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We discuss an integrable hierarchy of compatible Lax equations that is obtained by a wider deformation of a commutative algebra
in the loop space of sl

2
than that in the AKNS case and whose Lax equations are based on a different decomposition of this loop

space. We show the compatibility of these Lax equations and that they are equivalent to a set of zero curvature relations. We present
a linearization of the system and conclude by giving a wide construction of solutions of this hierarchy.

1. Introduction

Integrable hierarchies often occur as the evolution equations
of the generators of a deformation of a commutative subal-
gebra inside some Lie algebra g. The deformation and the
evolution equations are determined by a splitting of g in
the direct sum of two Lie subalgebras, like in the Adler-
Kostant-Symes Theorem (see [1]). This gives then rise to a
compatible set of Lax equations, a so-called hierarchy, and
the simplest nontrivial equation often determines the name
of the hierarchy. The hierarchy we discuss here corresponds
to a somewhat different splitting of an algebra of sl

2
loops

that with respect to the usual decomposition yields the
AKNS hierarchy. Following the terminology used in similar
situations (see [2]), we use the name strictAKNShierarchy for
the system of Lax equations corresponding to this different
decomposition.

The letters AKNS refer to the following fact: Ablowitz
et al. showed (see [3]) that the initial value problem of the
following system of equations for two complex functions 𝑞
and 𝑟 depending on the variables 𝑥 and 𝑡

𝑖
𝜕

𝜕𝑡
𝑞 (𝑥, 𝑡) fl 𝑖𝑞

𝑡
= −

1

2
𝑞
𝑥𝑥
+ 𝑞
2
𝑟,

𝑖
𝜕

𝜕𝑡
𝑟 (𝑥, 𝑡) fl 𝑖𝑟

𝑡
=
1

2
𝑟
𝑥𝑥
− 𝑞𝑟
2

(1)

could be solved with the Inverse Scattering Transform and
that is why this system (1) is called the AKNS equations. It

can be rewritten in a zero curvature form for 2 × 2-matrices
as follows: consider the matrices

𝑃
1
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A direct computation shows that the following identities hold
for them:
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(3)

By combining them, one sees that the AKNS equations are
equivalent to

𝜕

𝜕𝑡
(𝑃
1
) −

𝜕

𝜕𝑥
(𝑃
2
) − [𝑃

2
, 𝑃
1
] = 0. (4)

In the next section, we will show that (4) is the simplest
compatibility condition of a system of Lax equations that
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consequently carries the name AKNS hierarchy (see [4]).
Besides that, we introduce here also another system of
Lax equations for a more general deformation of the basic
generator of the commutative algebra. It relates to a different
decomposition of the relevant Lie algebra. Since its analogue
for theKP hierarchy is called the strict KP hierarchy, we use in
the present context the term strict AKNS hierarchy. We show
first of all that this new system is compatible and equivalent
with a set of zero curvature relations. Further, we describe
suitable linearizations that can be used to construct solutions
of both hierarchies.We conclude by constructing solutions of
both hierarchies.

2. The AKNS Hierarchy and Its Strict Version

We present here an algebraic description of the AKNS hier-
archy and its strict version that underlines the deformation
character of these hierarchies as pointed at in Introduction.At
(4), one has to deal with 2×2-matriceswhose coefficientswere
polynomial expressions of a number of complex functions
and their derivatives with respect to some parameters. The
same is true for the other equations in both hierarchies. We
formalize this as follows: our starting point is a commutative
complex algebra 𝑅 that should be seen as the source from
which the coefficients of the 2 × 2-matrices are taken. We
will work in the Lie algebra sl

2
(𝑅)[𝑧, 𝑧

−1
) consisting of all

elements

𝑋 =

𝑁

∑

𝑖=−∞

𝑋
𝑖
𝑧
𝑖
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𝑖
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and the bracket
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(6)

We will also make use of the slightly more general Lie algebra
gl
2
(𝑅)[𝑧, 𝑧

−1
), where the coefficients in the 𝑧-series from (5)

are taken fromgl
2
(𝑅) instead of sl

2
(𝑅) and the bracket is given

by the same formula. In the Lie algebra gl
2
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), we

decompose elements in two ways. The first is as follows:
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By restriction, it leads to a similar decomposition for
sl
2
(𝑅)[𝑧, 𝑧

−1
), which is relevant for the AKNS hierarchy. The

second way to decompose elements of gl
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By restricting it to sl
2
(𝑅)[𝑧, 𝑧

−1
), we get a similar decom-

position for this Lie algebra, which relates, as we will see
further on, to the strict version of the AKNS hierarchy. The
Lie subalgebras gl

2
(𝑅)[𝑧, 𝑧

−1
)
>0

and gl
2
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−1
)
⩽0

in (11)
are defined in a similar way as the first two Lie subalgebras
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Both hierarchies correspond to evolution equations for
deformations of the generators of a commutative Lie algebra
in the first component. Denote thematrix ( −𝑖 0

0 𝑖
) by𝑄

0
. Inside

sl
2
(𝑅)[𝑧, 𝑧

−1
)
⩾0
, this commutative complex Lie subalgebra𝐶

0

is chosen to be the Lie subalgebra with the basis {𝑄
0
𝑧
𝑚
| 𝑚 ⩾

0} and in sl
2
(𝑅)[𝑧, 𝑧

−1
)
>0
our choice will be the Lie subalgebra

𝐶
1
with the basis {𝑄

0
𝑧
𝑚
| 𝑚 ⩾ 1}. In the first case that we

work with 𝐶
0
, we assume that the algebra 𝑅 possesses a set

{𝜕
𝑚
| 𝑚 ⩾ 0} of commutingC-linear derivations 𝜕

𝑚
: 𝑅 → 𝑅,

where each 𝜕
𝑚
should be seen as the derivation corresponding

to the flow generated by 𝑄
0
𝑧
𝑚. The data (𝑅, {𝜕

𝑚
| 𝑚 ⩾ 0}) is

also called a setting for the AKNS hierarchy. In the case that
we work with the decomposition (11), we merely need a set of
commutingC-linear derivations 𝜕

𝑚
: 𝑅 → 𝑅,𝑚 ⩾ 1, with the

same interpretation. Staying in the same line of terminology,
we call the data (𝑅, {𝜕

𝑚
| 𝑚 ⩾ 1}) a setting for the strict AKNS

hierarchy.

Example 1. Examples of settings for the respective hierarchies
are the algebras of complex polynomials C[𝑡

𝑚
] in the vari-

ables {𝑡
𝑚
| 𝑚 ⩾ 0} and {𝑡

𝑚
| 𝑚 ⩾ 1}, respectively, or the
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formal power series C[[𝑡
𝑚
]] in the same variables, with both

algebras equipped with the derivations 𝜕
𝑚
= 𝜕/𝜕𝑡

𝑚
, 𝑚 ⩾ 0,

in the AKNS setup or 𝜕
𝑚
= 𝜕/𝜕𝑡

𝑚
,𝑚 ⩾ 1, in the strict AKNS

case.

We let each derivation 𝜕
𝑚
occurring in some setting act

coefficient-wise on the matrices from gl
2
(𝑅) and that defines

then a derivation of this algebra. The same holds for the
extension to gl

2
(𝑅)[𝑧, 𝑧

−1
) defined by

𝜕
𝑚
(𝑋) fl

𝑁

∑

𝑗=−∞

𝜕
𝑚
(𝑋
𝑗
) 𝑧
𝑗
. (13)

We have now sufficient ingredients to discuss the AKNS
hierarchy and its strict version. In the AKNS case, our interest
is in certain deformations of the Lie algebra 𝐶

0
obtained

by conjugating with elements of the group corresponding to
gl
2
(𝑅)[𝑧, 𝑧

−1
)
<0
. At the strict version, we are interested in

certain deformations of the Lie algebra𝐶
1
obtained by conju-

gating with elements from a group linked to gl
2
(𝑅)[𝑧, 𝑧

−1
)
⩽0
.

Note that for each 𝑋 ∈ gl
2
(𝑅)[𝑧, 𝑧

−1
)
<0

the exponential
map yields a well-defined element of the form

exp (𝑋) =
∞

∑

𝑘=0

1

𝑘!
𝑋
𝑘
= Id + 𝑌, 𝑌 ∈ gl

2
(𝑅) [𝑧, 𝑧

−1
)
<0

(14)

and with the formula for the logarithm one retrieves 𝑋 back
from 𝑌. One verifies directly that the elements of the form
(14) form a group with respect to multiplication and this we
see as the group 𝐺

<0
corresponding to gl

2
(𝑅)[𝑧, 𝑧

−1
)
<0
.

