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We define a Lie bracket on a certain set of local vector fields along a null curve in a 4-dimensional semi-Riemannian space form.
This Lie bracket will be employed to study integrability properties of evolution equations for null curves in a pseudo-Euclidean
space. In particular, a geometric recursion operator generating infinitely many local symmetries for the null localized induction
equation is provided.

1. Introduction

Recently in [1, 2] a connection between the local motion of a
null curve in L3 and the celebrated KdV equation was given.
In [3] the author obtained a connection between a null curve
evolution inL4 (towhichwe refer as the “null localized induc-
tion equation” or NLIE), and the Hirota-Satsuma coupled
KdV (HS-cKdV) system, we briefly remind the reader of here.
Hirota and Satsuma [4] proposed (perhaps up to rescaling)
the HS-cKdV system
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which describes the interactions of two long waves with
different dispersion relations. Many systematic methods have
been employed in the literature to clarify the integrability
of the HS-cKdV system: the Lax pair [5–7], the Bäcklund
transformation method [8], the Darboux transformation [9–
11], the Painlevé analysis [6, 7], the search of infinitely many
symmetries and conservation laws [4, 12, 13], and so forth.

Fuchssteiner [12] discovered that HS-cKdV system given by
(1) admits the symplectic and the cosymplectic operators:
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Furthermore, an infinite hierarchy of symmetries for (1) was
found in [13]:

𝜎
0
= (𝑢
𝑥
, V
𝑥
) ;

𝜎
1
= (

1

2

𝑢
𝑥𝑥𝑥

+ 3𝑢𝑢
𝑥
− 6VV
𝑥
, −V
𝑥𝑥𝑥

− 3𝑢V
𝑥
) ;

{𝜎
2𝑛
= (Θ𝐽)

𝑛
𝜎
0
; 𝜎
2𝑛+1

= (Θ𝐽)
𝑛
𝜎
1
} .

(3)

In this case the recursion operator Θ𝐽 is not hereditary.
Hence, the bi-Hamiltonian formulation of the HS-cKdV
system does not arise from a Hamiltonian pair.
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In this paper, we extend some of the results given in [1–3]
to a more general background. More specifically, we general-
ize the Lie algebra structure defined on the local vector fields
along null curves from the 3-dimensional Minkowski space
to 4-dimensional semi-Riemannian space forms 𝑀4

𝑞
(𝐺) of

index 𝑞 = 1 or 𝑞 = 2 and curvature 𝐺. This Lie algebra
together with the properties about the HS-cKdV system
described abovewill be used to construct an infinity hierarchy
of commuting symmetries for the NLIE equation in a 4-
dimensional pseudo-Euclidean space.

It is interesting to point out that, from a physical point of
view, the 4-dimensional space is a more realistic context than
the 3-dimensional background, the latter very often serving
merely as a toy model. Let us recall that relativistic particles
models have been described by actions defined on null curves
whose Lagrangians are functions of their curvatures [14, 15].
These actions were also studied in Minkowski spaces L3

and L4 (see [16, 17]), as well as in 3-dimensional Lorentzian
space forms in [18]. All these works were addressed to study
variational problems on null curve spaces, and they have
shown that the underlying mechanical system is governed by
a stationary system of Korteweg-de Vries type. Furthermore,
if 𝛾(𝜎, 0) is a critical point (the so-called null elastica) for
the action 𝑐 ∫ 𝑘 𝑑𝜎, where 𝑐 is a constant, then the associated
solution 𝛾(𝜎, 𝑡) to the NLIE starting from 𝛾(𝜎, 0) is the null
elastica evolving by rigid motions in the direction 𝑋 =

(1/2)𝑘𝑇+𝑁, where𝑋 is actually the rotational Killing vector
field for the null elastica (see [16, 18]), and it served to
determine the benchmark for the evolution equation NLIE
in [1].This idea was originally explored byHasimoto between
the elastica (an equilibrium shape of an elastic rod) and the
“localized induction equation” (LIE). As might be expected,
relationships with the Korteweg-de Vries evolution systems
still arise when the null curve motions in 4-dimensional
backgrounds are considered.

One of the many advantages of having a scalar evolution
equation coming from a curve motion is that many aspects
of its integrability can be elucidated from the intrinsic
geometry of the involved curves (see [19, 20]). Conversely,
integrability properties of the curvature flow can be employed
to determine integrability properties of the curve evolution
equation (see [1, 21–23]). Despite the numerous well-known
connections between curve evolution equations and inte-
grable Hamiltonian systems of PDEs, there is still a lack of
understanding regarding the mechanisms and links among
the different frameworks.Our overall aimhere is to go further
into those concerns.

The rest of this paper is organized as follows. In Section 2
we summarize some basic notions about formal variational
calculus on which the Hamiltonian theory of nonlinear evo-
lution equations is based. In Section 3 we have included some
background formulas and results concerning the differential
geometry of null curves in a semi-Riemannian space form. In
particular, we study the properties of variation vector fields
along a null curve in a semi-Riemannian space form as well
as the variational formulas for its curvatures. In Section 4, the
Lie bracket on the set ofP-local vector fields locally preserv-
ing the causal character along null curves in a 3-dimensional
Lorentzian space given in [1] is extended to 4-dimensional

semi-Riemannian space forms. This section also includes
a discussion about the connection between the geometric
variational formulas for curvatures and the Hamiltonian
structure for the HS-cKdV system. The above results will be
employed in Section 5 to introduce the NLIE equation as a
geometric realization of HS-cKdV equations and to construct
a geometric recursion operator generating an infinity hierar-
chy of commuting symmetries for the NLIE equation.

2. Preliminaries

In this section we summarize some necessary notions and
basic definitions from differential calculus which are relevant
to the rest of the paper (see [24–26] for a very complete treat-
ment of the subject). Let 𝑛 be a positive integer and consider
𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
differentiable functions in the real variable 𝑥.
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Let P be the algebra of polynomials in 𝑢
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and

their derivatives of arbitrary order, namely,
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(𝑚)

𝑖
: 𝑚 ∈ N, 𝑖 ∈ {1, . . . , 𝑛}] . (5)

We refer to the elements ofP whose constant term vanishes
as P
0
. Acting on the algebra P is defined as derivation 𝜕

obeying:
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thereby becoming a differential algebra.

Remark 1. In a more general setting we can consider P, for
example, to be the algebra of local functions, that is, P =

⋃
∞

𝑗=1
P
𝑗
, whereP
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of 𝑢
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𝑛
and their derivatives up to order 𝑗 (see [27–

30]). All the results and formulas established in Sections 4
and 5 involving the algebraP remain valid if the differential
algebra of polynomials is replaced by the differential algebra
of local functions. Nonetheless, the differential algebra of
polynomials is sufficient for our purposes.
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In addition to 𝜕, other derivations 𝜉 may also be considered.
The action of 𝜉 is determined if we know how 𝜉 acts on the
generators of the algebra. Indeed, set
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then, for any 𝑓 ∈ P we have

𝜉𝑓 =

𝑛

∑

𝑖=1

∑

𝑚∈N

𝑎
𝑖,𝑚

𝜕𝑓

𝜕𝑢
(𝑚)

𝑖

. (9)



Advances in Mathematical Physics 3

The space of all derivations onP, denoted by der(P), is a Lie
algebra with respect to the usual commutator
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2
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2
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∈ der (P) . (10)

Derivations commuting with the total derivative have impor-
tant properties. Among others, if [𝜉, 𝜕] = 0, we have
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The set of derivations 𝜕
𝐴
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it induces a Lie algebra on the space P𝑛. Indeed, a direct
computation shows that 𝜕
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This latter commutator can also be expressed with the aid of
Fréchet derivatives as [𝐴, 𝐵] = 𝐵
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Wewill refer to 𝜕
𝐴
as an evolution derivation (or a vector field,

provided that no confusion is possible), and the algebra of all
evolution derivations will be denoted by der∗(P). Observe
that, in particular, if we take 𝐴 = 𝑢


= (𝑢
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evolution equation of the form
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where 𝐹 = (𝑓
1
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𝑛
) is an element of P𝑛. An element
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1
, 𝑠
2
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𝑛
) ∈ P𝑛 is called a symmetry of the evolution

equation (16) if and only if [𝐹, 𝑆] = 𝐹

[𝑆] − 𝑆


[𝐹] = 0.

Symmetries of integrable equations can often be generated
by recursion operators which are linear operators mapping
a symmetry to a new symmetry. A linear differential operator
R : P𝑛 → P𝑛 is a recursion operator for the evolution
equation (16) if it is invariant under 𝐹, that is, 𝐿

𝐹
R = 0,

where 𝐿
𝐹
is the Lie derivative acting as 𝐿

𝐹
𝐴 = [𝐹, 𝐴] for all

𝐴 ∈ P𝑛. R is said to be hereditary if for an arbitrary vector
field 𝐹 ∈ P𝑛 the relation 𝐿R𝐹R = R𝐿

𝐹
R is verified.

3. Null Curve Variations in 𝑀
4

𝑞
(𝐺)

The geometry of null curves is quite different from the non-
null ones, so let us review the relevant results, going further
into what concerns us most for later work.

A semi-Riemannianmanifold (𝑀𝑛
𝑞
, 𝑔) is an 𝑛-dimensional

differentiable manifold 𝑀
𝑛

𝑞
endowed with a nondegenerate

metric tensor 𝑔 with signature (𝑛 − 𝑞, 𝑞). The metric tensor 𝑔
will be also denoted by ⟨⋅, ⋅⟩ and the Levi-Civita connection
by ∇. The sectional curvature of a nondegenerate plane
generated by {𝑢, V} is

𝐾 (𝑢, V) =
⟨𝑅 (𝑢, V) 𝑢, V⟩

⟨𝑢, 𝑢⟩ ⟨V, V⟩ − ⟨𝑢, V⟩2
, (17)

where 𝑅 is the semi-Riemannian curvature tensor given by

𝑅 (𝑋, 𝑌)𝑍 = −∇
𝑋
∇
𝑌
𝑍 + ∇

𝑌
∇
𝑋
𝑍 + ∇

[𝑋,𝑌]
𝑍. (18)

Semi-Riemannianmanifolds with constant sectional cur-
vature are called semi-Riemannian space forms. It is a well-
known fact that the curvature tensor 𝑅 adopts a simple
formula in these manifolds:

𝑅 (𝑋, 𝑌)𝑍 = 𝐺 {⟨𝑍,𝑋⟩𝑌 − ⟨𝑍, 𝑌⟩𝑋} , (19)

where 𝐺 is the constant sectional curvature. When the
curvature 𝐺 vanishes, then 𝑀

𝑛

𝑞
is called pseudo-Euclidean

space and will be denoted by R𝑛
𝑞
.

