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The Homotopy Perturbation Method is developed to find a source function for inverse diffusion problem with time-fractional
derivative. The inverse problem is with variable coefficients and initial and boundary conditions. The analytical solutions to the
inverse problems are obtained in the form of a finite convergent power series with easily obtainable components.

1. Introduction

In recent years, fractional partial differential equations have
drawn much consideration. Many important phenomena
in physics, engineering, mathematics, finance, transport
dynamics, and hydrology are well characterized by partial
differential equations of fractional order. Fractional partial
differential equations play an important role inmodelling the
so-called anomalous transport phenomena and in the theory
of complex systems.These fractional derivatives are made up
more appropriately compared to the standard integer-order
models. So, the fractional derivatives are regarded to be very
dominating and useful tool. Fractional partial equations are
formulated using fractional derivative operators to replace
regular derivatives. Different forms of fractional partial equa-
tions have been widely researched. For example, fluid flow,
diffusive transport, materials with memory and hereditary
effects, electrical networks, signal processing, electromag-
netic theory, and many other physical processes are different
applications of fractional partial equations. Formathematical
properties of fractional derivatives and integrals, one can
consult [1–6].

A direct problem is the procedure of identification of the
effects from causes. An inverse problem is the opposite of a
direct problem. An inverse problem is the procedure of calcu-
lating from a set of remarks the causal factors that yield them:
for example, calculating an image in computer tomography,
calculating the density of the earth frommeasurements of its
gravity field, and source reconstructing in acoustic.

It is called an inverse problem because it starts with the
results and then calculates the causes. This is the inverse of
a forward problem, which starts with the causes and then
calculates the results.

Inverse problems are some of the most important math-
ematical problems because they inform us about parameters
that we cannot directly remark. They have wide application
in optics, radar, communication theory, acoustics, com-
puter vision, medical imaging, signal processing, astronomy,
oceanography, remote sensing, and many other areas.

The field of inverse problems was first found and showed
by Ambartsumian [7]; while still a student, Ambartsumian
thoroughly studied the theory of atomic structure, the forma-
tion of energy levels. Then, the field of inverse problems has
enjoyed a remarkable growth in the past few decades. High
speed computers have made numerical solutions to many
large scale inverse problems possible.

Applications of inverse problems are extremely various.
Onemay say that this is an area attracted almost exclusively by
applications. Because of the complexity of the problems and
variety of the applications, themathematicalmethods that are
involved in solving inverse problems are also various. In the
past few years, fractional calculus appears as an important
form to deal with heat transfer equations. To obtain analytic
solutions to fractional partial equations, two methods have
been mainly used: the first method is the application of
both Laplace-Fourier transforms and the second method
is the separation of variables technique. Recently, several
semianalytic methods have been also utilized to present
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series solution to fractional partial equations such as Ado-
mian decomposition method [8, 9], Homotopy Perturbation
Method [10–14], and variational iteration method [15, 16].

Many researchers also regard the regularization meth-
ods for the solution to the inverse problem of the one-
dimensional linear time-fractional heat equation. Murio [17]
recommended a space marching regularizing scheme using
mollification techniques for the solution to the inverse time-
fractional heat equation. In [18], the author considers the
problem of identification at the diffusion time-fractional
coefficient and the other problem of the fractional derivative
for the one-dimensional time-fractional diffusion equation.
Kirane et al. [19] proposed two-dimensional inverse source
problem for time-fractional diffusion equation and prove
the well posedness of the inverse source problem using
Fourier method. Jin and Rundell [20] considered the result
of uniqueness of the potential using Green’s function theory.
Li et al. [21] recommended algorithms for simultaneous
inversion of order of fractional derivative. Özkum et al. [22]
recommended Adomian decomposition method for inverse
problem involving a fractional derivative. In this study, we use
Homotopy Perturbation Method to solve inverse diffusion
problem.

This paper is organized as follows.
We present few appropriate definitions of fractional

derivatives in the coming section. Section 3 presents the
newHomotopy PerturbationMethod for the source function
𝑓(𝑥, 𝑡) in one-dimensional diffusion equation with time-
fractional derivative. Section 4 is devoted to the construction
of the new Homotopy Perturbation Method for inverse
problem of finding the source function in one-dimensional
fractional diffusion equations with initial-boundary condi-
tions as in subsections.

In Section 4.1, finding of unknown source function
depending on 𝑥 is as follows:

𝐷𝛼
𝑡
𝑢 (𝑥, 𝑡) = ℎ (𝑥) 𝑢

𝑥𝑥
(𝑥, 𝑡) + 𝑓 (𝑥) , (1)

and, in Section 4.2, finding of unknown source function
depending on 𝑡 is as follows:

𝐷𝛼
𝑡
𝑢 (𝑥, 𝑡) = ℎ (𝑥) 𝑢

𝑥𝑥
(𝑥, 𝑡) + 𝑓 (𝑡) . (2)

Two numerical examples were given in Section 5. Conclusion
took place in the last section.