In the case of the Lie subalgebra gl
2
(𝑅)[𝑧, 𝑧

−1
)
⩽0
, one

cannot move back and forth between the Lie algebra and its
group. Nevertheless, one can assign a proper group to this
Lie algebra. A priori, the exponential exp(𝑌) of an element
𝑌 ∈ gl

2
(𝑅)[𝑧, 𝑧

−1
)
⩽0

does not have to define an element in
gl
2
(𝑅)[𝑧, 𝑧

−1
)
⩽0
. That requires convergence conditions. How-

ever, if it does, then it belongs to

𝐺
⩽0
=
{

{

{

𝐾 =

∞

∑

𝑗=0

𝐾
𝑗
𝑧
−𝑗
| all 𝐾

𝑗
∈ gl
2
(𝑅) , 𝐾

0

∈ gl
2
(𝑅)
∗
}

}

}

,

(15)

where gl
2
(𝑅)
∗ denotes the elements in gl

2
(𝑅) that have a

multiplicative inverse in gl
2
(𝑅). It is a direct verification that

𝐺
⩽0

is a group and we see it as a proper group corresponding
to the Lie algebra gl

2
(𝑅)[𝑧, 𝑧

−1
)
⩽0
. In fact, 𝐺

⩽0
is isomorphic

to the semidirect product of 𝐺
<0

and gl
2
(𝑅)
∗.

Now there holds the following.

Lemma 2. The group 𝐺
⩽0

acts by conjugation on sl
2
(𝑅)[𝑧,

𝑧
−1
).

Proof. Take first any 𝑔 ∈ 𝐺
<0
. Then, there is an𝑋 ∈ gl

2
(𝑅)[𝑧,

𝑧
−1
)
<0

such that 𝑔 = exp(𝑋). Now there holds for every 𝑌 ∈
sl
2
(𝑅)[𝑧, 𝑧

−1
)

𝑔𝑌𝑔
−1
= exp (𝑋) 𝑌 exp (−𝑋) = 𝑒ad(𝑋) (𝑌)

= 𝑌 +

∞

∑

𝑘=1

1

𝑘!
ad (𝑋)𝑘 (𝑌)

(16)

and this shows that the coefficients for the different powers
of 𝑧 in this expression are commutators of elements of gl

2
(𝑅)

and sl
2
(𝑅) and that proves the claim for elements from 𝐺

<0
.

Since conjugation with an element from gl
2
(𝑅)
∗ maps sl

2
(𝑅)

to itself, the same holds for sl
2
(𝑅)[𝑧, 𝑧

−1
). This proves the full

claim.

Next we have a look at the different deformations. The
deformations of𝐶

0
by elements of𝐺

<0
are determined by that

of𝑄
0
.Therefore, we focus on that element andwe consider for

some 𝑔 = exp(𝑋) = exp(∑∞
𝑗=1
𝑋
𝑗
𝑧
−𝑗
) ∈ 𝐺
<0

the deformation

𝑄 = 𝑔𝑄
0
𝑔
−1 fl

∞

∑

𝑖=0

𝑄
𝑖
𝑧
−𝑖

= (
−𝑖 0

0 𝑖
) + [𝑋

1
, 𝑄
0
] 𝑧
−1

+ {[𝑋
2
, 𝑄
0
] +

1

2
[𝑋
1
, [𝑋
1
, 𝑄
0
]]} 𝑧
−2
+ ⋅ ⋅ ⋅

(17)

of 𝑄
0
. From this formula, we see directly that if each 𝑋

𝑖
=

(
−𝛼𝑖 𝛽𝑖
𝛾𝑖 𝛼𝑖

), 𝑖 = 1, 2, then

𝑄
1
= (

0 2𝑖𝛽
1

−2𝑖𝛾
𝑖

0
) = (

0 𝑞

𝑟 0
) ,

𝑄
2
= (

𝑞
11
𝑞
12

𝑞
21
𝑞
22

)

= (
−2𝑖𝛽
1
𝛾
1

2𝑖 (𝛽
2
− 𝛼
1
𝛽
1
)

−2𝑖 (𝛾
2
+ 𝛼
1
𝛾
1
) 2𝑖𝛽

1
𝛾
1

) .

(18)

In particular, we get in this way that 𝑞
11
= −𝑖(𝑞𝑟/2) and

𝑞
22
= 𝑖(𝑞𝑟/2). Since 𝑄 is the deformation of 𝑄

0
and Id𝑧 is

central, the deformation of each 𝑄
0
𝑧
𝑚, 𝑚 ∈ Z, is given by

𝑄𝑧
𝑚.The deformation of the Lie algebra𝐶

1
by elements from

𝐺
⩽0

is basically determined by that of the element 𝑄
0
𝑧. So

we focus on the deformation of this element. Using the same
notations as at the deformation of 𝑄

0
by 𝐺
<0
, we get that the

deformation of 𝑄
0
𝑧 by a 𝐾𝑔 ∈ 𝐺

⩽0
, with 𝐾 ∈ gl

2
(𝑅)
∗ and

𝑔 ∈ 𝐺
<0
, looks like

𝑍 = 𝐾𝑔𝑄
0
𝑧𝑔
−1
𝐾
−1 fl

∞

∑

𝑖=0

𝐾𝑄
𝑖
𝐾
−1
𝑧
1−𝑖
=

∞

∑

𝑖=0

𝑍
𝑖
𝑧
1−𝑖

= 𝑍
0
𝑧 + [𝐾𝑋

1
𝐾
−1
, 𝑍
0
] + ⋅ ⋅ ⋅ .

(19)

Consequently, the corresponding deformation of each 𝑄
0
𝑧
𝑚,

𝑚 ⩾ 1, is 𝑍𝑧𝑚−1.
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Now we are looking for deformations 𝑄 of the form (17)
such that the evolution with respect to the {𝜕

𝑚
} satisfies the

following: for all𝑚 ⩾ 0,

𝜕
𝑚
(𝑄) = [(𝑄𝑧

𝑚
)
⩾0
, 𝑄] = − [(𝑄𝑧

𝑚
)
<0
, 𝑄] , (20)

where the second identity follows from the fact that all {𝑄𝑧𝑚}
commute. Equations (20) are called the Lax equations of
the AKNS hierarchy and the deformation 𝑄 satisfying these
equations is called a solution of the hierarchy. Note that
𝑄 = 𝑄

0
is a solution of the AKNS hierarchy and it is

called the trivial one. AKNS equation (4) occurs among the
compatibility equations of this system, as we will see further
on. Note that (20) for 𝑚 = 0 is simply 𝜕

0
(𝑄) = [𝑄

0
, 𝑄].

Therefore, if 𝜕
0
= 𝜕/𝜕𝑡

0
and both 𝑒−𝑖𝑡0 and 𝑒𝑖𝑡0 belong to the

algebra 𝑅 of matrix coefficients, then we can introduce the
loop �̂� ∈ sl

2
(𝑅)[𝑧, 𝑧

−1
) given by

�̂� fl exp (−𝑡
0
𝑄
0
) 𝑄 exp (𝑡

0
𝑄
0
)

= ∑

𝑘⩾0

exp (−𝑡
0
𝑄
0
) 𝑄
𝑘
exp (𝑡

0
𝑄
0
) 𝑧
−𝑘
,

(21)

which is easily seen to satisfy 𝜕
0
(�̂�) = 0. This handles then

the dependence of 𝑄 of 𝑡
0
.

Among the deformations 𝑍 of the form (19), we look for
𝑍 such that their evolution with respect to {𝜕

𝑚
} satisfies the

following: for all𝑚 ⩾ 1,

𝜕
𝑚
(𝑍) = [(𝑍𝑧

𝑚−1
)
>0
, 𝑍] = − [(𝑍𝑧

𝑚−1
)
⩽0
, 𝑍] , (22)

where the second identity follows from the fact that all
{𝑍𝑧
𝑚−1
} commute. Since (22) correspond to the strict cut-

off (10), they are called the Lax equations of the strict AKNS
hierarchy and the deformation 𝑍 is called a solution of this
hierarchy. Again there is at least one solution 𝑍 = 𝑄

0
𝑧. It is

called the trivial solution of the hierarchy.
For both systems (20) and (22), one can speak of compat-

ibility. Namely, there holds the following result.