Let 𝑀
4

𝑞
(𝐺) denote a 4-dimensional semi-Riemannian

space form with index 𝑞 = 1, 2, background gravitational
field ⟨⋅, ⋅⟩, and Levi-Civita connection∇. A tangent vector V is
time-like if ⟨V, V⟩ < 0, space-like if ⟨V, V⟩ > 0 or V = 0, and null
if ⟨V, V⟩ = 0. Therefore, a parametrized curve 𝛾 : 𝐼 → 𝑀

4

𝑞
(𝐺)

is called null if its tangent vector is null at all points in the
curve. Fixing a constant 𝑎 > 0, we can consider (if 𝛾 is not a
geodesic) the parameter 𝜎

𝑎
given by

𝜎
𝑎
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𝛾

(𝑠)⟩

1/4

𝑑𝑠, (20)

where 𝑠 is any parameter. When 𝑎 = 1 this parameter agrees
with the pseudo arc-length parameter 𝜎 for the null curve. In
fact, it is easy to show that𝜎

𝑎
is nothing but a linear reparame-

trization of the pseudo arc-length parameter and it verifies

⟨∇
𝛾

(𝜎
𝑎
)
𝛾
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𝑎
) , ∇
𝛾
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𝑎
)
𝛾
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𝑎
)⟩ = 𝑎

2
. (21)

Throughout this paper it will be supposed that we have
fixed a constant 𝑎, 𝜎

𝑎
will be denoted by 𝜎, and we will also

refer to it as the pseudo arc-length parameter. The Cartan
frame of a nongeodesic null curve 𝛾 : 𝐼 → 𝑀

4

𝑞
(𝐺), verifying

that {𝛾(𝜎), 𝛾(𝜎), 𝛾(𝜎)} is linearly independent for all𝜎 ∈ 𝐼,
is given by {𝑇 = 𝛾


(𝜎),𝑊

1
, 𝑁,𝑊

2
}, where

⟨𝑇, 𝑇⟩ = ⟨𝑁,𝑁⟩ = 0,

⟨𝑇,𝑁⟩ = −1,
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𝑖
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𝑖
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𝑖
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with 𝑖 = 1, 2. The Cartan equations read

∇
𝑇
𝑇 = 𝑎𝑊

1
,

∇
𝑇
𝑊
1
= −𝑘
1
𝑇 + 𝑎𝜀

1
𝑁,

∇
𝑇
𝑁 = −𝜀

1
𝑘
1
𝑊
1
+ 𝜀
2
𝑘
2
𝑊
2
,

∇
𝑇
𝑊
2
= 𝑘
2
𝑇,

(23)

where ∇
𝑇
denotes the covariant derivative along 𝛾 and 𝑘

1
,

𝑘
2
are the curvatures of the curve. The fundamental theorem

for null curves tells us that 𝑘
1
and 𝑘

2
determine completely

the null curve up to semi-Riemannian isometries (see [31]).
Even more, if functions 𝑘

1
and 𝑘

2
are given we can always

construct a null curve, pseudo arc-length parametrized,
whose curvature functions are precisely 𝑘

1
and 𝑘

2
. Then

any local scalar geometrical invariant defined along a null
curve can always be expressed as a function of its curvatures
and derivatives. A nongeodesic null curve being pseudo arc-
length parametrized and admitting a Cartan frame as above
is called a Cartan curve. The bundle given by span{𝑊

1
,𝑊
2
}

is known as the screen bundle of 𝛾 (see [31]). Projections of
the variation vector fields onto the screen bundle will play a
leading role in this research.

Let 𝛾 be a null curve, for the sake of simplicity the letter 𝛾
will also denote a variation of null curves (null variation) 𝛾 =
𝛾(𝑠, 𝑡) : 𝐼×(−𝜁, 𝜁) → 𝑀

4

𝑞
(𝐺)with 𝛾(𝑠, 0) the initial null curve.

Associated with such a variation is the variation vector field
𝑉(𝑠) = 𝑉(𝑠, 0), where 𝑉 = 𝑉(𝑠, 𝑡) = (𝜕𝛾/𝜕𝑡)(𝑠, 𝑡). We denote
by 𝜂 the differentiable function verifying (𝜕𝛾/𝜕𝑠)(𝑠, 𝑡) =

𝜂(𝑠, 𝑡)𝑇(𝑠, 𝑡) and by 𝐷/𝜕𝑡 the covariant derivative along the
curves 𝛾

𝑠
(𝑡) = 𝛾(𝑠, 𝑡). We write 𝛾(𝜎, 𝑡), 𝑘

𝑖
(𝜎, 𝑡),𝑉(𝜎, 𝑡), and so

forth, for the corresponding objects in the pseudo arc-length
parametrization.

Definition 2. Let X(𝛾) be the set of smooth vector fields
along 𝛾. We say that 𝑉 ∈ X(𝛾) locally preserves the causal
character if ⟨∇

𝑇
𝑉, 𝑇⟩ = 0. We also say that𝑉 locally preserves

the pseudo arc-length parameter along 𝛾 if 𝜂(𝑠, 𝑡) satisfies
(𝜕𝜂/𝜕𝑡)|

𝑡=0
= 0.

The following properties for null variations can be found
in [17] when 𝑎 = 𝜀

1
= 𝜀
2
= 1, but they can be easily adapted

to the general situation.

Lemma 3. If 𝛾 is a null variation, then its variation vector field
𝑉 verifies

⟨∇
𝑇
𝑉, 𝑇⟩ = 0,

𝜕𝜂

𝜕𝑡








𝑡=0

= −

1

2𝑎

𝜌
𝑉
𝜂,

[𝑉, 𝑇] =

1

2𝑎

𝜌
𝑉
𝑇,

(24)

where 𝜌
𝑉
= −𝜀
1
⟨∇
2

𝑇
𝑉,𝑊
1
⟩.

Thuswe obtain that𝑉 locally preserves the causal charac-
ter and, moreover, 𝑉 locally preserves the pseudo arc-length

parameter if and only if 𝜌
𝑉
= 0, which in such a case also

entails commutation of 𝑇 and 𝑉. We define some functions
that will play a key role in the rest of the paper, namely, given
a vector field𝑉 ∈ X(𝛾) we consider the following projections
of 𝑉 and ∇

𝑇
𝑉 on the screen bundle given by

ℎ
𝑉
fl 𝜀
1
⟨𝑉,𝑊

1
⟩ ,

𝑙
𝑉
fl 𝜀
2
⟨𝑉,𝑊

2
⟩ ,

𝜑
𝑉
fl 𝜀
1
⟨∇
𝑇
𝑉,𝑊
1
⟩ ,

𝜓
𝑉
fl 𝜀
2
⟨∇
𝑇
𝑉,𝑊
2
⟩ .

(25)

Lemma 4. With the above notation, the following assertions
hold:

(a) (𝐷𝑇/𝜕𝑡)|
𝑡=0

= −𝛼
𝑉
𝑇 + 𝜑
𝑉
𝑊
1
+ 𝜓
𝑉
𝑊
2
;

(b) (𝐷𝑊
1
/𝜕𝑡)|
𝑡=0

= −𝛽
𝑉
𝑇 + 𝜀
1
𝜑
𝑉
𝑁 + (1/𝑎)𝜓



𝑉
𝑊
2
,

(c) (𝐷𝑁/𝜕𝑡)|
𝑡=0

= −𝜀
1
𝛽
𝑉
𝑊
1
+ 𝛼
𝑉
𝑁 + (𝜀

1
/𝑎)𝛿
𝑉
𝑊
2
,

(d) (𝐷𝑊
2
/𝜕𝑡)|
𝑡=0

= (𝜀
1
𝜀
2
/𝑎)𝛿
𝑉
𝑇−(𝜀
1
𝜀
2
/𝑎)𝜓


𝑉
𝑊
1
+𝜀
2
𝜓
𝑉
𝑁,

(e) (𝜕𝑘
1
/𝜕𝑡)|
𝑡=0

= (1/𝑎
2
)𝜑


𝑉
+ (1/𝑎)[(𝑘

1
𝜑
𝑉
)

+ 𝑘
1
𝜑


𝑉
] −

(1/𝑎)[(𝑘
2
𝜓
𝑉
)

+𝑘
2
𝜓


𝑉
]+(1/𝑎)[(1/2𝑎)𝜌



𝑉
+𝑘
1
𝜌
𝑉
−2𝐺𝑔



𝑉
],

(f) (𝜕𝑘
2
/𝜕𝑡)|
𝑡=0

= (𝜀
1
𝜀
2
/𝑎
2
)𝜓


𝑉
+ (𝜀
1
𝜀
2
/𝑎)[(𝑘

1
𝜓
𝑉
)

+

𝑘
1
𝜓


𝑉
] + (1/𝑎)[(𝑘

2
𝜑
𝑉
)

+ 𝑘
2
𝜑


𝑉
] + (1/𝑎)𝑘

2
𝜌
𝑉
− 𝜀
2
𝐺𝑙
𝑉
,

where

𝛼
𝑉
=

1

𝑎

(𝜑


𝑉
+

1

2

𝜌
𝑉
) ,

𝛽
𝑉
=

1

𝑎

(𝛼


𝑉
+ 𝑘
1
𝜑
𝑉
− 𝑘
2
𝜓
𝑉
− 𝐺𝑔
𝑉
) ,

𝛿
𝑉
=

1

𝑎

𝜓


𝑉
+ 𝑘
1
𝜓
𝑉
+ 𝜀
1
𝜀
2
𝑘
2
𝜑
𝑉
.

(26)

Proof. Set ∇
𝑉
= 𝐷/𝜕𝑡 the covariant derivative. From (24) we

obtain

∇
𝑉
𝑇 = − ⟨∇

𝑉
𝑇,𝑁⟩𝑇 + 𝜀

1
⟨∇
𝑉
𝑇,𝑊
1
⟩𝑊
1

+ 𝜀
2
⟨∇
𝑉
𝑇,𝑊
2
⟩𝑊
2

= − ⟨∇
𝑇
𝑉,𝑁⟩𝑇 +

1

2𝑎

𝜌
𝑉
𝑇 + 𝜑
𝑉
𝑊
1
+ 𝜓
𝑉
𝑊
2

= −

1

𝑎

(𝜑


𝑉
+

1

2

𝜌
𝑉
)𝑇 + 𝜑

𝑉
𝑊
1
+ 𝜓
𝑉
𝑊
2

= −𝛼
𝑉
𝑇 + 𝜑
𝑉
𝑊
1
+ 𝜓
𝑉
𝑊
2
,

(27)
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where ⟨∇
𝑇
𝑉,𝑁⟩ = (1/𝑎)(𝜑



𝑉
+ 𝜌
𝑉
) has been used. Now,

taking into account formulas (18), (19), and (27) we have

∇
𝑉
𝑊
1
=

1

𝑎

∇
𝑉
∇
𝑇
𝑇 =

1

𝑎

(∇
𝑇
∇
𝑉
𝑇 + ∇
[𝑉,𝑇]

𝑇

− 𝑅 (𝑉, 𝑇) 𝑇) =

1

𝑎

[∇
𝑇
(−𝛼
𝑉
𝑇 + 𝜑
𝑉
𝑊
1
+ 𝜓
𝑉
𝑊
2
)

+

1

2𝑎

𝜌
𝑉
∇
𝑇
𝑇 + 𝐺𝑔

𝑉
𝑇]

=

1

𝑎

[(−𝛼


𝑉
− 𝑘
1
𝜑
𝑉
+ 𝑘
2
𝜓 + 𝐺𝑔

𝑉
) 𝑇 + 𝑎𝜀

1
𝜑
𝑉
𝑁

+ 𝜓


𝑉
𝑊
2
] = −𝛽

𝑉
𝑇 + 𝜀
1
𝜑
𝑉
𝑁 +

1

𝑎

𝜓


𝑉
𝑊
2
.

(28)

Considering again (18), (19), (27), and (28) we deduce

𝑎𝜀
1
∇
𝑉
𝑁 = ∇

𝑉
∇
𝑇
𝑊
1
+ ∇
𝑉
(𝑘
1
𝑇) = ∇

𝑇
∇
𝑉
𝑊
1

+ ∇
[𝑉,𝑇]

𝑊
1
− 𝑅 (𝑉, 𝑇)𝑊1

+ 𝑉 (𝑘
1
) 𝑇 + 𝑘

1
∇
𝑉
𝑇

= (−𝛽


𝑉
+

1

𝑎

𝑘
2
𝜓


𝑉
−

1

2𝑎

𝑘
1
𝜌
𝑉
− 𝑘
1
𝛼
𝑉
+ 𝑉 (𝑘

1
)

+

𝐺

𝑎

𝑔


𝑉
)𝑇 − 𝑎𝛽

𝑉
𝑊
1
+ 𝑎𝜀
1
𝛼
𝑉
𝑁 + 𝛿

𝑉
𝑊
2
.

