the conditional PDF of the random field 𝑉

at 𝑤, given F
̸=𝑤
. Since 𝐹

𝑉,𝑤
is continuous, by assumption

(W1), the RHS of (A.7) vanishes as |𝑔| → ∞. Therefore, the
probability

P {∃ x, y ∈ B
𝐿
(u) : x ̸= y, 𝑔V (x) − 𝑔V (y)

 ≤ 𝑠} (A.8)

tends to 0 as |𝑔| → ∞, so with arbitrarily high probability,
the spectrum of the diagonal operatorV(𝜔) in B

𝐿0
(u) admits

a positive uniform lower bound 𝑠 > 0 on all spectral
spacings (differences between the eigenvalues). By taking
|𝑔| large enough, all spacings for operator 𝑔V(𝜔) can be
made arbitrarily large. Eigenvectors of a continuous finite-
dimensional operator family 𝐴(𝑡) with simple spectrum at
𝑡 = 𝑡

0
are continuous in a neighborhood of 𝑡

0
. To prove the

second assertion, it suffices to apply this fact to the family
𝐴(𝑡) =W − 𝑔−1𝑡Δ, 𝑡 ∈ [0, 1].

Theproof of the first assertion is even simpler.Using again
representation (A.1), we see that for each x the value of the
potential energyV(x; 𝜔) +U(x) is a linear combination (with
integer coefficients) of random variables with continuous
probability distribution obeying (W1). Arguing as above, one
can see that, for any 𝐸 ∈ R, 𝑠 > 0, and |𝑔| large enough, with
probability arbitrarily close to 1, dist(𝐸, Σ(HB𝐿0 (u)

)) ≥ 𝑠. By
the Combes-Thomas estimate [25], this implies exponential
decay of the Green functions,


GB𝐿0 (u)

(x, y; 𝐸)

≤ e−𝑚(𝑠)d(x,y)

, (A.9)

with 𝑚(𝑠) → ∞ as 𝑠 → ∞. Since the graph distance d(⋅, ⋅)
onZN

>
dominates the max-distance 𝜌(⋅, ⋅), the claim follows.

A.2. Proof of Lemma 20

Proof. (A) Consider the set Π𝐵
2𝐿
(x) ≡ ⋃

𝑛

𝑗=1
𝐵
2𝐿
(𝑥

𝑗
). If

diamΠx > 𝐴
𝑁
𝐿, this union cannot be connected, for other-

wise it would have diameter ≤ 𝑁 ⋅ 4𝐿, but diamΠ𝐵
2𝐿
(x) ≥

diamΠx > 𝐴
𝑁
𝐿 = 4𝑁𝐿. Therefore, Π𝐵

𝐿
1+𝛿(x) can be

decomposed into a disjoint union of two nonempty clusters:

(⋃

𝑗∈J

𝐵
2𝐿
(𝑥

𝑗
))∐(⋃

𝑖∈J𝑐

𝐵
2𝐿
(𝑥

𝑖
)) , (A.10)

so for all 𝑗 ∈ J, 𝑖 ∈ J𝑐 one has

𝜌 (𝐵
𝐿
(𝑥

𝑖
) , 𝐵

𝐿
(𝑥

𝑗
)) > 2𝐿, (A.11)

yielding assertion (B).
(B) If 𝜌(x, y) > 𝐶

𝑁
𝐿, then for some 𝑗

∘
, 𝜌(𝑥

𝑗∘
, 𝑦

𝑗∘
) > 𝐶

𝑁
𝐿.

Since both balls are FI, for all 𝑗 ∈ [1, 𝑛]

𝜌 (𝑥
𝑗
, 𝑥

𝑗∘
) ≤ diamΠx ≤ 𝐴

𝑁
𝐿,

𝜌 (𝑦
𝑗
, 𝑦

𝑗∘
) ≤ diamΠy < 𝐴

𝑁
𝐿,

(A.12)

so by triangle inequality, for all 𝑖, 𝑗 ∈ [1, 𝑛]

𝜌 (𝑥
𝑖
, 𝑦

𝑗
) ≥ 𝜌 (𝑥

𝑗∘
, 𝑦

𝑗∘
) − 𝜌 (𝑥

𝑖
, 𝑥

𝑗∘
) − 𝜌 (𝑦

𝑗
, 𝑦

𝑗∘
)

≥ 𝐶
𝑁
𝐿 − 2𝐴

𝑁
𝐿 ≥ 3𝐿,

(A.13)
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yielding

𝜌 (Π𝐵
𝐿
(x) , Π𝐵

𝐿
(y)) > 3𝐿 − 2𝐿 = 𝐿. (A.14)
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