Proposition 3. Both sets of Lax equations (20) and (22) are
the so-called compatible systems; that is, the projections {𝐵

𝑚
fl

(𝑄𝑧
𝑚
)
⩾0
| 𝑚 ⩾ 0} of a solution 𝑄 to (20) satisfy the zero

curvature relations

𝜕
𝑚1
(𝐵
𝑚2
) − 𝜕
𝑚2
(𝐵
𝑚1
) − [𝐵

𝑚1
, 𝐵
𝑚2
] = 0 (23)

and the projections {𝐶
𝑚
fl (𝑍𝑧

𝑚−1
)
>0
| 𝑚 ⩾ 1} corresponding

to a solution 𝑍 to (22) satisfy the zero curvature relations

𝜕
𝑚1
(𝐶
𝑚2
) − 𝜕
𝑚2
(𝐶
𝑚1
) − [𝐶

𝑚1
, 𝐶
𝑚2
] = 0. (24)

Proof. The idea is to show that the left-hand side of (23) and
(24), respectively, belongs to

sl
2
(𝑅) [𝑧, 𝑧

−1
)
⩾0
∩ sl
2
(𝑅) [𝑧, 𝑧

−1
)
<0

respectively sl
2
(𝑅) [𝑧, 𝑧

−1
)
>0
∩ sl
2
(𝑅) [𝑧, 𝑧

−1
)
⩽0

(25)

and thus has to be zero. We give the proof for {𝐶
𝑚
}; that for

{𝐵
𝑚
} is similar and is left to the reader. The inclusion in the

first factor is clear as both 𝐶
𝑚
and 𝜕
𝑛
(𝐶
𝑚
) belong to the Lie

subalgebra sl
2
(𝑅)[𝑧, 𝑧

−1
)
>0
.To show the other one, we use Lax

equations (22). Note that the same Lax equations hold for all
the {𝑧𝑁𝑍 | 𝑁 ⩾ 0}:

𝜕
𝑚
(𝑧
𝑁
𝑍) = [(𝑍𝑧

𝑚−1
)
>0
, 𝑧
𝑁
𝑍] . (26)

By substituting 𝐶
𝑚𝑖

= 𝑧
𝑚𝑖−1𝑍 − (𝑧

𝑚𝑖−1𝑍)
<0
, we get the

identities for

𝜕
𝑚1
(𝐶
𝑚2
) − 𝜕
𝑚2
(𝐶
𝑚1
)

= 𝜕
𝑚1
(𝑧
𝑚2−1𝑍) − 𝜕

𝑚1
((𝑧
𝑚2−1𝑍)

⩽0
)

− 𝜕
𝑚2
(𝑧
𝑚1−1𝑍) + 𝜕

𝑚2
((𝑧
𝑚1−1𝑍)

⩽0
)

= [𝐶
𝑚1
, 𝑧
𝑚2−1𝑍] − [𝐶

𝑚2
, 𝑧
𝑚1−1𝑍]

− 𝜕
𝑚1
((𝑧
𝑚2−1𝑍)

⩽0
) + 𝜕
𝑚2
((𝑧
𝑚1−1𝑍)

⩽0
)

(27)

and

[𝐶
𝑚1
, 𝐶
𝑚2
]

= [𝑧
𝑚1−1𝑍 − (𝑧

𝑚1−1𝑍)
⩽0
, 𝑧
𝑚2−1𝑍 − (𝑧

𝑚2−1𝑍)
⩽0
]

= − [(𝑧
𝑚1−1𝑍)

⩽0
, 𝑧
𝑚2−1𝑍]

+ [(𝑧
𝑚2−1𝑍)

⩽0
, 𝑧
𝑚1−1𝑍]

+ [(𝑧
𝑚1−1𝑍)

⩽0
, (𝑧
𝑚2−1𝑍)

⩽0
] .

(28)

Taking into account the second identity in (22), we see that
the left-hand side of (24) is equal to

− 𝜕
𝑚1
((𝑧
𝑚2−1𝑍)

⩽0
) + 𝜕
𝑚2
((𝑧
𝑚1−1𝑍)

⩽0
)

− [(𝑧
𝑚1−1𝑍)

⩽0
, (𝑧
𝑚2−1𝑍)

⩽0
] .

(29)

This element belongs to the Lie subalgebra sl
2
(𝑅)[𝑧, 𝑧

−1
)
⩽0

and that proves the claim.

Reversely, we have the following.

Proposition 4. Suppose we have a deformation 𝑄 of the type
(17) or a deformation 𝑍 of the form (19). Then, there holds the
following:

(1) Assume that the projections {𝐵
𝑚
fl (𝑄𝑧

𝑚
)
⩾0
| 𝑚 ⩾ 0}

satisfy the zero curvature relations (23). Then, 𝑄 is a
solution of the AKNS hierarchy.

(2) Similarly, if the projections {𝐶
𝑚

fl (𝑍𝑧
𝑚−1
)
⩾0
| 𝑚 ⩾

1} satisfy the zero curvature relations (24), then 𝑍 is a
solution of the strict AKNS hierarchy.
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Proof. Againwe prove the statement for𝑍; that for𝑄 is shown
in a similarway. So, assume that there is one Lax equation (22)
that does not hold. Then, there is a𝑚 ⩾ 1 such that

𝜕
𝑚
(𝑍) − [𝐶

𝑚
, 𝑍] = ∑

𝑗⩽𝑘(𝑚)

𝑋
𝑗
𝑧
𝑗
, with 𝑋

𝑘(𝑚)
̸= 0. (30)

Since both 𝜕
𝑚
(𝑍) and [𝐶

𝑚
, 𝑍] are of order smaller than or

equal to one in 𝑧, we know that 𝑘(𝑚) ⩽ 1. Further, we can say
that for all𝑁 ⩾ 0

𝜕
𝑚
(𝑧
𝑁
𝑍) − [𝐶

𝑚
, 𝑧
𝑁
𝑍] = ∑

𝑗⩽𝑘(𝑚)

𝑋
𝑗
𝑧
𝑗+𝑁
,

with 𝑋
𝑘(𝑚)

̸= 0

(31)

and we see by letting 𝑁 go to infinity that the right-hand
side can obtain any sufficiently large order in 𝑧. By the zero
curvature relation for𝑁 and𝑚, we get for the left-hand side

𝜕
𝑚
(𝑧
𝑁
𝑍) − [𝐶

𝑚
, 𝑧
𝑁
𝑍]

= 𝜕
𝑚
(𝐶
𝑁
) − [𝐶

𝑚
, 𝐶
𝑁
] + 𝜕
𝑚
((𝑧
𝑁
𝑍)
⩽0
)

− [𝐶
𝑚
, (𝑧
𝑁
𝑍)
⩽0
]

= 𝜕
𝑁
(𝐶
𝑚
) + 𝜕
𝑚
((𝑧
𝑁
𝑍)
⩽0
) − [𝐶

𝑚
, (𝑧
𝑁
𝑍)
⩽0
]

(32)

and this last expression is of order smaller or equal to 𝑚 in
𝑧. This contradicts the unlimited growth in orders of 𝑧 of the
right-hand side. Hence, all Lax equations (22) have to hold
for 𝑍.

Because of the equivalence between Lax equations (20)
for 𝑄 and the zero curvature relations (23) for {𝐵

𝑚
}, we call

this last set of equations also the zero curvature form of the
AKNS hierarchy. Similarly, the zero curvature relations (24)
for {𝐶

𝑚
} are called the zero curvature form of the strict AKNS

hierarchy.
Besides the zero curvature relations for the cut-off ’s

{𝐵
𝑚
} and {𝐶

𝑚
}, respectively, corresponding to, respectively,

a solution 𝑄 of the AKNS hierarchy and a solution 𝑍 of the
strict AKNS hierarchy, also other parts satisfy such relations.
Define

𝐴
𝑚
fl 𝐵
𝑚
− 𝑄𝑧
𝑚
, 𝑚 ⩾ 0,

𝐷
𝑚
fl 𝐶
𝑚
− 𝑍𝑧
𝑚−1
, 𝑚 ⩾ 1.

(33)

Then, we have the following result.