(29)

Since ⟨∇
𝑉
𝑁,𝑁⟩ = 0, the tangent component of∇

𝑉
𝑁 vanishes

and the expression for 𝑉(𝑘
1
) becomes

𝑉 (𝑘
1
) =

1

𝑎
2
𝜑


𝑉
+

1

𝑎

[(𝑘
1
𝜑
𝑉
)

+ 𝑘
1
𝜑


𝑉
]

−

1

𝑎

[(𝑘
2
𝜓
𝑉
)

+ 𝑘
2
𝜓


𝑉
]

+

1

𝑎

[

1

2𝑎

𝜌


𝑉
+ 𝑘
1
𝜌
𝑉
− 2𝐺𝑔



𝑉
] .

(30)

As a consequence the vector field ∇
𝑉
𝑁 boils down to

∇
𝑉
𝑁 = −𝜀

1
𝛽
𝑉
𝑊
1
+ 𝛼
𝑉
𝑁 +

𝜀
1

𝑎

𝛿
𝑉
𝑊
2
. (31)

Finally, a similar computation leads to

𝜀
2
𝑘
2
∇
𝑉
𝑊
2
= ∇
𝑉
∇
𝑇
𝑁 + 𝜀

1
𝑉 (𝑘
1
)𝑊
1
+ 𝜀
1
𝑘
1
∇
𝑉
(𝑊
1
)

− 𝜀
2
𝑉 (𝑘
2
)𝑊
2
=

𝜀
1

𝑎

𝑘
2
𝛿
𝑉
𝑇 + (𝜀

1
𝑉 (𝑘
1
) − 𝜀
1
𝛽


𝑉

− 𝜀
1

𝑘
1

𝑎

(𝜑


𝑉
+ 𝜌
𝑉
) +

𝜀
1

𝑎

𝐺𝑔


𝑉
)𝑊
1
+ (𝛼


𝑉
− 𝑎𝛽
𝑉

+ 𝑘
1
𝜑
𝑉
− 𝐺𝑔
𝑉
)𝑁 + (

𝜀
2

𝑎

𝑘
2
(𝜑


𝑉
+ 𝜌
𝑉
) +

𝜀
1

𝑎

𝛿


𝑉

+

𝜀
1

𝑎

𝑘
1
𝜓


𝑉
− 𝜀
2
𝑉 (𝑘
2
) − 𝐺𝑙

𝑉
)𝑊
2
.

(32)

In the same way, since the component of 𝑊
2
in ∇
𝑉
𝑊
2
van-

ishes, we deduce

𝑉 (𝑘
2
) =

𝜀
1
𝜀
2

𝑎
2
𝜓


𝑉
+

𝜀
1
𝜀
2

𝑎

[(𝑘
1
𝜓
𝑉
)

+ 𝑘
1
𝜓


𝑉
]

+

1

𝑎

[(𝑘
2
𝜑
𝑉
)

+ 𝑘
2
𝜑


𝑉
] +

1

𝑎

𝑘
2
𝜌
𝑉
− 𝜀
2
𝐺𝑙
𝑉
,

∇
𝑉
𝑊
2
=

𝜀
1
𝜀
2

𝑎

𝛿
𝑉
𝑇 −

𝜀
1
𝜀
2

𝑎

𝜓


𝑉
𝑊
1
+ 𝜀
2
𝜓
𝑉
𝑁.

(33)

Consider Λ the space of pseudo arc-length parametrized
null curves in𝑀

4

𝑞
(𝐺). For 𝛾 ∈ Λ, it is easy to see that 𝑇

𝛾
Λ is

the set of all vector fields associated with variations of pseudo
arc-length parametrized null curves starting from 𝛾. It is clear
that a vector field in𝑇

𝛾
Λ locally preserves the causal character

and the pseudo arc-length parameter. The converse can also
be proved applying a similar procedure as in [2].

Proposition 5. A vector field 𝑉 along 𝛾 ∈ Λ is tangent to Λ
if and only if it locally preserves the causal character and the
pseudo arc-length parameter; that is,

𝑇
𝛾
Λ = {𝑉 ∈ X (𝛾) : ⟨∇

𝑇
𝑉, 𝑇⟩ = ⟨∇

2

𝑇
𝑉,𝑊
1
⟩ = 0} . (34)

Consequently, if 𝑉 is expressed by 𝑉 = 𝑓
𝑉
𝑇 + ℎ
𝑉
𝑊
1
+ 𝑔
𝑉
𝑁 +

𝑙
𝑉
𝑊
2
, where 𝑓

𝑉
, ℎ
𝑉
, 𝑔
𝑉
, and 𝑙

𝑉
are smooth functions, then𝑉 ∈

𝑇
𝛾
Λ if and only if

𝑓
𝑉

= −

1

2𝑎

[ℎ


𝑉
+ 𝑎𝑘
1
𝐷
−1

𝜎
(ℎ
𝑉
) − 𝑎𝐷

−1

𝜎
(𝑘
1
ℎ
𝑉
− 𝑘
2
𝑙
𝑉
)] ,

𝑔
𝑉
= −𝜀
1
𝑎𝐷
−1

𝜎
(ℎ
𝑉
) ,

(35)

where𝐷−1
𝜎

is a formal indefinite 𝜎-integral. Furthermore,

(

𝜑
𝑉

𝜓
𝑉

)

= (

𝑎

2

(

1

𝑎

𝐷
𝜎
+ 𝑘
1
𝐷
−1

𝜎
+ 𝐷
−1

𝜎
𝑘
1
) −

𝑎

2

𝐷
−1

𝜎
𝑘
2

−𝜀
1
𝜀
2
𝑎𝑘
2
𝐷
−1

𝜎
𝐷
𝜎

)

⋅ (

ℎ
𝑉

𝑙
𝑉

) .

(36)

Proof. For a generic vector field 𝑉 we obtain

∇
𝑇
𝑉 = (𝑓



𝑉
− 𝑘
1
ℎ
𝑉
+ 𝑘
2
𝑙
𝑉
) 𝑇 + (𝑎𝑓

𝑉
+ ℎ


𝑉
− 𝜀
1
𝑘
1
𝑔
𝑉
)

⋅ 𝑊
1
+ (𝜀
1
𝑎ℎ
𝑉
+ 𝑔


𝑉
)𝑁 + (𝑙



𝑉
+ 𝜀
2
𝑘
2
𝑔
𝑉
)𝑊
2
;

(37)

∇
2

𝑇
𝑉 = [(𝑓



𝑉
− 𝑘
1
ℎ
𝑉
+ 𝑘
2
𝑙
𝑉
)



− 𝑘
1
(𝑎𝑓
𝑉
+ ℎ


𝑉
− 𝜀
1
𝑘
1
𝑔
𝑉
) + 𝑘
2
(𝑙


𝑉
+ 𝜀
2
𝑘
2
𝑔
𝑉
)] 𝑇
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+ [𝑎 (𝑓


𝑉
− 𝑘
1
ℎ
𝑉
+ 𝑘
2
𝑙
𝑉
) + (𝑎𝑓

𝑉
+ ℎ


𝑉
− 𝜀
1
𝑘
1
𝑔
𝑉
)



− 𝜀
1
𝑘
1
(𝜀
1
𝑎ℎ
𝑉
+ 𝑔


𝑉
)]𝑊
1

+ [𝑎𝜀
1
(𝑎𝑓
𝑉
+ ℎ


𝑉
− 𝜀
1
𝑘
1
𝑔
𝑉
) + (𝜀

1
𝑎ℎ
𝑉
+ 𝑔


𝑉
)



]𝑁

+ [𝜀
2
𝑘
2
(𝜀
1
𝑎ℎ
𝑉
+ 𝑔


𝑉
) + (𝑙


𝑉
+ 𝜀
2
𝑘
2
𝑔
𝑉
)



]𝑊
2
.

(38)

If 𝑉 ∈ 𝑇
𝛾
Λ, Lemma 3 implies that

⟨∇
𝑇
𝑉, 𝑇⟩ = ⟨∇

2

𝑇
𝑉,𝑊
1
⟩ = 0. (39)

In such a case, by using (37) and (38), we deduce that

𝜀
1
𝑎ℎ
𝑉
+ 𝑔


𝑉
= 0,

2𝑎𝑓


𝑉
+ ℎ


𝑉
− 𝜀
1
(𝑘
1
𝑔
𝑉
)

− 𝑎𝑘
1
ℎ
𝑉
+ 𝑎𝑘
2
𝑙
𝑉
= 0.

(40)

Last equations easily give rise to (35). Expression (35)
becomes

𝑓
𝑉
= −

1

2𝑎

ℎ


𝑉
−

1

2

𝑘
1
𝐷
−1

𝜎
(ℎ
𝑉
) +

1

2

𝐷
−1

𝜎
(𝑘
1
ℎ
𝑉
)

−

1

2

𝐷
−1

𝜎
(𝑘
2
𝑙
𝑉
) ,

(41)

and the following holds:

𝜑
𝑉
= 𝜀
1
⟨∇
𝑇
𝑉,𝑊
1
⟩ = 𝑎𝑓

𝑉
+ ℎ


𝑉
− 𝜀
1
𝑘
1
𝑔
𝑉
,

𝜓
𝑉
= 𝜀
2
⟨∇
𝑇
𝑉,𝑊
2
⟩ = 𝑙


𝑉
+ 𝜀
2
𝑘
2
𝑔
𝑉
.

(42)

Replacing 𝑓
𝑉

into (42) and rearranging terms, we easily
obtain (36). Conversely, if 𝑉 is a vector field verifying (39),
then it arises from an infinitesimal variation of null curves.
Indeed, according to the Cartan equations (23), Lemma 4,
and formulas (35) and (42), we consider the matrices

𝐾
𝛾
=
(

(

(

0 0 0 𝐺 0

1 0 −𝑘
1

0 𝑘
2

0 𝑎 0 −𝜀
1
𝑘
1

0

0 0 𝜀
1
𝑎 0 0

0 0 0 𝜀
2
𝑘
2

0

)

)

)

,

𝑃 =

(

(

(

(

(

(

(

0 𝐺𝑔
𝑉

−𝜀
1
𝐺ℎ
𝑉

𝐺𝑓
𝑉

−𝜀
2
𝐺𝑙
𝑉

𝑓
𝑉

−𝛼
𝑉

−𝛽
𝑉

0

1

𝑎

𝜀
1
𝜀
2
𝛿
𝑉

ℎ
𝑉

𝜑
𝑉

0 −𝜀
1
𝛽
𝑉

−

𝜀
1
𝜀
2

𝑎

𝜓


𝑉

𝑔
𝑉

0 𝜀
1
𝜑
𝑉

𝛼
𝑉

𝜀
2
𝜓
𝑉

𝑙
𝑉

𝜓
𝑉

1

𝑎

𝜓


𝑉

𝜀
1

𝑎

𝛿
𝑉

0

)

)

)

)

)

)

)

,

(43)

verifying

𝜕𝐹

𝜕𝜎

= 𝐹 ⋅ 𝐾
𝛾
,

𝜕𝑃

𝜕𝜎

= 𝐶 − [𝐾
𝛾
, 𝑃] ,

(44)

where

𝐹 = (𝛾 𝑇 𝑊
1
𝑁 𝑊

2) ,

𝐶 =
(

(

(

0 0 0 0 0

0 0 𝑐
1

0 𝑐
2

0 0 0 −𝜀
1
𝑐
1

0

0 0 0 0 0

0 0 0 𝜀
2
𝑐
2

0

)

)

)

,

(45)

where the functions 𝑐
1
and 𝑐
2
are given by formulas (e) and

(f) given in Lemma 4, respectively, with 𝜌
𝑉
= 0. Following

the same procedure as described in Lemma 1 of [2] we can
construct a null curve variation of 𝛾 whose variation vector
field is 𝑉.

From Proposition 5, a tangent vector field 𝑉 ∈ 𝑇
𝛾
Λ and

its covariant derivative ∇
𝑇
𝑉 are expressed by

𝑉

= −

1

2𝑎

[ℎ


𝑉
+ 𝑎𝑘
1
𝐷
−1

𝜎
(ℎ
𝑉
) − 𝑎𝐷

−1

𝜎
(𝑘
1
ℎ
𝑉
− 𝑘
2
𝑙
𝑉
)] 𝑇

+ ℎ
𝑉
𝑊
1
− 𝜀
1
𝑎𝐷
−1

𝜎
(ℎ
𝑉
)𝑁 + 𝑙

𝑉
𝑊
2
,

∇
𝑇
𝑉 = −

1

𝑎

𝜑


𝑉
𝑇 + 𝜑
𝑉
𝑊
1
+ 𝜓
𝑉
𝑊
2
.

(46)

Remark 6. Observe that a tangent vector field 𝑉 ∈ 𝑇
𝛾
Λ is

completely determined by the differentiable functions ℎ
𝑉
and

𝑙
𝑉
and two constants, since the operator 𝐷−1

𝜎
is used twice;

once for obtaining 𝑔
𝑉
from ℎ

𝑉
and once more for obtaining

𝑓
𝑉

from ℎ
𝑉

and 𝑙
𝑉
. Therefore, given two differentiable

functions ℎ
𝑉
and 𝑙
𝑉
and two constants, we can construct a

vector field locally preserving pseudo arc-length parameter
along 𝛾 whose projections on the screen bundle are precisely
ℎ
𝑉
and 𝑙
𝑉
. Both constants could be determined or related if

constraints on null curve variation are considered, but, for
our algebraic purposes, we will consider generic constants.

4. A Lie Algebra Structure on
Local Vector Fields

Our objective now is to define a Lie algebra structure on the
set of local vector fields which locally preserve the causal
character. To this end, we need first to set up the spaces
in which we are going to work. Let 𝑘

1
and 𝑘

2
be smooth

functions defined on an interval 𝐼 and setP the real algebra of
polynomials in 𝑘

1
, 𝑘
2
and their derivatives of arbitrary order;

that is,

P = R [𝑘
(𝑚)

1
, 𝑘
(𝑛)

2
: (𝑚, 𝑛) ∈ N

2
] , (47)

where 𝑘(𝑚)
1

= 𝑘
(𝑚)

1
(𝜎) and 𝑘(𝑛)

2
= 𝑘
(𝑛)

2
(𝜎).
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Let 𝛾 : 𝐼 → 𝑀
4

𝑞
(𝐺) be a null curve with curvatures 𝑘

1

and 𝑘
2
and consider the set of vector fields along 𝛾 whose

components are polynomial functions

XP (𝛾) = {𝑉 = 𝑓
𝑉
𝑇 + ℎ
𝑉
𝑊
1
+ 𝑔
𝑉
𝑁 + 𝑙
𝑉
𝑊
2

∈ X (𝛾) : 𝑓
𝑉
, ℎ
𝑉
, 𝑔
𝑉
, 𝑙
𝑉
∈ P} .

(48)

An element of XP(𝛾) will be called a P-local vector field
along 𝛾. The set of P-local vector fields (locally preserving
the causal character) will be denoted by

X
∗

P (𝛾) = {𝑉 = 𝑓
𝑉
𝑇 + ℎ
𝑉
𝑊
1
+ 𝑔
𝑉
𝑁 + 𝑙
𝑉
𝑊
2

∈ XP (𝛾) : 𝑔
𝑉
= −𝜀
1
𝑎𝐷
−1

𝜎
(ℎ
𝑉
)} ,

(49)

and within it, the P-local variation vector fields locally
preserving pseudo arc-length parameter are described as

𝑇P,𝛾Λ = 𝑇
𝛾
(Λ) ∩X

∗

P (𝛾) = {𝑉 ∈ X
∗

P (𝛾) : 𝑓
𝑉

= −

1

2𝑎

[ℎ


𝑉
+ 𝑎𝑘
1
𝐷
−1

𝜎
(ℎ
𝑉
)

− 𝑎𝐷
−1

𝜎
(𝑘
1
ℎ
𝑉
− 𝑘
2
𝑙
𝑉
)]} .

(50)

In this context, from Proposition 5 and taking into account
Remark 6, we can explicitly calculate the P-local pseudo
arc-length preserving variation vector fields by means of its
constants of integration.

Proposition 7. Let 𝑉 be a vector field in XP(𝛾), then 𝑉 ∈

𝑇P,𝛾(Λ) if and only if it is fulfilled that

𝑔
𝑉
= −𝜀
1
𝑎𝜕
−1

𝜎
(ℎ
𝑉
) + 𝑐
1
,

𝑓
𝑉
= −

1

2𝑎

[ℎ


𝑉
+ 𝑎𝑘
1
𝜕
−1

𝜎
(ℎ
𝑉
) − 𝑎𝜕

−1

𝜎
(𝑘
1
ℎ
𝑉
− 𝑘
2
𝑙
𝑉
)

− 𝜀
1
𝑐
1
𝑘
1
] + 𝑐
2
,

(51)

where 𝑐
1
, 𝑐
2
are constants and 𝜕−1

𝜎
is the antiderivative operator

verifying that 𝜕−1
𝜎

∘ 𝜕
𝜎
= 𝐼 when acting onP

0
.

Consequently, let us consider the set

Q = {(ℎ, 𝑙) ∈ P
2

0
: ∃ (𝑝, 𝑞) ∈ P

2

0
such that (𝑝


, 𝑞

)

= (ℎ, 𝑘
1
ℎ − 𝑘
2
𝑙)} .

(52)

Given a pair of functions (ℎ, 𝑙) ∈ Q and two constants 𝑐
1
and

𝑐
2
, we will denote by X(ℎ, 𝑙) the P-local pseudo arc-length

preserving variation vector field

X (ℎ, 𝑙) = (−

1

2𝑎

[ℎ

+ 𝑎𝑘
1
𝜕
−1

𝜎
(ℎ) − 𝑎𝜕

−1

𝜎
(𝑘
1
ℎ − 𝑘
2
𝑙)

− 𝜀
1
𝑐
1
𝑘
1
] + 𝑐
2
)𝑇 + ℎ𝑊

1
+ (−𝜀
1
𝑎𝜕
−1

𝜎
(ℎ) + 𝑐

1
)𝑁

+ 𝑙𝑊
2
.

(53)

Example 8. Consider the pair of functions (ℎ, 𝑙) = (0, 0); then
X(0, 0) = ((𝜀

1
𝑐
1
/2𝑎)𝑘

1
+ 𝑐
2
)𝑇 + 𝑐

1
𝑁. In particular, if we take

(𝑐
1
, 𝑐
2
) = (0, 𝑏) and (𝑐

1
, 𝑐
2
) = (−2𝜀

1
𝑎
2
𝑐, 0), where 𝑏 and 𝑐 are

constants, one obtains the vector fields

𝑉
0
= 𝑏𝑇,

𝑉
1
= −𝑎𝑐𝑘

1
𝑇 − 2𝜀

1
𝑎
2
𝑐𝑁.

(54)

The vector fields 𝑉
0
and 𝑉

1
will be the starting point of the

commuting hierarchy of symmetries in Section 5.

Note that to introduce the concept of symmetry (and so
a recursion operator) and furnish the phase space of null
curve motions with a formal variational calculus in Section 5,
an appropriate Lie bracket on the set of local vector fields
should be defined. To this end, we first introduce a convenient
derivation on both the differential algebra and the local vector
fields along a null curve. Motivated by [32] and bearing in
mind Lemma 4, given 𝑉 ∈ X∗P(𝛾), we denote by 𝐷

𝑉
:

XP(𝛾) → XP(𝛾) the unique tensor derivation fulfilling:

𝑉(𝑓

) = 𝑉 (𝑓)


+

1

2𝑎

𝜌
𝑉
𝑓


∀𝑓 ∈ P; (55)

(

𝑉 (𝑘
1
)

𝑉 (𝑘
2
)

)

= (

1

𝑎

(

1

𝑎

𝐷
3

𝜎
+ 𝑘
1
𝐷
𝜎
+ 𝐷
𝜎
𝑘
1
) −

1

𝑎

(𝐷
𝜎
𝑘
2
+ 𝑘
2
𝐷
𝜎
)

1

𝑎

(𝐷
𝜎
𝑘
2
+ 𝑘
2
𝐷
𝜎
)

𝜀
1
𝜀
2

𝑎

(

1

𝑎

𝐷
3

𝜎
+ 𝑘
1
𝐷
𝜎
+ 𝐷
𝜎
𝑘
1
)

)

⋅ (

𝜑
𝑉

𝜓
𝑉

) +(

1

𝑎

(

1

2𝑎

𝜌


𝑉
+ 𝑘
1
𝜌
𝑉
− 2𝐺𝑔



𝑉
)

1

𝑎

𝑘
2
𝜌
𝑉
− 𝜀
2
𝐺𝑙
𝑉

);

(56)

(

𝐷
𝑉
𝑇

𝐷
𝑉
𝑊
1

𝐷
𝑉
𝑁

𝐷
𝑉
𝑊
2

)

=

(

(

(

(

−𝛼
𝑉

𝜑
𝑉

0 𝜓
𝑉

−𝛽
𝑉

0 𝜀
1
𝜑
𝑉

1

𝑎

𝜓


𝑉

0 −𝜀
1
𝛽
𝑉

𝛼
𝑉

𝜀
1

𝑎

𝛿
𝑉

𝜀
1
𝜀
2

𝑎

𝛿
𝑉

−

𝜀
1
𝜀
2

𝑎

𝜓


𝑉
𝜀
2
𝜓
𝑉

0

)

)

)

)

⋅(

𝑇

𝑊
1

𝑁

𝑊
2

),

(57)

where 𝛼
𝑉
, 𝛽
𝑉
, and 𝛿

𝑉
are given in (26). We now restrict our

definition of Lie bracket only on the setX∗P(𝛾), which will be
enough for our purposes.

Proposition 9. Let 𝛾 be a null curve in Λ and consider [⋅, ⋅]
𝛾
:

X∗P(𝛾) ×X∗P(𝛾) → X∗P(𝛾) the map given by

[𝑉
1
, 𝑉
2
]
𝛾
= 𝐷
𝑉
1

𝑉
2
− 𝐷
𝑉
2

𝑉
1
. (58)

Then the following holds:

(a) [⋅, ⋅]
𝛾
is well defined; that is, if 𝑉

1
, 𝑉
2
∈ X∗P(𝛾) then

[𝑉
1
, 𝑉
2
]
𝛾
∈ X∗P(𝛾).
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(b) [𝑉
1
, 𝑉
2
]
𝛾
(𝑓) = 𝑉

1
𝑉
2
(𝑓) − 𝑉

2
𝑉
1
(𝑓) for all 𝑓 ∈ P.

(c) [⋅, ⋅]
𝛾
is skew-symmetric.

(d) For 𝑉
1
, 𝑉
2
∈ X∗P(𝛾) and 𝑈 ∈ XP(𝛾) we have

𝐷
[𝑉
1
,𝑉
2
]
𝑈 − 𝐷

𝑉
1

𝐷
𝑉
2

𝑈 + 𝐷
𝑉
2

𝐷
𝑉
1

𝑈

= 𝐺 (⟨𝑈,𝑉
1
⟩𝑉
2
− ⟨𝑈,𝑉

2
⟩𝑉
1
) .

(59)

(e) [⋅, ⋅]
𝛾
satisfies the Jacobi identity.