Corollary 5. The following relations hold:

(i) The parts {𝐴
𝑚
| 𝑚 ⩾ 0} of a solution 𝑄 of the AKNS

hierarchy satisfy

𝜕
𝑚1
(𝐴
𝑚2
) − 𝜕
𝑚2
(𝐴
𝑚1
) − [𝐴

𝑚1
, 𝐴
𝑚2
] = 0. (34)

(ii) The parts {𝐷
𝑚
| 𝑚 ⩾ 0} of a solution 𝑍 of the strict

AKNS hierarchy satisfy

𝜕
𝑚1
(𝐷
𝑚2
) − 𝜕
𝑚2
(𝐷
𝑚1
) − [𝐷

𝑚1
, 𝐷
𝑚2
] = 0. (35)

Proof. Again we show the result only in the strict case. Note
that {𝑍𝑧𝑚−1} satisfy Lax equations similar to 𝑍:

𝜕
𝑖
(𝑍𝑧
𝑚−1
) = [𝐷

𝑖
, 𝑍𝑧
𝑚−1
] , 𝑖 ⩾ 1. (36)

Now we substitute in the zero curvature relations for {𝐶
𝑚
}

everywhere the relation 𝐶
𝑚
= 𝐷
𝑚
+ 𝑍𝑧
𝑚−1 and use the Lax

equations above and the fact that all {𝑍𝑧𝑚−1} commute. This
gives the desired result.

To clarify the link with the AKNS equation, consider
relation (23) for𝑚

1
= 2 and𝑚

2
= 1:

𝜕
2
(𝑄
0
𝑧 + 𝑄

1
) = 𝜕
1
(𝑄
0
𝑧
2
+ 𝑄
1
𝑧 + 𝑄

2
)

+ [𝑄
2
, 𝑄
0
𝑧 + 𝑄

1
] .

(37)

Then, this identity reduces in sl
2
(𝑅)[𝑧, 𝑧

−1
)
⩾0
, since 𝑄

0
is

constant, to the following two equalities:

𝜕
1
(𝑄
1
) = [𝑄

0
, 𝑄
2
] ,

𝜕
2
(𝑄
1
) = 𝜕
1
(𝑄
2
) + [𝑄

2
, 𝑄
1
] .

(38)

The first gives an expression of the off-diagonal terms of 𝑄
2

in the coefficients 𝑞 and 𝑟 of 𝑄
1
; that is,

𝑞
12
=
𝑖

2
𝜕
1
(𝑞) ,

𝑞
21
= −

𝑖

2
𝜕
1
(𝑟) ,

(39)

and the second equation becomes AKNS equations (4), if one
has 𝜕
1
= 𝜕/𝜕𝑥 and 𝜕

2
= 𝜕/𝜕𝑡.

3. The Linearization of Both Hierarchies

The zero curvature form of both hierarchies points at the
possible existence of a linear system of which the zero
curvature equations form the compatibility conditions. We
present here such a system for each hierarchy. For the
AKNS hierarchy, this system, the linearization of the AKNS
hierarchy, is as follows: take a potential solution𝑄 of the form
(17) and consider the system

𝑄𝜓 = 𝜓𝑄
0
,

𝜕
𝑚
(𝜓) = 𝐵

𝑚
𝜓, ∀𝑚 ⩾ 0, 𝐵

𝑚
= (𝑄𝑧

𝑚
)
⩾0
.

(40)

Likewise, for a potential solution 𝑍 of the strict AKNS
hierarchy of the form (19), the linearization of the strict AKNS
hierarchy is given by

𝑍𝜑 = 𝜑𝑄
0
𝑧,

𝜕
𝑚
(𝜑) = 𝐶

𝑚
𝜑, ∀𝑚 ⩾ 1, 𝐶

𝑚
= (𝑍𝑧

𝑚−1
)
>0
.

(41)

Before specifying𝜓 and𝜑, we show themanipulations needed
to derive the Lax equations of the hierarchy from their
linearization.Wedo this for the strictAKNShierarchy; for the
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AKNS hierarchy one proceeds similarly. Apply 𝜕
𝑚
to the first

equation in (41) and use both equalities in (41) in the sequel:

𝜕
𝑚
(𝑍𝜑 − 𝜑𝑄

0
𝑧) = 𝜕

𝑚
(𝑍) 𝜑 + 𝑍𝜕

𝑚
(𝜑) − 𝜕

𝑚
(𝜑)𝑄
0
𝑧

= 0 = 𝜕
𝑚
(𝑍) 𝜑 + 𝑍𝐶

𝑚
𝜑 − 𝐶

𝑚
𝜑𝑄
0
𝑧

= {𝜕
𝑚
(𝑍) − [𝐶

𝑚
, 𝑍]} 𝜑 = 0.

(42)

Hence, if we can scratch 𝜑 from (42), then we obtain the Lax
equations of the strict AKNS hierarchy. To get the proper
setup where all these manipulations make sense, we first have
a look at the linearization for the trivial solutions𝑄 = 𝑄

0
and

𝑍 = 𝑄
0
𝑧. In the AKNS case, we have then

𝑄
0
𝜓
0
= 𝜓
0
𝑄
0
,

𝜕
𝑚
(𝜓
0
) = 𝑄

0
𝑧
𝑚
𝜓
0
, ∀𝑚 ⩾ 0

(43)

and for its strict version

𝑄
0
𝑧𝜑
0
= 𝜑
0
𝑄
0
𝑧,

𝜕
𝑚
(𝜑
0
) = 𝑄

0
𝑧
𝑚
𝜑
0
, ∀𝑚 ⩾ 1.

(44)

Assuming that each derivation 𝜕
𝑚
equals 𝜕/𝜕𝑡

𝑚
, one arrives

for (43) at the solution

𝜓
0
= 𝜓
0
(𝑡, 𝑧) = exp(

∞

∑

𝑚=0

𝑡
𝑚
𝑄
0
𝑧
𝑚
) , (45)

where 𝑡 is the short hand notation for {𝑡
𝑚
| 𝑚 ⩾ 0}, and for

(44) it leads to

𝜑
0
= 𝜑
0
(𝑡, 𝑧) = exp(

∞

∑

𝑚=1

𝑡
𝑚
𝑄
0
𝑧
𝑚
) ,

with 𝑡 = {𝑡
𝑚
| 𝑚 ⩾ 1} .

(46)

In general, one needs in the linearizations (𝜓) and (𝜑),
respectively, a left action with elements like 𝑄, 𝐵

𝑚
and 𝑍,

𝐶
𝑚
from gl

2
(𝑅)[𝑧, 𝑧

−1
), respectively, an action of all the 𝜕

𝑚
,

and a right action of 𝑄
0
and 𝑄

0
𝑧, respectively. This can

all be realized in suitable gl
2
(𝑅)[𝑧, 𝑧

−1
) modules that are

perturbations of the trivial solutions 𝜓
0
and 𝜑

0
. Consider in

a AKNS setting

M
0
= {{𝑔 (𝑧)} 𝜓

0
= {

𝑁

∑

𝑖=−∞

𝑔
𝑖
𝑧
𝑖
}𝜓
0
| 𝑔 (𝑧)

=

𝑁

∑

𝑖=−∞

𝑔
𝑖
𝑧
𝑖
∈ gl
2
(𝑅) [𝑧, 𝑧

−1
)}

(47)

and in a strict AKNS setting

M
1
= {{𝑔 (𝑧)} 𝜑

0
= {

𝑁

∑

𝑖=−∞

𝑔
𝑖
𝑧
𝑖
}𝜑
0
| 𝑔 (𝑧)

=

𝑁

∑

𝑖=−∞

𝑔
𝑖
𝑧
𝑖
∈ gl
2
(𝑅) [𝑧, 𝑧

−1
)} ,

(48)

where the products {𝑔(𝑧)}𝜓
0
and {𝑔(𝑧)}𝜑

0
should be seen as

formal and both factors should be kept separate. On bothM
0

andM
1
, one can define the required actions: for each ℎ(𝑧) ∈

gl
2
(𝑅)[𝑧, 𝑧

−1
), define

ℎ (𝑧) ⋅ {𝑔 (𝑧)} 𝜓
0
fl {ℎ (𝑧) 𝑔 (𝑧)} 𝜓

0

respectively ℎ (𝑧) ⋅ {𝑔 (𝑧)} 𝜑
0
fl {ℎ (𝑧) 𝑔 (𝑧)} 𝜑

0
.