(f) [⋅, ⋅]
𝛾
is closed for elements in 𝑇P,𝛾(Λ), that is, if𝑉,𝑈 ∈

𝑇P,𝛾(Λ), then [𝑉, 𝑈]𝛾 ∈ 𝑇P,𝛾(Λ).

Proof. Given two vector fields𝑉
1
= 𝑓
1
𝑇+ℎ
1
𝑊
1
+𝑔
1
𝑁+ 𝑙
1
𝑊
2

and 𝑉
2
= 𝑓
2
𝑇 + ℎ

2
𝑊
1
+ 𝑔
2
𝑁 + 𝑙

2
𝑊
2
in X∗P(𝛾), set 𝑉12 =

[𝑉
1
, 𝑉
2
]
𝛾
. The components 𝑔

12
and ℎ
12
of 𝑉
12
are given by

𝑔
12
= 𝑉
1
(𝑔
2
) − 𝑉
2
(𝑔
1
) −

1

𝑎

(𝜑
1
𝑔


2
− 𝜑
2
𝑔


1
)

+ (𝛼
1
𝑔
2
− 𝛼
2
𝑔
1
) + 𝜀
2
(𝑙
2
𝜓
1
− 𝑙
1
𝜓
2
) ,

ℎ
12
=

𝜀
1

𝑎

(𝑉
2
(𝑔


1
) − 𝑉
1
(𝑔


2
)) + (𝜑

1
𝑓
2
− 𝜑
2
𝑓
1
)

+ 𝜀
1
(𝛽
2
𝑔
1
− 𝛽
1
𝑔
2
) +

𝜀
1
𝜀
2

𝑎

(𝑙
1
𝜓


2
− 𝑙
2
𝜓


1
) .

(60)

Since 𝑉
1
, 𝑉
2
∈ X∗P(𝛾), they verify formulas (35) and (42)

which, together with definitions of 𝛼
𝑖
and 𝛽

𝑖
, lead to the

relation 𝑔


12
= −𝑎𝜀

1
ℎ
12
. The latter is the condition equivalent

to [𝑉
1
, 𝑉
2
]
𝛾
∈ X∗P(𝛾), thus proving (a). To prove (b), it is

sufficient to check the same equality solely for generators 𝑘
1

and 𝑘
2
of algebra P. We will calculate the expressions of

𝜑
12
, 𝜓
12
, and 𝜌

12
(corresponding functions to the Lie bracket

[𝑉
1
, 𝑉
2
]
𝛾
), bymeans of𝜑

𝑖
,𝜓
𝑖
, and 𝜌

𝑖
(corresponding functions

to vector fields𝑉
𝑖
). If𝑉 = 𝑓

𝑉
𝑇+ℎ
𝑉
𝑊
1
+𝑔
𝑉
𝑁+𝑙
𝑉
𝑊
2
∈ XP(𝛾)

is any vector field, we have

𝜑
𝑉
= 𝑎𝑓
𝑉
+ ℎ


𝑉
− 𝜀
1
𝑘
1
𝑔
𝑉
,

𝜓
𝑉
= 𝑙


𝑉
+ 𝜀
2
𝑘
2
𝑔
𝑉
,

𝜌
𝑉
= −𝑎𝑓



𝑉
+ 2𝑎𝑘

1
ℎ
𝑉
− 𝑎𝑘
2
𝑙
𝑉
− 𝜑


𝑉
+ 𝜀
1
𝑘
1
𝑔


𝑉
,

ℎ
𝑉
= −

𝜀
1

𝑎

𝑔


𝑉

if 𝑉 ∈ X
∗

P (𝛾) .

(61)

Bearing in mind relations (61) and expressions of 𝑉(𝑘
1
) and

𝑉(𝑘
2
) obtained in Lemma 4, we deduce

𝜑
𝐷
𝑉1
𝑉
2

= 𝑎𝑓
𝐷
𝑉1
𝑉
2

+ ℎ


𝐷
𝑉1
𝑉
2

− 𝜀
1
𝑘
1
𝑔
𝐷
𝑉1
𝑉
2

= 𝑉
1
(𝜑
2
) −

1

2𝑎

𝜌
1
𝜑
2
−

1

𝑎

𝜑
1
𝜌
2
−

1

𝑎

𝜑
1
𝜑


2
−

𝜀
1
𝜀
2

𝑎

𝜓


1
𝜓
2

−

𝜀
1

𝑎

𝐺𝑔


1
𝑔
2
;

𝜓
𝐷
𝑉1
𝑉
2

= 𝑙


𝐷
𝑉1
𝑉
2

+ 𝜀
2
𝑘
2
𝑔
𝐷
𝑉1
𝑉
2

= 𝑉
1
(𝜓
2
) −

1

2𝑎

𝜌
1
𝜓
2
−

1

𝑎

𝜌
2
𝜓
1
+

1

𝑎

(𝜓


1
𝜑
2
− 𝜓
1
𝜑


2
)

+ 𝐺𝑙
1
𝑔
2
;

𝜌
𝐷
𝑉1
𝑉
2

= −𝑎𝑓


𝐷
𝑉1
𝑉
2

+ 2𝑎𝑘
1
ℎ
𝐷
𝑉1
𝑉
2

− 𝑎𝑘
2
𝑙
𝐷
𝑉1
𝑉
2

− 𝜑


𝐷
𝑉1
𝑉
2

+ 𝜀
1
𝑘
1
𝑔


𝐷
𝑉1
𝑉
2

= 𝑉
1
(𝜌
2
) −

1

𝑎

𝜌
1
𝜌
2
+

1

𝑎

(𝜌


1
𝜑
2
+ 𝜑
1
𝜌


2
)

+

1

𝑎

(𝜑


1
𝜑
2
+ 𝜑


2
𝜑
1
) + 2𝑘

1
𝜑
1
𝜑
2

− 𝑘
2
(𝜑
1
𝜓
2
+ 𝜑
2
𝜓
1
) +

𝜀
1
𝜀
2

𝑎

𝜓


1
𝜓


2

+ 𝐺(

𝜀
1

𝑎

(𝑔
1
𝑔


2
+ 𝑔
2
𝑔


1
) + 2𝜀

1
𝑘
1
𝑔
1
𝑔
2
− 𝑎𝜀
2
𝑙
1
𝑙
2
) .

(62)

Because of symmetry of formulas (62), deleting terms with
repeated factors and rearranging the other, we obtain

𝜑
12
= 𝑉
1
(𝜑
2
) − 𝑉
2
(𝜑
1
) +

1

2𝑎

(𝜌
1
𝜑
2
− 𝜌
2
𝜑
1
)

+

1

𝑎

(𝜑


1
𝜑
2
− 𝜑
1
𝜑


2
) +

𝜀
1
𝜀
2

𝑎

(𝜓
1
𝜓


2
− 𝜓


1
𝜓
2
)

+

𝜀
1

𝑎

𝐺 (𝑔


2
𝑔
1
− 𝑔
2
𝑔


1
) ,

𝜓
12
= 𝑉
1
(𝜓
2
) − 𝑉
2
(𝜓
1
) +

1

2𝑎

(𝜌
1
𝜓
2
− 𝜌
2
𝜓
1
)

+

1

𝑎

(𝜓


1
𝜑
2
− 𝜓
1
𝜑


2
+ 𝜓
2
𝜑


1
− 𝜓


2
𝜑
1
)

+ 𝐺 (𝑙
1
𝑔
2
− 𝑙
2
𝑔
1
) ,

𝜌
12
= 𝑉
1
(𝜌
2
) − 𝑉
2
(𝜌
1
) .

(63)

From Lemma 4 we obtain

[𝑉
1
, 𝑉
2
]
𝛾
(𝑘
1
) =

1

𝑎
2
𝜑


12
+

1

𝑎

(𝑘


1
𝜑
12
+ 2𝑘
1
𝜑


12
)

−

1

𝑎

(𝑘


2
𝜓
12
+ 2𝑘
2
𝜓


12
)

+

1

𝑎

(

1

2𝑎

𝜌


12
+ 𝑘
1
𝜌
12
− 2𝐺𝑔



12
) .

(64)

Expanding each earlier term by using 𝑉(𝑓)


= 𝑉(𝑓

) −

(3/2𝑎)𝜌
𝑉
𝑓

−(3/2𝑎)𝜌



𝑉
𝑓

−(1/2𝑎)𝜌



𝑉
𝑓
 and other properties

it follows that
1

𝑎
2
𝜑


12
= 𝑉
1
(

1

𝑎
2
𝜑


2
) − 𝑉
2
(

1

𝑎
2
𝜑


1
) +

1

𝑎
3
(𝜌
2
𝜑


1

− 𝜌
1
𝜑


2
) +

1

𝑎
3
(𝜌


1
𝜑


2
− 𝜌


2
𝜑


1
) +

1

2𝑎
3
(𝜌


1
𝜑
2
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− 𝜌


2
𝜑
1
) +

1

𝑎
3
(𝜑
(4)

1
𝜑
2
− 𝜑
1
𝜑
(4)

2

+ 2 (𝜑


1
𝜑


2
− 𝜑


2
𝜑


1
)) +

𝜀
1
𝜀
2

𝑎
3
(𝜓
1
𝜓
(4)

2
− 𝜓
2
𝜓
(4)

1

+ 2 (𝜓


1
𝜓


2
− 𝜓


2
𝜓


1
)) +

𝜀
1

𝑎
3
𝐺(𝑔


2
𝑔
1
− 𝑔
2
𝑔


1
)



;

1

𝑎

(𝑘


1
𝜑
12
+ 2𝑘
1
𝜑


12
) = 𝑉
1
(

1

𝑎

(𝑘


1
𝜑
2
+ 2𝑘
1
𝜑


2
))

− 𝑉
2
(

1

𝑎

(𝑘


1
𝜑
1
+ 2𝑘
1
𝜑


1
)) +

1

𝑎

(𝑉
2
(2𝑘
1
) 𝜑


1

+ 𝑉
2
(𝑘


1
) 𝜑
1
− 𝑉
1
(2𝑘
1
) 𝜑


2
− 𝑉
1
(𝑘


1
) 𝜑
2
)

+

𝑘
1

𝑎
2
(𝜌


1
𝜑
2
− 𝜌


2
𝜑
1
) +

2𝑘
1

𝑎
2
(𝜑
2
𝜑


1
− 𝜑
1
𝜑


2
)

+

2𝜀
1
𝜀
2
𝑘
1

𝑎
2

(𝜓
1
𝜓


2
− 𝜓
2
𝜓


1
) +

𝑘


1

2𝑎
2
(𝜌
1
𝜑
2
− 𝜌
2
𝜑
1
)

+

𝑘


1

𝑎
2
(𝜑
2
𝜑


1
− 𝜑
1
𝜑


2
) +

𝜀
1
𝜀
2
𝑘


1

𝑎
2

(𝜓
1
𝜓


2
− 𝜓
2
𝜓


1
)

+

2𝜀
1
𝑘
1

𝑎
2

𝐺(𝑔


2
𝑔
1
− 𝑔
2
𝑔


1
)



+

𝜀
1
𝑘


1

𝑎
2
𝐺(𝑔


2
𝑔
1
− 𝑔
2
𝑔


1
) ;

−

1

𝑎

(𝑘


2
𝜓
12
+ 2𝑘
2
𝜓


12
) = 𝑉
1
(−

1

𝑎

(𝑘


2
𝜓
2
+ 2𝑘
2
𝜓


2
))

− 𝑉
2
(−

1

𝑎

(𝑘


2
𝜓
1
+ 2𝑘
2
𝜓


1
)) −

1

𝑎

(𝑉
2
(2𝑘
2
) 𝜓


1

+ 𝑉
2
(𝑘


2
) 𝜓
1
− 𝑉
1
(2𝑘
2
) 𝜓


2
− 𝑉
1
(𝑘


2
) 𝜓
2
)

−

𝑘
2

𝑎
2
(𝜌


1
𝜓
2
− 𝜌


2
𝜓
1
) −

𝑘


2

2𝑎
2
(𝜌
1
𝜓
2
− 𝜌
2
𝜓
1
)

−

2𝑘
2

𝑎
2
(𝜑
2
𝜓


1
− 𝜓
1
𝜑


2
+ 𝜓
2
𝜑


1
− 𝜓


2
𝜑
1
)

−

𝑘


2

𝑎
2
(𝜓


1
𝜑
2
− 𝜓
1
𝜑


2
+ 𝜓
2
𝜑


1
− 𝜓


2
𝜑
1
) −

𝑘


2

𝑎

𝐺 (𝑙
1
𝑔
2

− 𝑙
2
𝑔
1
) −

2𝑘
2

𝑎

𝐺 (𝑙
1
𝑔
2
− 𝑙
2
𝑔
1
)

.

(65)

Based on the expressions 𝑉(𝑓) = 𝑉(𝑓

) − (1/𝑎)𝜌

𝑉
𝑓

−

(1/2𝑎)𝜌


𝑉
𝑓
 and 𝑉(𝑓)


= 𝑉(𝑓


) − (1/2𝑎)𝜌

𝑉
𝑓
 it is also easy

to establish that

1

2𝑎
2
𝜌


12
= 𝑉
1
(

1

2𝑎
2
𝜌


2
) − 𝑉
2
(

1

2𝑎
2
𝜌


1
)

+

1

2𝑎
3
(𝜌
2
𝜌


1
− 𝜌
1
𝜌


2
) ,

𝑘
1

𝑎

𝜌
12
= 𝑉
1
(

𝑘
1

𝑎

𝜌
2
) − 𝑉
2
(

𝑘
1

𝑎

𝜌
1
) + 𝑉
2
(

𝑘
1

𝑎

) 𝜌
1

− 𝑉
1
(

𝑘
1

𝑎

) 𝜌
2
,

−

2𝐺

𝑎

𝑔


12
= 𝑉
1
(−

2𝐺

𝑎

𝑔


2
) − 𝑉
2
(−

2𝐺

𝑎

𝑔


1
)

+

𝐺

𝑎
2
(𝜌
1
𝑔


2
− 𝜌
2
𝑔


1
)

+

2𝐺

𝑎
2
(𝜑


1
𝑔


2
− 𝜑


2
𝑔


1
+ 𝜑
1
𝑔


2
− 𝜑
2
𝑔


1
)

−

2𝐺

𝑎

(𝛼


1
𝑔
2
+ 𝛼
1
𝑔


2
− 𝛼


2
𝑔
1
− 𝛼
2
𝑔


1
)

−

2𝜀
2
𝐺

𝑎

(𝜓


1
𝑙
2
+ 𝜓
1
𝑙


2
− 𝑙


1
𝜓
2
− 𝑙
1
𝜓


2
) .

(66)

When adding up (64), (65), and (66) and making a long but
easy computation we obtain

[𝑉
1
, 𝑉
2
]
𝛾
(𝑘
1
) = 𝑉
1
𝑉
2
(𝑘
1
) − 𝑉
2
𝑉
1
(𝑘
1
) . (67)

Using again Lemma 4 we have

[𝑉
1
, 𝑉
2
]
𝛾
(𝑘
2
) =

𝜀
1
𝜀
2

𝑎
2
𝜓


12
+

𝜀
1
𝜀
2

𝑎

(𝑘


1
𝜓
12
+ 2𝑘
1
𝜓


12
)

+

1

𝑎

(𝑘


2
𝜑
12
+ 2𝑘
2
𝜑


12
)

+

1

𝑎

(𝑘
2
𝜌
12
− 𝑎𝜀
2
𝐺𝑙
12
) .

(68)

In the same way as (63), we can compute the terms of (68),

𝜀
1
𝜀
2

𝑎
2
𝜓


12
= 𝑉
1
(

𝜀
1
𝜀
2

𝑎
2
𝜓


2
) − 𝑉
2
(

𝜀
1
𝜀
2

𝑎
2
𝜓


1
)

+

𝜀
1
𝜀
2

𝑎
3
(𝜌


1
𝜓


2
− 𝜌


2
𝜓


1
) +

𝜀
1
𝜀
2

2𝑎
3
(𝜌


1
𝜓
2
− 𝜌


2
𝜓
1
)

+

𝜀
1
𝜀
2

𝑎
3
[𝜓
(4)

1
𝜑
2
− 𝜓
(4)

2
𝜑
1
+ 2 (𝜓



1
𝜑


2
− 𝜓


2
𝜑


1
)

+ 2 (𝜓


2
𝜑


1
− 𝜓


1
𝜑


2
) + (𝜓

2
𝜑
(4)

1
− 𝜓
1
𝜑
(4)

2
)] +

𝜀
1
𝜀
2

𝑎
2

⋅ 𝐺 (𝑙
1
𝑔
2
− 𝑙
2
𝑔
1
)

;

𝜀
1
𝜀
2

𝑎

(𝑘


1
𝜓
12
+ 2𝑘
1
𝜓


12
) = 𝑉
1
(

𝜀
1
𝜀
2

𝑎

(𝑘


1
𝜓
2
+ 2𝑘
1
𝜓


2
))

− 𝑉
2
(

𝜀
1
𝜀
2

𝑎

(𝑘


1
𝜓
1
+ 2𝑘
1
𝜓


1
)) +

𝜀
1
𝜀
2

𝑎

(𝑉
2
(2𝑘
1
) 𝜓


1

+ 𝑉
2
(𝑘


1
) 𝜓
1
− 𝑉
1
(2𝑘
1
) 𝜓


2
− 𝑉
1
(𝑘


1
) 𝜓
2
)

+

𝜀
1
𝜀
2
𝑘
1

𝑎
2

(𝜌


1
𝜓
2
− 𝜌


2
𝜓
1
) +

𝜀
1
𝜀
2
𝑘


1

2𝑎
2

(𝜌
1
𝜓
2
− 𝜌
2
𝜓
1
)

+

2𝜀
1
𝜀
2
𝑘
1

𝑎
2

(𝜑
2
𝜓


1
− 𝜑
1
𝜓


2
+ 𝜓
2
𝜑


1
− 𝜓
1
𝜑


2
)



10 Advances in Mathematical Physics

+

𝜀
1
𝜀
2
𝑘


1

𝑎
2

(𝜑
2
𝜓


1
− 𝜓
1
𝜑


2
+ 𝜓
2
𝜑


1
− 𝜓


2
𝜑
1
)

+

𝜀
1
𝜀
2
𝐺

𝑎

[2𝑘
1
(𝑙
1
𝑔
2
− 𝑙
2
𝑔
1
)

+ 𝑘


1
(𝑙
1
𝑔
2
− 𝑙
2
𝑔
1
)] ;

1

𝑎

(𝑘


2
𝜑
12
+ 2𝑘
2
𝜑


12
) = 𝑉
1
(

1

𝑎

(𝑘


2
𝜑
2
+ 2𝑘
2
𝜑


2
))

− 𝑉
2
(

1

𝑎

(𝑘


2
𝜑
1
+ 2𝑘
2
𝜑


1
)) +

1

𝑎

(𝑉
2
(2𝑘
2
) 𝜑


1

+ 𝑉
2
(𝑘


2
) 𝜑
1
− 𝑉
1
(2𝑘
2
) 𝜑


2
− 𝑉
1
(𝑘


2
) 𝜑
2
)

+

𝑘
2

𝑎
2
(𝜌


1
𝜑
2
− 𝜌


2
𝜑
1
) +

𝑘


2

2𝑎
2
(𝜌
1
𝜑
2
− 𝜌
2
𝜑
1
)

+

2𝑘
2

𝑎
2
(𝜑
2
𝜑


1
− 𝜑
1
𝜑


2
) +

2𝜀
1
𝜀
2
𝑘
2

𝑎
2

(𝜓
1
𝜓


2
− 𝜓


1
𝜓
2
)

+

𝑘


2

𝑎
2
(𝜑


1
𝜑
2
− 𝜑
1
𝜑


2
) +

𝜀
1
𝜀
2
𝑘


2

𝑎
2

(𝜓
1
𝜓


2
− 𝜓


1
𝜓
2
)

+

𝜀
1
𝐺

𝑎
2
[2𝑘
2
(𝑔


2
𝑔
1
− 𝑔
2
𝑔


1
)



+ 𝑘


2
(𝑔


2
𝑔
1
− 𝑔
2
𝑔


1
)] ;

𝑘
2

𝑎

𝜌
12
= 𝑉
1
(

𝑘
2

𝑎

𝜌
2
) − 𝑉
2
(

𝑘
2

𝑎

𝜌
1
) + 𝑉
2
(

𝑘
2

𝑎

) 𝜌
1

− 𝑉
1
(

𝑘
1

𝑎

) 𝜌
2
;

− 𝜀
2
𝐺𝑙
12
= 𝑉
1
(−𝜀
2
𝐺𝑙
2
) − 𝑉
2
(−𝜀
2
𝐺𝑙
1
) − 𝜀
2
𝐺 (𝑓
2
𝜓
1

− 𝑓
1
𝜓
2
) +

𝜀
1
𝜀
2

𝑎
2
(𝑔


2
𝜓


1
− 𝑔


1
𝜓


2
) −

𝜀
1
𝜀
2
𝐺

𝑎

(𝑔
2
𝛿
1

− 𝑔
1
𝛿
2
) .

(69)

After some work, it also follows from (69) that

[𝑉
1
, 𝑉
2
]
𝛾
(𝑘
2
) = 𝑉
1
𝑉
2
(𝑘
2
) − 𝑉
2
𝑉
1
(𝑘
2
) . (70)

Paragraph (c) is a direct consequence of the definition and
(f) is also trivial taking into account the expression for 𝜌

12

given in (63). Paragraph (d) follows from a straightforward
computation. Finally, to prove (e), let us denote 𝑅(𝑉

1
, 𝑉
2
)𝑈 =

𝐷
[𝑉
1
,𝑉
2
]
𝑈 − 𝐷

𝑉
1

𝐷
𝑉
2

𝑈 + 𝐷
𝑉
2

𝐷
𝑉
1

𝑈. By using (d) we obtain

[[𝑉
1
, 𝑉
2
] , 𝑉
3
] + [[𝑉

2
, 𝑉
3
] , 𝑉
1
] + [[𝑉

3
, 𝑉
1
] , 𝑉
2
]

= 𝑅 (𝑉
1
, 𝑉
2
) 𝑉
3
+ 𝑅 (𝑉

2
, 𝑉
3
) 𝑉
1
+ 𝑅 (𝑉

3
, 𝑉
1
) 𝑉
2
= 0.

(71)

In particular, Proposition 9 entails that the set ofP-local
pseudo arc-length preserving variation vector fields 𝑇P,𝛾(Λ)
is a Lie subalgebra of the Lie algebra of the P-local vector
fields (X∗P(𝛾), [⋅, ⋅]𝛾).