(49)

We define the right-hand action of 𝑄
0
and 𝑄

0
𝑧, respectively,

by

{𝑔 (𝑧)} 𝜓
0
𝑄
0
fl {𝑔 (𝑧)𝑄

0
} 𝜓
0

respectively {𝑔 (𝑧)} 𝜑
0
𝑄
0
𝑧 fl {𝑔 (𝑧)𝑄

0
𝑧} 𝜑
0

(50)

and the action of each 𝜕
𝑚
by

𝜕
𝑚
({𝑔 (𝑧)} 𝜓

0
)

= {

𝑁

∑

𝑖=−∞

𝜕
𝑚
(𝑔
𝑖
) 𝑧
𝑖
+ {

𝑁

∑

𝑖=−∞

𝑔
𝑖
𝑄
0
𝑧
𝑖+𝑚
}}𝜓
0
,

𝜕
𝑚
({𝑔 (𝑧)} 𝜑

0
)

= {

𝑁

∑

𝑖=−∞

𝜕
𝑚
(𝑔
𝑖
) 𝑧
𝑖
+ {

𝑁

∑

𝑖=−∞

𝑔
𝑖
𝑄
0
𝑧
𝑖+𝑚
}}𝜑
0
.

(51)

Analogous to the terminology in the scalar case (see [5]), we
call the elements of M

0
and M

1
oscillating matrices. Note

that both M
0
and M

1
are free gl

2
(𝑅)[𝑧, 𝑧

−1
) modules with

generators 𝜓
0
and 𝜑

0
, respectively, because for each ℎ(𝑧) ∈

gl
2
(𝑅)[𝑧, 𝑧

−1
) we have

ℎ (𝑧) ⋅ 𝜓
0
= ℎ (𝑧) ⋅ {1} 𝜓

0
= {ℎ (𝑧)} 𝜓

0
,

respectively ℎ (𝑧) ⋅ 𝜑
0
= ℎ (𝑧) ⋅ {1} 𝜓

0
= {ℎ (𝑧)} 𝜑

0
.

(52)

Hence, in order to be able to perform legally the scratching of
𝜓 = {ℎ(𝑧)}𝜓

0
or 𝜑 = {ℎ(𝑧)}𝜑

0
, it is enough to find oscillating

matrices such that ℎ(𝑧) is invertible in gl
2
(𝑅)[𝑧, 𝑧

−1
). We will

now introduce a collection of such elements that will occur at
the construction of solutions of both hierarchies.

For𝑚 = (𝑚
1
, 𝑚
2
) ∈ Z2, let 𝛿(𝑚) ∈ gl

2
(𝑅)[𝑧, 𝑧

−1
) be given

by

𝛿 (𝑚) = (
𝑧
𝑚1 0

0 𝑧
𝑚2
) . (53)

Then, 𝛿(𝑚) has 𝛿(−𝑚) as its inverse in gl
2
(𝑅)[𝑧, 𝑧

−1
) and the

collection Δ = {𝛿(𝑚) | 𝑚 ∈ Z2} forms a group. An element
𝜓 ∈M

0
is called an oscillating matrix of type 𝛿(𝑚) if it has the

form

𝜓 = {ℎ (𝑧) 𝛿 (𝑚)} 𝜓
0
, with ℎ (𝑧) ∈ 𝐺

<0
. (54)

These oscillatingmatrices are examples of elements ofM
0
for

which the scratching procedure is valid. Let 𝑄 be a potential
solution of the AKNS hierarchy of the form (17). If there is
an oscillating function 𝜓 of type 𝛿(𝑚) such that for 𝑄 and 𝜓
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(40) hold, then we call𝜓 awave matrix of the AKNS hierarchy
of type 𝛿(𝑚). In particular, 𝑄 is then a solution of the AKNS
hierarchy and the first equation in (40) implies

𝑄ℎ (𝑧) 𝛿 (𝑚) = ℎ (𝑧)𝑄
0
𝛿 (𝑚) ⇒

𝑄 = ℎ (𝑧)𝑄
0
ℎ (𝑧)
−1
;

(55)

in other words, the solution 𝑄 is totally determined by the
wave matrix. Similarly, we call an element 𝜑 ∈ M

1
an

oscillating matrix of type 𝛿(𝑚) if it has the form

𝜑 = {ℎ (𝑧) 𝛿 (𝑚)} 𝜑
0
, with ℎ (𝑧) ∈ 𝐺

⩽0
. (56)

This type of oscillating matrices are examples of elements of
M
1
for which the scratching procedure is valid. Let 𝑍 be a

potential solution of the strict AKNS hierarchy of the form
(19). If there is an oscillating function 𝜑 of type 𝛿(𝑚) in M

1

such that for𝑍 and𝜑 (41) hold, thenwe call𝜑 awavematrix of
the strict AKNS hierarchy of type 𝛿(𝑚). In particular,𝑍 is then
a solution of the strict AKNS hierarchy and the first equation
in (41) implies

𝑍ℎ (𝑧) 𝛿 (𝑚) = ℎ (𝑧)𝑄
0
𝑧𝛿 (𝑚) ⇒

𝑍 = ℎ (𝑧)𝑄
0
𝑧ℎ (𝑧)

−1
,

(57)

so that also here the wave matrix fully determines the
solution.

For both hierarchies, there is a milder condition that is to
be satisfied by oscillating matrices of a certain type, in order
that they become a wave matrix of that hierarchy.

Proposition 6. Let𝜓 = {ℎ(𝑧)𝛿(𝑚)}𝜓
0
be an oscillatingmatrix

of type 𝛿(𝑚) in M
0
and 𝑄 = ℎ(𝑧)𝑄

0
ℎ(𝑧)
−1 the corresponding

potential solution of the AKNS hierarchy. Similarly, let 𝜑 =

{ℎ(𝑧)𝛿(𝑚)}𝜑
0
be such a matrix in M

1
with potential solution

𝑍 = ℎ(𝑧)𝑄
0
𝑧ℎ(𝑧)
−1.

(a) If there exists for each 𝑚 ⩾ 0 an element 𝑀
𝑚
∈

gl
2
(𝑅)[𝑧, 𝑧

−1
)
⩾0

such that

𝜕
𝑚
(𝜓) = 𝑀

𝑚
𝜓, (58)

then each𝑀
𝑚
= (𝑄𝑧

𝑚
)
⩾0

and 𝜓 is a wave matrix of
type 𝛿(𝑚) for the AKNS hierarchy.

(b) If there exists for each 𝑚 ⩾ 1 an element 𝑁
𝑚
∈

gl
2
(𝑅)[𝑧, 𝑧

−1
)
>0

such that

𝜕
𝑚
(𝜑) = 𝑁

𝑚
𝜑, (59)

then each 𝑁
𝑚
= (𝑍𝑧

𝑚−1
)
>0

and 𝜑 is a wave matrix of
type 𝛿(𝑚) for the strict AKNS hierarchy.

Proof. We give the proof again for the strict AKNS case;
the other one is similar. By using the fact that M

1
is a free

gl
2
(𝑅)[𝑧, 𝑧

−1
)module with generator 𝜑

0
we can translate the

relations 𝜕
𝑚
(𝜑) = 𝑁

𝑚
𝜑 into equations in gl

2
(𝑅)[𝑧, 𝑧

−1
). This

yields

𝜕
𝑚
(ℎ (𝑧)) + ℎ (𝑧)𝑄

0
𝑧
𝑚
= 𝑁
𝑚
ℎ (𝑧) ⇒

𝜕
𝑚
(ℎ (𝑧)) ℎ (𝑧)

−1
+ 𝑍𝑧
𝑚−1

= 𝑁
𝑚
.

(60)

Projecting the right-hand side on gl
2
(𝑅)[𝑧, 𝑧

−1
)
>0

gives us the
identity

(𝑍𝑧
𝑚−1
)
>0
= 𝑁
𝑚 (61)

we are looking for.

In the next section, we produce a context where we can
construct wave matrices for both hierarchies in which the
product is real.