Before turning to study the geometric hierarchies of null
curve flows in Section 5, we point out that (36) and (56) are
particularly noteworthy when vector fields locally preserve

the pseudo arc-length parameter and curvature 𝐺 vanishes.
Equations (36) and (56) may be rewritten as

(𝜑
𝑉
, 𝜓
𝑉
) = 𝐴 (ℎ

𝑉
, 𝑙
𝑉
)

= (𝐴
1
(ℎ
𝑉
, 𝑙
𝑉
) , 𝐴
2
(ℎ
𝑉
, 𝑙
𝑉
)) ,

(𝑉 (𝑘
1
) , 𝑉 (𝑘

2
)) = 𝐵 (𝜑

𝑉
, 𝜓
𝑉
)

= (𝐵
1
(𝜑
𝑉
, 𝜓
𝑉
) , 𝐵
2
(𝜑
𝑉
, 𝜓
𝑉
)) ,

(72)

where

𝐴 = (

𝐴
1

𝐴
2

) = (

𝑎

2

𝜔 (𝑘
1
) −

𝑎

2

𝐷
−1

𝜎
𝑘
2

−𝜀
1
𝜀
2
𝑎𝑘
2
𝐷
−1

𝜎
𝐷
𝜎

) ;

𝐵 = (

𝐵
1

𝐵
2

) =

1

𝑎

(

𝜃 (𝑘
1
) −𝑆 (𝑘

2
)

𝑆 (𝑘
2
) 𝜀
1
𝜀
2
𝜃 (𝑘
1
)

) ,

(73)

with 𝜔(𝑘
1
) = (1/𝑎)𝐷

𝜎
+ 𝑘
1
𝐷
−1

𝜎
+ 𝐷
−1

𝜎
𝑘
1
, 𝜃(𝑘
1
) = (1/𝑎)𝐷

3

𝜎
+

𝑘
1
𝐷
𝜎
+𝐷
𝜎
𝑘
1
, and 𝑆(𝑘

2
) = 𝐷

𝜎
𝑘
2
+𝑘
2
𝐷
𝜎
. It should be remarked

that 𝐴 and 𝐵 come very close to being the symplectic and
cosymplectic operators, respectively, for (up to scaling) the
Hirota-Satsuma system (see [12, 13]). Equation (72) can also
be regarded as

(𝜑
𝑉
, −𝜓
𝑉
) = 𝐽 (2ℎ

𝑉
, −𝜀
1
𝜀
2
𝑙
𝑉
)

= (𝐽
1
(2ℎ
𝑉
, −𝜀
1
𝜀
2
𝑙
𝑉
) , 𝐽
2
(2ℎ
𝑉
, −𝜀
1
𝜀
2
𝑙
𝑉
)) ,

(𝑉 (𝑘
1
) , 𝑉 (𝑘

2
)) = Θ (𝜑

𝑉
, −𝜓
𝑉
)

= (Θ
1
(𝜑
𝑉
, −𝜓
𝑉
) , Θ
2
(𝜑
𝑉
, −𝜓
𝑉
)) ,

(74)

where

𝐽 = (

𝐽
1

𝐽
2

) = −

𝜀
1
𝜀
2

2

(

−

𝜀
1
𝜀
2
𝑎

2

𝜔 (𝑘
1
) −𝑎𝐷

−1

𝜎
𝑘
2

−𝑎𝑘
2
𝐷
−1

𝜎
−2𝐷
𝜎

) ;

Θ = (

Θ
1

Θ
2

) =

1

𝑎

(

𝜃 (𝑘
1
) 𝑆 (𝑘

2
)

𝑆 (𝑘
2
) −𝜀
1
𝜀
2
𝜃 (𝑘
1
)

) .

(75)

It is now therefore evident that 𝐽 andΘ are the symplectic
and cosymplectic operators, respectively, for a rescaling of
the HS-cKdV system. They have been obtained in a natural
way using projections onto the screen bundle of both, the
variation vector field𝑉 and its covariant derivative ∇

𝑇
𝑉. This

allows us automatically to determine the recursion operator
𝑅 = Θ ∘ 𝐽, and the crucial relation

(𝑉 (𝑘
1
) , 𝑉 (𝑘

2
)) = 𝑅 (2ℎ

𝑉
, −𝜀
1
𝜀
2
𝑙
𝑉
) . (76)

Somewhat analogous relationshipswere obtained between
curve evolution in 3-dimensional Riemannian manifolds in
[19] (or more generally in 𝑛-dimensional Riemannian mani-
fold with constant curvature in [20]) and the mKdV system.
The above connection together with the availability of the Lie
bracket provided by Proposition 9 will be employed to study
the integrability of null curve evolution in the next section.
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5. Geometric Hierarchies of Null Curve Flows

The background given in [1] for the 3-dimensional case used
to construct a commuting hierarchy for null curve evolutions
can also be well adapted to the 4-dimensional case. Consider
Λ the space of pseudo arc-length parametrized null curves in
the pseudo-Euclidean space R4

𝑞
. A map f : Λ → C∞(𝐼,R)

is referred to a scalar field on Λ and f(𝛾) will be also denoted
by f
𝛾
. Let A be the algebra of P-valued scalar fields on Λ,

that is, if f ∈ A, then f
𝛾
∈ P for all 𝛾 ∈ Λ. In this sense, we

will also understand the curvatures scalar fields k1, k2 : Λ →

C∞(𝐼,R) with its obvious meaning.
Similarly, a map V : Λ → ⋃

𝛾∈Λ
𝑇
𝛾
Λ is referred to as a

vector field on Λ, and V(𝛾) will be also denoted by V
𝛾
. We

will denote the set of tangent vector fields on Λ as X(Λ), and
within we consider the subset XA(Λ) of vector fields V such
thatV

𝛾
∈ XP(𝛾); namely, if we denoteV = fT + hW1 + gN +

lW2, then

XA (Λ) = {V ∈ X (Λ) : f , h, g, l ∈ A; h = −

𝜀
1

𝑎

g; f

=

1

2𝑎

[

𝜀
1

𝑎

g + 𝐷
−1

𝜎
(𝜀
1
k1g − 𝑎k2l)]} ,

(77)

where the derivative and antiderivative operators act on scalar
fields as f(𝛾) = f

𝛾
and 𝐷

−1

𝜎
(f)(𝛾) = 𝐷

−1

𝜎
(f
𝛾
), respectively.

ThusXA(Λ) stands for the set ofA-local vector fields locally
preserving the pseudo arc-length parameter and the causal
character. These vector fields commute with the tangent
vector fieldT, so theywill be called evolution vector fields.We
also denote by XA(Λ) and X∗A(Λ) the sets of vector fields V
such that V

𝛾
∈ XP(𝛾) and V

𝛾
∈ X∗P(𝛾), respectively. Hence,

XA (Λ)

= {V = fT + hW1 + gN + lW2 : f , h, g, l ∈ A} .

X
∗

A (Λ) = {V ∈ XA (Λ) : h = −

𝜀
1

𝑎

g} .

(78)

Remark 10. In what follows, we will operate with scalar fields
and vector fields in the natural way, understanding that the
result of the operation is again a scalar field or vector field.
For instance, if V, U are vector fields on Λ, then ⟨V,U⟩ is a
scalar field, where ⟨V,U⟩(𝛾) = ⟨V

𝛾
,U
𝛾
⟩; or ∇TV is again a

vector field, where ∇TV(𝛾) = ∇T
𝛾

V
𝛾
and so on.

Hence, for V ∈ X∗A(Λ), the operator 𝐷V : XA(Λ) →

XA(Λ) is defined as (𝐷VU)(𝛾) = 𝐷V
𝛾

U
𝛾
. The operator 𝐷V

can also be described in other words when V ∈ XA(Λ).
Consider 𝛾 is a null curve in Λ and suppose that V

𝛾
(𝜎) =

(𝜕𝛾/𝜕𝑡)(𝜎, 0), then

(𝐷VU)𝛾 (𝜎) =
𝐷

𝜕𝑡







𝑡=0

U
𝛾
𝑡

(𝜎) . (79)

In fact, the tensor derivation𝐷V is an extension of the Fréchet
derivative defined in (15) for derivations to vector fields on

the null curves space. In this way, this operator can be easily
translated to the context of any other type of curves.

The Lie algebra structure on local vector fields locally
preserving the causal character provided by Proposition 9
(along a particular curve) can also be easily extended on the
setX∗A(Λ).

Proposition 11. The map [⋅, ⋅] : X∗A(Λ) × X∗A(Λ) → X∗A(Λ)
given by

[V,U] (𝛾) = [V
𝛾
,U
𝛾
]
𝛾

(80)

is a Lie bracket verifying the following:

(a) [V,U](f) = VU(f) − UV(f) for all f ∈ A.

(b) [⋅, ⋅] is closed for elements in XA(Λ); that is, if V,U ∈

XA(Λ), then [V,U] ∈ XA(Λ).

Hence, [⋅, ⋅]is a Lie bracket, (X∗A(Λ), [⋅, ⋅]) is a Lie algebra,
and the space of evolution vector fields (XA(Λ), [⋅, ⋅]) is a Lie
subalgebra ofX∗A(Λ).

Let us define der(A) as the set of derivations onA defined
in the natural way and der∗(A) the Lie subalgebra of all
evolution derivations. In this setting, the elements of der∗(A)

are given by 𝜕
(p,q), with p, q ∈ A, such that they are defined

as usual by 𝜕
(p,q)f(𝛾) = 𝜕

(p
𝛾
,q
𝛾
)
f
𝛾
, for all f ∈ A and 𝛾 ∈ Λ.

Each vector field V on Λ can be regarded as a derivation on
A, acting on the generators k1 and k2 in the following way:

V (k1) (𝛾) = V
𝛾
(k1𝛾) ,

V (k2) (𝛾) = V
𝛾
(k2𝛾) .

(81)

Theorem 12. The map Φ : XA(Λ) → der∗(A) defined by

Φ (V) = 𝜕
(V(k1),V(k2)) = 𝜕

Θ(𝜑V,−𝜓V)
, (82)

where 𝜑V = 𝜀
1
⟨∇TV,W1⟩, 𝜓V = 𝜀

2
⟨∇TV,W2⟩, and Θ is

defined in (75), is a one-to-one homomorphism of Lie algebras.
In particular, V1 and V2 are commuting vector fields with
respect to the Lie bracket defined by Proposition 11 if and only
if their corresponding curvature flows (V1(k1),V1(k2)) and
(V2(k1),V2(k2)) commute with respect to the usual Lie bracket
for scalar fields.

Proof. Since the map Φ is clearly linear, it is enough to
prove that Φ keeps the Lie bracket, that is, Φ([V1,V2]) =

[Φ(V1), Φ(V2)], the latter being equivalent to show that

𝜕
([V1 ,V2](k1),[V1 ,V2](k2))

= [𝜕
(V1(k1),V1(k2)), 𝜕(V2(k1),V2(k2))] .

(83)
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From the last equality of Proposition 9(b) we deduce

[V1𝛾,V2𝛾]
𝛾
(k1𝛾) = V1𝛾V2𝛾 (k1𝛾) − V2𝛾V1𝛾 (k1𝛾)

= 𝜕
(V1𝛾(k1𝛾),V1𝛾(k2𝛾))V2𝛾 (k1𝛾)

− 𝜕
(V2𝛾(k1𝛾),V2𝛾(k2𝛾))V1𝛾 (k1𝛾) ,

[V1𝛾,V2𝛾]
𝛾
(k2𝛾) = V1𝛾V2𝛾 (k2𝛾) − V2𝛾V1𝛾 (k2𝛾)

= 𝜕
(V1𝛾(k1𝛾),V1𝛾(k2𝛾))V2𝛾 (k2𝛾)

− 𝜕
(V2𝛾(k1𝛾),V2𝛾(k2𝛾))V1𝛾 (k2𝛾) ,

(84)

and it is therefore satisfied

([V1𝛾,V2𝛾]
𝛾
(k1𝛾) , [V1𝛾,V2𝛾]

𝛾
(k2𝛾))

= 𝜕
(V1𝛾(k1𝛾),V1𝛾(k2𝛾)) (V2𝛾 (k1𝛾) ,V2𝛾 (k2𝛾))

− 𝜕
(V2𝛾(k1𝛾),V2𝛾(k2𝛾)) (V1𝛾 (k1𝛾) ,V1𝛾 (k2𝛾))

= [(V1𝛾 (k1𝛾) ,V1𝛾 (k2𝛾)) , (V2𝛾 (k1𝛾) ,V2𝛾 (k2𝛾))]

(85)

for all 𝛾 ∈ Λ. Finally, formula (83) is followed from

[𝜕
(V1𝛾(k1𝛾),V1𝛾(k2𝛾)), 𝜕(V2𝛾(k1𝛾),V2𝛾(k2𝛾))]

= 𝜕
[(V1𝛾(k1𝛾),V1𝛾(k2𝛾)),(V2𝛾(k1𝛾),V2𝛾(k2𝛾))].