4. The Construction of the Solutions

In this section, we will show how to construct a wide class of
solutions of both hierarchies. This is done in the style of [6].
We first describe the group of loops we will work with. For
each 0 < 𝑟 < 1, let 𝐴

𝑟
be the annulus

{𝑧 | 𝑧 ∈ C, 𝑟 ⩽ |𝑧| ⩽
1

𝑟
} . (62)

Following [7], we use the notation 𝐿anGL2(C) for the col-
lection of holomorphic maps from some annulus 𝐴

𝑟
into

GL
2
(C). It is a group with respect to pointwise multiplication

and contains in a natural way GL
2
(C) as a subgroup as the

collection of constant maps into GL
2
(C). Other examples

of elements in 𝐿anGL2(C) are the elements of Δ. However,
𝐿anGL2(C) is more than just a group; it is an infinite
dimensional Lie group. Its manifold structure can be read off
from its Lie algebra 𝐿angl2(C) consisting of all holomorphic
maps 𝛾 : 𝑈 → gl

2
(C), where 𝑈 is an open neighborhood of

some annulus 𝐴
𝑟
, 0 < 𝑟 < 1. Since gl

2
(C) is a Lie algebra,

the space 𝐿angl2(C) becomes a Lie algebra with respect to the
pointwise commutator. Topologically, the space 𝐿angl2(C) is
the direct limit of all the spaces 𝐿an,𝑟gl2(C), where this last
space consists of all 𝛾 corresponding to the fixed annulus
𝐴
𝑟
. One gives each 𝐿an,𝑟gl2(C) the topology of uniform

convergence and with that topology it becomes a Banach
space. In this way, 𝐿angl2(C) becomes a Fréchet space. The
pointwise exponential map defines a local diffeomorphism
around zero in 𝐿angl2(C) (see, e.g., [8]).

Now each 𝛾 ∈ 𝐿angl2(C) possesses an expansion in a
Fourier series

𝛾 =

∞

∑

𝑘=−∞

𝛾
𝑘
𝑧
𝑘
, with each 𝛾

𝑘
∈ gl
2
(C) (63)

that converges absolutely on the annulus 𝐴
𝑟
:

∞

∑

𝑘=−∞

𝛾𝑘
 𝑟
−|𝑘|

< ∞. (64)

This Fourier expansion is used to make two different decom-
positions of the Lie algebra𝐿angl2(C).Thefirst is the analogue
for the present Lie algebra 𝐿angl2(C) of decomposition (8) of
gl
2
(𝑅)[𝑧, 𝑧

−1
) that lies at the basis of the Lax equations of the

AKNS hierarchy. Namely, consider the subspaces

𝐿angl2 (C)⩾0 fl {𝛾 | 𝛾 ∈ 𝐿angl2 (C) , 𝛾 =
∞

∑

𝑘=0

𝛾
𝑘
𝑧
𝑘
} ,
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𝐿angl2 (C)<0

fl {𝛾 | 𝛾 ∈ 𝐿angl2 (C) , 𝛾 =
−1

∑

𝑘=−∞

𝛾
𝑘
𝑧
𝑘
} .

(65)

Both are Lie subalgebras of 𝐿angl2(C) and their direct sum
equals the whole Lie algebra. The first Lie algebra consists of
the elements in 𝐿angl2(C) that extend to holomorphic maps
defined on some disk {𝑧 ∈ C | |𝑧| ⩽ 1/𝑟}, 0 < 𝑟 < 1, and
the second Lie algebra corresponds to the maps in 𝐿angl2(C)
that have a holomorphic extension towards some disk around
infinity {𝑧 ∈ P1(C) | |𝑧| ⩾ 𝑟}, 0 < 𝑟 < 1, and that are
zero at infinity. To each of the two Lie subalgebras belongs
a subgroup of 𝐿anGL2(C). The pointwise exponential map
applied to elements of 𝐿angl2(C)<0 yields elements of

𝑈
−
= {𝛾 | 𝛾 ∈ 𝐿angl2 (C) , 𝛾 = Id +

−1

∑

𝑘=−∞

𝛾
𝑘
𝑧
𝑘
} (66)

and the exponential map applied to elements of 𝐿angl2(C)⩾0
maps them into

𝑃
+
= {𝛾 | 𝛾 ∈ 𝐿angl2 (C) , 𝛾 = 𝛾0 +

∞

∑

𝑘=1

𝛾
𝑘
𝑧
𝑘
, with 𝛾

0

∈ GL
2
(C)} .

(67)

Both𝑈
−
and 𝑃
+
are easily seen to be subgroups of 𝐿anGL2(C)

and since the direct sum of their Lie algebras is 𝐿angl2(C),
their product

Ω = 𝑈
−
𝑃
+ (68)

is open in 𝐿anGL2(C) and is called, like in the finite dimen-
sional case, the big cell with respect to 𝑈

−
and 𝑃

+
.

The second decomposition is the analogue of the splitting
(11) of gl

2
(𝑅)[𝑧, 𝑧

−1
) that led to the Lax equations of the strict

AKNS hierarchy. Now we consider the subspaces

𝐿angl2 (C)>0 fl {𝛾 | 𝛾 ∈ 𝐿angl2 (C) , 𝛾 =
∞

∑

𝑘=1

𝛾
𝑘
𝑧
𝑘
} ,

𝐿angl2 (C)⩽0

fl {𝛾 | 𝛾 ∈ 𝐿angl2 (C) , 𝛾 =
0

∑

𝑘=−∞

𝛾
𝑘
𝑧
𝑘
} .

(69)

Both are Lie subalgebras of 𝐿angl2(C) and their direct sum
equals the whole Lie algebra. 𝐿angl2(C)>0 consists of maps
whose holomorphic extension to 𝑧 = 0 equals zero in
that point and 𝐿angl2(C)⩽0 is the set of maps that extend
homomorphically to a neighborhood of infinity. To each
of them belongs a subgroup of 𝐿anGL2(C). The pointwise
exponential map applied to elements of 𝐿angl2(C)>0 yields
elements of

𝑈
+
= {𝛾 | 𝛾 ∈ 𝐿angl2 (C) , 𝛾 = Id +

∞

∑

𝑘=1

𝛾
𝑘
𝑧
𝑘
} (70)

and the exponential map applied to elements of 𝐿angl2(C)⩽0
maps them into

𝑃
−
= {𝛾 | 𝛾 ∈ 𝐿angl2 (C) , 𝛾 = 𝛾0

+

−1

∑

𝑘=−∞

𝛾
𝑘
𝑧
𝑘
, with 𝛾

0
∈ GL
2
(C)} .

(71)

Both𝑃
−
and𝑈

+
are easily seen to be subgroups of 𝐿anGL2(C).

Since the direct sum of their Lie algebras is 𝐿angl2(C), their
product 𝑃

−
𝑈
+
is open and because 𝑃

+
= GL

2
(C)𝑈
+
=

𝑈
+
GL
2
(C) and 𝑃

−
= GL
2
(C)𝑈
−
= 𝑈
−
GL
2
(C), this gives the

equality

𝑃
−
𝑈
+
= Ω = 𝑈

−
𝑃
+ (72)

the big cell in 𝐿anGL2(C).
The next two subgroups of 𝐿anGL2(C) correspond to

the exponential factors in both linearizations. The group of
commuting flows relevant for the AKNS hierarchy is the
group

Γ
0
= {𝛾
0
(𝑡) = exp(

∞

∑

𝑖=0

𝑡
𝑖
𝑄
0
𝑧
𝑖
) | 𝛾
0
∈ 𝑃
+
} (73)

and, similarly, for the strict AKNS hierarchy, we use the
commuting flows from

Γ
1
= {𝛾
1
(𝑡) = exp(

∞

∑

𝑖=1

𝑡
𝑖
𝑄
0
𝑧
𝑖
) | 𝛾
1
∈ 𝑈
+
} . (74)

Besides the groups Δ, Γ
0
, and Γ

1
, there are more subgroups in

𝐿anGL2(C) that commute with those three groups and they
are in a sense complimentary to Δ, Γ

0
and Δ, Γ

1
, respectively.

That is why we use the following notations for them: in 𝑈
−

there is

Γ
𝑐

0
= {𝛾
𝑐

0
(𝑡) = exp(

∞

∑

𝑘=1

𝑠
𝑘
𝑄
0
𝑧
−𝑘
) | 𝛾
𝑐

0
∈ 𝑈
−
} (75)

and in 𝑃
−
we have

Γ
𝑐

1
= {𝛾
𝑐

1
(𝑡) = exp(

∞

∑

𝑘=0

𝑠
𝑘
𝑄
0
𝑧
−𝑘
) | 𝛾
𝑐

1
∈ 𝑃
−
} . (76)

We have now all ingredients to describe the construction
of the solutions to each hierarchy and we start with the
AKNS hierarchy. Take inside the product 𝐿anGL2(C) × Δ
the collection 𝑆

0
of pairs (𝑔, 𝛿(𝑚)) such that there exists a

𝛾
0
(𝑡) ∈ Γ

0
satisfying

𝛿 (𝑚) 𝛾
0
(𝑡) 𝑔𝛾
0
(𝑡)
−1
𝛿 (−𝑚) ∈ Ω = 𝑈

−
𝑃
+
. (77)

For such a pair (𝑔, 𝛿(𝑚)), we take the collection Γ
0
(𝑔, 𝛿(𝑚))

of all 𝛾
0
(𝑡) satisfying the condition (77). This is an open

nonempty subset of Γ
0
. Let 𝑅

0
(𝑔, 𝛿(𝑚)) be the algebra of

analytic functions Γ
0
(𝑔, 𝛿(𝑚)) → C. This is the algebra of
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functions 𝑅 that we associate with the point (𝑔, 𝛿(𝑚)) ∈ 𝑆
0

and for the commuting derivations of 𝑅
0
(𝑔, 𝛿(𝑚)) we choose

𝜕
𝑖
fl 𝜕/𝜕𝑡

𝑖
, 𝑖 ⩾ 0. By property (77), we have for all 𝛾

0
(𝑡) ∈

Γ
0
(𝑔, 𝛿(𝑚))

𝛿 (𝑚) 𝛾
0
(𝑡) 𝑔𝛾
0
(𝑡)
−1
𝛿 (−𝑚)

= 𝑢
−
(𝑔, 𝛿 (𝑚))

−1

𝑝
+
(𝑔, 𝛿 (𝑚)) ,

(78)

with 𝑢
−
(𝑔, 𝛿(𝑚)) ∈ 𝑈

−
,𝑝
+
(𝑔, 𝛿(𝑚)) ∈ 𝑃

+
.Then, all thematrix

coefficients in the Fourier expansions of the elements 𝑢
−
(𝑔,

𝛿(𝑚)) and 𝑝
+
(𝑔, 𝛿(𝑚)) belong to the algebra 𝑅

0
(𝑔, 𝛿(𝑚)). It is

convenient to write relation (78) in the form

Ψ
𝑔,𝛿(𝑚)

fl 𝑢
−
(𝑔, 𝛿 (𝑚)) 𝛿 (𝑚) 𝛾

0
(𝑡)

= 𝑝
+
(𝑔, 𝛿 (𝑚)) 𝛿 (𝑚) 𝛾

0
(𝑡) 𝑔
−1

= 𝑝
+
(𝑔, 𝛿 (𝑚)) 𝛾

0
(𝑡) 𝛿 (𝑚) 𝑔

−1

= 𝑞
+
(𝑔, 𝛿 (𝑚)) 𝛿 (𝑚) 𝑔

−1
,

(79)

with 𝑞
+
(𝑔, 𝛿(𝑚)) ∈ 𝑃

+
. Clearly, Ψ

𝑔,𝛿(𝑚)
is an oscillating

matrix of type 𝛿(𝑚) in M
0
, where all the products in the

decomposition 𝑢
−
(𝑔, 𝛿(𝑚))𝛿(𝑚)𝛾

0
(𝑡) are no longer formal

but real. This is our potential wave matrix for the AKNS
hierarchy.

To get the potential wave function for the strict AKNS
hierarchy, we proceed similarly; only this time, we use the
decomposition Ω = 𝑃

−
𝑈
+
. Consider again the product

𝐿anGL2(C) × Δ and the subset 𝑆
1
of pairs (𝑔, 𝛿(𝑚)) such that

there exists a 𝛾
1
(𝑡) ∈ Γ

1
satisfying

𝛿 (𝑚) 𝛾
1
(𝑡) 𝑔𝛾
1
(𝑡)
−1
𝛿 (−𝑚) ∈ Ω = 𝑃

−
𝑈
+
. (80)

For such a pair (𝑔, 𝛿(𝑚)), we define Γ
1
(𝑔, 𝛿(𝑚)) as the set of

all 𝛾
1
(𝑡) satisfying condition (77). This is an open nonempty

subset of Γ
1
. Let 𝑅

1
(𝑔, 𝛿(𝑚)) be the algebra of analytic

functions Γ
1
(𝑔, 𝛿(𝑚)) → C. This is the algebra of functions

𝑅 that we associate with the point (𝑔, 𝛿(𝑚)) ∈ 𝑆
1
and for the

commuting derivations of 𝑅
1
(𝑔, 𝛿(𝑚)) we choose 𝜕

𝑖
fl 𝜕/𝜕𝑡

𝑖
,

𝑖 > 0. By property (80), we have for all 𝛾
1
(𝑡) ∈ Γ

1
(𝑔, 𝛿(𝑚))

𝛿 (𝑚) 𝛾
1
(𝑡) 𝑔𝛾
1
(𝑡)
−1
𝛿 (−𝑚)

= 𝑝
−
(𝑔, 𝛿 (𝑚))

−1

𝑢
+
(𝑔, 𝛿 (𝑚)) ,

(81)

with 𝑝
−
(𝑔, 𝛿(𝑚)) ∈ 𝑃

−
, 𝑢
+
(𝑔, 𝛿(𝑚)) ∈ 𝑈

+
. Then, all

the matrix coefficients in the Fourier expansions of the
elements 𝑝

−
(𝑔, 𝛿(𝑚)) and 𝑢

+
(𝑔, 𝛿(𝑚)) belong to the algebra

𝑅
1
(𝑔, 𝛿(𝑚)). It is convenient to write relation (81) in the form

Φ
𝑔,𝛿(𝑚)

fl 𝑝
−
(𝑔, 𝛿 (𝑚)) 𝛿 (𝑚) 𝛾

1
(𝑡)

= 𝑢
+
(𝑔, 𝛿 (𝑚)) 𝛿 (𝑚) 𝛾

1
(𝑡) 𝑔
−1

= 𝑢
+
(𝑔, 𝛿 (𝑚)) 𝛾

1
(𝑡) 𝛿 (𝑚) 𝑔

−1

= 𝑤
+
(𝑔, 𝛿 (𝑚)) 𝛿 (𝑚) 𝑔

−1
,

(82)

with 𝑤
+
(𝑔, 𝛿(𝑚)) ∈ 𝑈

+
. Clearly, Φ

𝑔,𝛿(𝑚)
is an oscillating

matrix of type 𝛿(𝑚) in M
1
where all the products in the

decomposition 𝑝
−
(𝑔, 𝛿(𝑚))𝛿(𝑚)𝛾

1
(𝑡) are no longer formal

but real.
To show that Ψ

𝑔,𝛿(𝑚)
is a wave matrix for the AKNS

hierarchy of type 𝛿(𝑚) and Φ
𝑔,𝛿(𝑚)

one for the strict AKNS
hierarchy, we use the fact that it suffices to prove the relations
in Proposition 6. We treat first Ψ

𝑔,𝛿(𝑚)
. In (79), we presented

two different decompositions of Ψ
𝑔,𝛿(𝑚)

that we will use to
compute 𝜕

𝑖
(Ψ
𝑔,𝛿(𝑚)

). With respect to 𝑢
−
(𝑔, 𝛿(𝑚))𝛿(𝑚)𝛾

0
(𝑡),

there holds
𝜕
𝑖
(Ψ
𝑔,𝛿(𝑚)

)

= {𝜕
𝑖
(𝑢
−
(𝑔, 𝛿 (𝑚))) 𝑢

−
(𝑔, 𝛿 (𝑚))

−1

+ 𝑧
𝑖
}

⋅ 𝑢
−
(𝑔, 𝛿 (𝑚)) 𝛿 (𝑚) 𝛾

0
(𝑡) = 𝑀

𝑖
Ψ
𝑔,𝛿(𝑚)

,

(83)

with𝑀
𝑖
∈ gl
2
(𝑅(𝑔, 𝛿(𝑚)))[𝑧, 𝑧

−1
) of order 𝑖 in 𝑧. If we take

the decomposition 𝑞
+
(𝑔, 𝛿(𝑚))𝛿(𝑚)𝑔

−1, then we get

𝜕
𝑖
(Ψ
𝑔,𝛿(𝑚)