(86)

In order to prove the injectivity we will prove that
𝜕
(V(k1),V(k2)) = 0 impliesV = 0, which is equivalent to proving
that V(k1) = V(k2) = 0 implies V = 0. As a first step we will
prove that if V(k1) = V(k2) = 0, then 𝜑V = 𝜓V = 0 and so,
from formula (46), ∇TV = 0. According to (74) we have that

(V (k1) ,V (k2)) = Θ (𝜑V, −𝜓V) =
1

𝑎

(𝜃 (k1)𝜑V

− 𝑆 (k2)𝜓V, 𝑆 (k2)𝜑V + 𝜀
1
𝜀
2
𝜃 (k1)𝜓V) .

(87)

For a scalar field f ∈ A we denote by ord(f) the order of the
highest derivative (with respect to both k1 or k2) appearing
in f ; that is,

ord (f) = max{𝑖 : 𝜕f
𝜕k(𝑖)1

̸= 0 or 𝜕f
𝜕k(𝑖)2

̸= 0} . (88)

Suppose that ord(𝜑V) = 𝑛 ̸= 0; then we have that
ord(𝜃(k1)𝜑V) = 𝑛 + 3. Since V(k1) = 0 it is necessarily
obtained that ord(𝑆(k2)𝜓V) = 𝑛+3, whence ord(𝜓V) = 𝑛+2.
Accordingly, ord(𝜃(k1)𝜓V) = 𝑛 + 5, which together with the
equation V(k2) = 0 would lead to ord(𝜑V) = 𝑛 + 4 and
so a contradiction. Therefore the scalar field 𝜑V is constant,
𝜑V = 𝑐, and it would verify the equation

0 =

1

𝑎

(𝜃 (k1)𝜑V − 𝑆 (k2)𝜓) =
1

𝑎

(𝑐k1 − 𝑆 (k2)𝜓V) . (89)

The latter equation is satisfied if and only if 𝑐 = 0 and𝜓V = 0,
that is, ∇TV = 0. Using formula (37), the equation ∇TV = 0

can be developed as

fV − k1hV + k2lV = 0,

𝑎fV + hV − 𝜀
1
k1gV = 0,

𝜀
1
𝑎hV + gV = 0,

lV + 𝜀
2
k2gV = 0.

(90)

Suppose that ord(lV) = 𝑛 ̸= 0; then (90) give rise to the
following implications:

ord (gV) = 𝑛 + 1 ⇒

ord (hV) = 𝑛 + 2 ⇒

ord (fV) = 𝑛 + 3.

(91)

Nevertheless, those orders of derivation represent a direct
contradiction to the first equation in (90) unless l = g = h =

f = 0.

Remark 13. From Theorem 12 we have that Im(Φ) is a Lie
subalgebra of the algebra der∗(A) of all evolution derivations.
Thus, we conclude that the algebra of evolution vector fields
XA(Λ) on Λ can be regarded as a Lie subalgebra of the
evolution derivations.

Consider the vector fields V0 = 𝑏T and V1 = −𝑎𝑐k1T −

2𝜀
1
𝑎
2
𝑐N borrowed from Example 8. Their flows 𝛾

𝑡
∈ Λ are

governed by

𝑑

𝑑𝑡

(𝛾
𝑡
) = V0𝛾

𝑡

= 𝑏T
𝛾
𝑡

, (92)

𝑑

𝑑𝑡

(𝛾
𝑡
) = V1𝛾

𝑡

= −𝑎𝑐k1𝛾
𝑡

T
𝛾
𝑡

− 2𝜀
1
𝑎
2
𝑐N
𝛾
𝑡

, (93)

which in turn induce evolutions for the curvature functions
k1 and k2 given by

𝑑

𝑑𝑡

(k1𝛾
𝑡

) = V0𝛾
𝑡

(k1𝛾
𝑡

) = 𝑏k1𝛾
𝑡

,

𝑑

𝑑𝑡

(k2𝛾
𝑡

) = V0𝛾
𝑡

(k2𝛾
𝑡

) = 𝑏k2𝛾
𝑡

,

(94)

𝑑

𝑑𝑡

(k1𝛾
𝑡

) = V1𝛾
𝑡

(k1𝛾
𝑡

)

= 𝑐 (k(3)1𝛾
𝑡

+ 3𝑎k1𝛾
𝑡

k1𝛾
𝑡

+ 6𝜀
1
𝜀
2
𝑎k2𝛾

𝑡

k2𝛾
𝑡

) ,

𝑑

𝑑𝑡

(k2𝛾
𝑡

) = V1𝛾
𝑡

(k2𝛾
𝑡

) = −𝑐 (2k(3)2𝛾
𝑡

+ 3𝑎k1𝛾
𝑡

k2𝛾
𝑡

) .

(95)

Observe that the evolution equation (95) is the Hirota-
Satsuma equation (1) (up to scaling the variables 𝑡, 𝑥 and
rescaling the functions 𝑢, V). Besides, the flows associated to
the curvatures given by V0 and V1 are basically flows 𝜎0 and
𝜎
1
given in (3). We refer to (93) induced by V1 (which also
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appears in [3]) as the null localized induction equation (NLIE).
Theorem 12 will be used below to obtain a recursion operator
for NLIE and thereby prove its integrability.

Proposition 14. The operator R acting on symmetries V,

R (V) = X(

1

2

V (k1) , −𝜀1𝜀2V (k2)) , (96)

is a recursion operator for NLIE.

Proof. Let U = R(V). Then by definition and making use of
(76) we obtain

(U (k1) ,U (k2)) = 𝑅 (2hU, −𝜀1𝜀2lU)

= 𝑅 (V (k1) ,V (k2)) .
(97)

The result can be easily deduced as a consequence of Theo-
rem 12.

We now proceed with the construction of an infinite
hierarchy of symmetries following the same scheme as in (3):

V2n = R𝑛V0;

V2n+1 = R𝑛V1.
(98)

Then, we have

V2 = RV0

= (−

𝑏

4𝑎

k1 −

𝑏

8

k21 +
𝜀
1
𝜀
2
𝑏

4

k22 +
𝜀
1
𝑐
1

2𝑎

k1 + 𝑐
2
)T

+

𝑏

2

k1W1 + (𝑐
1
−

𝜀
1
𝑎𝑏

2

k1)N − 𝜀
1
𝜀
2
𝑏k2W2,

(99)

and the corresponding curvature flow is

V2 (k1) =
1

8𝑎
2
[2𝑏k(5)1 + (10𝑎𝑏k1 − 4𝜀

1
𝑐
1
) k(3)1

+ 20𝜀
1
𝜀
2
𝑎𝑏k2k

(3)

2 + 20𝑎𝑏k1k


1 + 20𝜀
1
𝜀
2
𝑎𝑏k2k



2

+ (15𝑎
2
𝑏k21 + 10𝜀

1
𝜀
2
𝑎
2
𝑏k22 − 12𝜀

1
𝑎𝑐
1
k1 + 8𝑎

2
𝑐
2
)

⋅ k1 + (20𝜀
1
𝜀
2
𝑎
2
𝑏k1 − 24𝜀

2
𝑎𝑐
1
) k2k


2] ,

V2 (k2) =
1

8𝑎
2
[−8𝑏k(5)2 + (8𝜀

1
𝑐
1
− 20𝑎𝑏k1) k

(3)

2

− 10𝑎𝑏k1 k


2 − 20𝑎𝑏k1k


2

+ (10𝜀
1
𝜀
2
𝑎
2
𝑏k22 − 5𝑎

2
𝑏k21 + 12𝜀

1
𝑎𝑐
1
k1 + 8𝑎

2
𝑐
2
)

⋅ k2] .

(100)

Likewise, the next vector field in the hierarchy becomes

V3 = RV1 = (−

𝑐

4𝑎

k(4)1 −

3𝑐

4

k1k


1 −

7𝑐

8

(k1)
2

−

5𝜀
1
𝜀
2
𝑐

2

k2k


2 − 𝜀
1
𝜀
2
𝑐 (k2)

2

−

𝑎𝑐

8

k31 +
𝜀
1
𝑐
3

2𝑎

k1

−

3𝜀
1
𝜀
2
𝑎𝑐

4

k1k
2

2 + 𝑐
4
)T + (

𝑐

2

k(3)1 +

3𝑎𝑐

2

k1k


1

+ 3𝜀
1
𝜀
2
𝑎𝑐k2k



2)W1 + (−

𝜀
1
𝑎𝑐

2

k1 −

3𝜀
1
𝑎
2
𝑐

4

k21

−

3𝜀
2
𝑎
2
𝑐

2

k22 + 𝑐
3
)N + (2𝜀

1
𝜀
2
𝑐k(3)2 + 3𝜀

1
𝜀
2
𝑎𝑐k1k



2)

⋅W2.

(101)

Note that the above geometric hierarchy of commuting
vector fields at the curve level is a generalization of the ones
obtained in [1] for the 3-dimensional case, albeit using a
different procedure. In fact, it was not possible to extend the
procedure used in [1] to obtain the recursion operator and the
Hamiltonian structure at the curve level to the 4-dimensional
setting, mainly because of the appearance of nonlocal vector
fields. Searching for aHamiltonian structure at the curve level
for the 4-dimensional case will be one of the subject for future
research.

6. Conclusions

In this paper, our primary aim was to study the integrability
properties of null curve evolutions in a flat 4-dimensional
background.We undertook our research in an enough degree
of generality for the purpose of showing the role of the
constants appearing on it, especially when they possess
geometrical meaning. In that regard, the way in which the
computations were conducted to expose the most important
elements of the Hamiltonian structure for curvature flows is
particularly important. One of the most surprising facts was
to obtain the recursion operator (split into both the Poisson
operator and the symplectic operator in formulas (74) and
(75)) of the Hirota-Satsuma system bymeans of the geometry
of null curves or, more precisely, making use of the projection
of convenient variation vector fields onto the screen bundle.
Similar results were obtain in [19, 20], suggesting that the
screen bundle of a null curvemay be thought of as playing the
same role of the normal bundle in a Riemannian curve. We
can therefore also state the following important conclusion:
if we have a evolution vector field V with (𝜑V,𝜓V) having
the property of being the gradient of a certain functional H,
then the flow associated to the curvatures (V(k1),V(k2)) is a
completely integrable Hamiltonian system.

Furthermore, in Proposition 14 we have lifted the recur-
sion operator for theHirota-Satsuma system (at the curvature
level) to a recursion operator for the NLIE equation (at
the curve level), enabling us to obtain an infinite hierar-
chy of commuting vector fields. Proposition 11 shows that
the subspace consisting of A-local evolution vector fields
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(denoted byXA(Λ)) is closed under bracket and contains the
commuting flows as a subalgebra.

One of the many benefits of increasing the dimension
of the ambient space has been that the connections between
integrable hierarchies of both null curves and their curvature
flows become clearer. Nevertheless, finding a Hamiltonian
structure at the curve level still needs to be achieved. In addi-
tion, it would be interesting to develop a purely geometric
method to construct the existing structures of the dynamic
of null curve motions without lifting any element from the
curvature flow. Accordingly, further work is needed, perhaps
in a nonlocal background, if possible, to properly understand
which also has appeared in different contexts.
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