)

= {𝜕
𝑖
(𝑞
+
(𝑔, 𝛿 (𝑚))) 𝑞

+
(𝑔, 𝛿 (𝑚))

−1

}Ψ
𝑔,𝛿(𝑚)

(84)

with 𝜕
𝑖
(𝑞
+
(𝑔, 𝛿(𝑚)))𝑞

+
(𝑔, 𝛿(𝑚))

−1 of the form∑
𝑗⩾0
𝑞
𝑗
𝑧
𝑗, with

all 𝑞
𝑗
∈ gl
2
(𝑅(𝑔, 𝛿(𝑚))). As Ψ

𝑔,𝛿(𝑚)
is invertible, we obtain

𝑀
𝑖
= ∑
𝑗⩾0
𝑞
𝑗
𝑧
𝑗 and thus 𝑀

𝑖
= ∑
𝑖

𝑗=0
𝑞
𝑗
𝑧
𝑗 and that is the

desired result.
We handle the case of Φ

𝑔,𝛿(𝑚)
in a similar way. Also in

(79), you can find two different decompositions of Φ
𝑔,𝛿(𝑚)

that we will use to compute 𝜕
𝑖
(Φ
𝑔,𝛿(𝑚)

). With respect to the
expression 𝑝

−
(𝑔, 𝛿(𝑚))𝛿(𝑚)𝛾

1
(𝑡) we get for all 𝑖 ⩾ 1

𝜕
𝑖
(Φ
𝑔,𝛿(𝑚)

)

= {𝜕
𝑖
(𝑝
−
(𝑔, 𝛿 (𝑚))) 𝑝

−
(𝑔, 𝛿 (𝑚))

−1

+ 𝑧
𝑖
}

⋅ 𝑝
−
(𝑔, 𝛿 (𝑚)) 𝛿 (𝑚) 𝛾

1
(𝑡) = 𝑁

𝑖
Φ
𝑔,𝛿(𝑚)

,

(85)

again with 𝑁
𝑖
∈ gl
2
(𝑅
1
(𝑔, 𝛿(𝑚)))[𝑧, 𝑧

−1
) of order 𝑖 in 𝑧.

Next we take the decomposition 𝑤
+
(𝑔, 𝛿(𝑚))𝛿(𝑚)𝑔

−1 and
that yields

𝜕
𝑖
(Φ
𝑔,𝛿(𝑚)

)

= {𝜕
𝑖
(𝑤
+
(𝑔, 𝛿 (𝑚)))𝑤

+
(𝑔, 𝛿 (𝑚))

−1

}Ψ
𝑔,𝛿(𝑚)

.

(86)

Since the zeroth order term of 𝑤
+
(𝑔, 𝛿(𝑚)) is Id, we note

that the element 𝜕
𝑖
(𝑤
+
(𝑔, 𝛿(𝑚)))𝑤

+
(𝑔, 𝛿(𝑚))

−1 has the form
∑
𝑗⩾1
𝑤
𝑗
𝑧
𝑗, with all 𝑤

𝑗
∈ gl
2
(𝑅
1
(𝑔, 𝛿(𝑚))). As Φ

𝑔,𝛿(𝑚)
is also

invertible, we obtain𝑁
𝑖
= ∑
𝑗⩾1
𝑤
𝑗
𝑧
𝑗 and thus𝑁

𝑖
= ∑
𝑖

𝑗=1
𝑤
𝑗
𝑧
𝑗

and that is the result we were looking for in the strict case.
The abovementioned constructions are not affected seri-

ously by a number of transformations. For example, if we
write 𝛿 = 𝛿((1, 1)), then all 𝛿𝑘, 𝑘 ∈ Z, are central elements
and we have for all (𝑔, 𝛿(𝑚)) ∈ 𝑆

0
and 𝑆

1
respectively and all

𝑘 ∈ Z

Ψ
𝑔,𝛿(𝑚)𝛿

𝑘 = Ψ
𝑔,𝛿(𝑚)

𝛿
𝑘

respectively Φ
𝑔,𝛿(𝑚)𝛿

𝑘 = Φ
𝑔,𝛿(𝑚)

𝛿
𝑘
.

(87)
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Also for any 𝑝
1
∈ 𝑃
+
, each 𝛾𝑐

0
(𝑠) ∈ Γ

𝑐

0
, and all (𝑔, 𝛿(𝑚)) ∈

𝑆
0
, we see that the element (𝛾𝑐

0
(𝑠)𝑔𝛿(−𝑚)𝑝

1
𝛿(𝑚), 𝛿(𝑚)) also

belongs to 𝑆
0
, for

𝛿 (𝑚) 𝛾
0
(𝑡) 𝛾
𝑐

0
(𝑠) 𝑔𝛿 (−𝑚) 𝑝

1
𝛿 (𝑚) 𝛾

0
(𝑡)
−1
𝛿 (−𝑚)

= 𝛾
𝑐

0
(𝑠) 𝑢
−1

−
𝑝
+
𝛾
0
(𝑡) 𝑝
1
𝛾
0
(𝑡)
−1
.

(88)

In particular, we see that

Ψ
𝛾
𝑐

0
(𝑠)𝑔𝛿(−𝑚)𝑝1𝛿(𝑚),𝛿(𝑚)

= 𝑢
−
𝛾
𝑐

0
(𝑠)
−1
𝛿 (𝑚) 𝛾

0
(𝑡) . (89)

Its analogue in the strict case is as follows: for any 𝑢
1
∈

𝑈
+
, each 𝛾𝑐

1
(𝑠) ∈ Γ

𝑐

1
, and all (𝑔, 𝛿(𝑚)) ∈ 𝑆

1
, the element

(𝛾
𝑐

1
(𝑠)𝑔𝛿(−𝑚)𝑢

1
𝛿(𝑚), 𝛿(𝑚)) also belongs to 𝑆

1
and there

holds

Φ
𝛾
𝑐

1
(𝑠)𝑔𝛿(−𝑚)𝑢1𝛿(𝑚),𝛿(𝑚)

= 𝑝
−
𝛾
𝑐

1
(𝑠)
−1
𝛿 (𝑚) 𝛾

1
(𝑡) . (90)

We resume the foregoing results in the following theorem.

Theorem 7. Consider the product spaceΠ fl 𝐿anGL2(C) × Δ.
Then, the following holds:

(a) For each point (𝑔, 𝛿(𝑚)) ∈ Π that satisfies condition
(77), we have a wave matrix of type 𝛿(𝑚) of the AKNS
hierarchyΨ

𝑔,𝛿(𝑚)
, defined by (79), and this determines a

solution 𝑄
𝑔,𝛿(𝑚)

= 𝑢
−
(𝑔, 𝛿(𝑚))𝑄

0
𝑢
−
(𝑔, 𝛿(𝑚))

−1 of the
AKNS hierarchy. For each 𝑝

1
∈ 𝑃
+
, every 𝛾𝑐

0
(𝑠) ∈ Γ

𝑐

0
,

and all powers of 𝛿, one has

𝑄
𝛾
𝑐

0
(𝑠)𝑔𝛿(−𝑚)𝑝1𝛿(𝑚),𝛿

𝑘
𝛿(𝑚)

= 𝑄
𝑔,𝛿(𝑚)

. (91)

(b) For each point (𝑔, 𝛿(𝑚)) ∈ Π that satisfies condition
(80), we have a wave matrix of type 𝛿(𝑚) of the
strict AKNS hierarchy Φ

𝑔,𝛿(𝑚)
, defined by (82), and it

determines a solution 𝑍
𝑔,𝛿(𝑚)

= 𝑝
−
(𝑔, 𝛿(𝑚))𝑄

0
𝑧𝑝
−
(𝑔,

𝛿(𝑚))
−1 of the strict AKNS hierarchy. For each 𝑢

1
∈ 𝑈
+
,

every 𝛾𝑐
1
(𝑠) ∈ Γ

𝑐

1
, and all powers of 𝛿, one has

𝑍
𝛾
𝑐

1
(𝑠)𝑔𝛿(−𝑚)𝑢1𝛿(𝑚),𝛿

𝑘
𝛿(𝑚)

= 𝑍
𝑔,𝛿(𝑚)

. (92)

Competing Interests

The author declares that they have no competing interests.

References

[1] M. Adler, P. vanMoerbeke, and P. Vanhaecke,Algebraic Integra-
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