2. Definitions

Definition 1. TheRiemann-Liouville fractional integral of𝑓 ∈
𝐶
𝛼
of the order 𝛼 ≥ 0 is defined as

𝐽𝛼
𝑡
𝑓 (𝑡) =

{{
{{
{

𝑓 (𝑡) , if 𝛼 = 0

1

Γ (𝛼)
∫
𝑡

0

(𝑡 − 𝜏)
𝛼−1 𝑓 (𝜏) 𝑑𝜏, if 𝛼 > 0,

(3)

where Γ denotes gamma function: Γ(z) = ∫∞
0

𝑒−𝑡𝑡𝑧−1𝑑𝑡, 𝑧 ∈
𝐶.

Definition 2. The fractional derivative of 𝑓 ∈ 𝐶
𝛼
of the order

𝛼 ≥ 0, in Caputo sense, is defined as

𝐷𝛼
𝑡
𝑓 (𝑡) = 𝐽

𝑛−𝛼

𝑡
𝐷𝛼
𝑡
𝑓 (𝑡)

=
1

Γ (𝑛 − 𝛼)
∫
𝑡

0

(𝑡 − 𝜏)
𝑛−𝛼−1 𝑓(𝑛) (𝜏) 𝑑𝜏

(4)

for 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁, 𝑡 > 0, 𝑓 ∈ 𝐶𝑛
𝛼
, and 𝛼 ≥ −1.

Definition 3. TheCaputo-time-fractional derivative operator
of order 𝛼 > 0 is defined as

𝐷𝛼
𝑡
𝑢 (𝑥, 𝑡) = 𝐽

𝑛−𝛼

𝑡
𝑢 (𝑥, 𝑡)

=
1

Γ (𝑛 − 𝛼)
∫
𝑡

0

(𝑡 − 𝜏)
𝑛−𝛼−1

𝜕𝑛𝑢

𝜕𝜏𝑛
𝑑𝜏.

(5)

Lemma 4. Let 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁, and 𝑓 ∈ 𝐶𝑛
𝛼
, 𝛼 ≥ −1;

then

𝐷𝛼
𝑡
𝐽𝛼
𝑡
𝑓 (𝑡) = 𝑓 (𝑡)

𝐽𝛼
𝑡
𝐷𝛼
𝑡
𝑓 (𝑡) = 𝑓 (𝑡) −

𝑛

∑
𝑘=0

𝑓(𝑘) (0+)
𝑡𝑘

𝑘!
, for 𝑡 > 0.

(6)

Lemma 5. If 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁, and 𝑘 ≥ 0, then one has

𝐽𝛼
𝑡
{

𝑡𝑘𝛼

Γ (𝑘𝛼 + 1)
} =

𝑡𝑘𝛼+𝛼

Γ (𝑘𝛼 + 𝛼 + 1)
. (7)

The Mittag-Leffler function plays a very important role in the
fractional differential equations and was in fact introduced by
Mittag-Leffler in 1903 [23].Mittag-Leffler function was defined
as 𝐸
𝛼
(𝑧) = ∑

∞

𝑛=0
(𝑧𝑛/Γ(𝛼𝑛 + 1)) by Mittag-Leffler [23].

3. Analysis of Homotopy Perturbation Method
with Time-Fractional Derivatives

In science and engineering, many nonlinear problems do
not contain perturbation quantities whose perturbation tech-
niques can be based on the existence of small or large param-
eters. For eliminating the small parameter, many different
methods are introduced recently. Homotopy Perturbation
Method is one of the semiexact methods that does not need
small parameters. He [10, 24] first proposed the Homotopy
Perturbation Method. The method brings a very rapid con-
vergence of the solution series in most cases.

Homotopy Perturbation Method is widely studied; many
example studies can be found in literature [11–14].

Let us assume nonlinear fractional differential equation is
as follows:

𝐷𝛼
𝑡
𝑢 (𝑥, 𝑡) = 𝐴 (𝑢) + 𝑓 (𝑥, 𝑡) , 𝑥, 𝑡 ∈ Ω, (8)

with the following initial condition: 𝑢(𝑥, 0) = 𝜑, where 𝐴 is
the operator, 𝑓 is source function, and 𝑢(𝑥, 𝑡) is sough fun-
ction. Assume that operator 𝐴 can be written as 𝐴(𝑢) =
𝐿(𝑢) + 𝑁(𝑢), where 𝐿 is the linear operator and 𝑁 is the
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nonlinear operator. Hence, (8) can be written, following He
[10], as follows:

𝐷𝛼
𝑡
𝑢 (𝑥, 𝑡) = 𝐿 (𝑢) + 𝑁 (𝑢) + 𝑓 (𝑥, 𝑡) . (9)

For solving (8) by Homotopy Perturbation Method, we
construct the following homotopy:

𝐻(𝑉, 𝑝) = (1 − 𝑝) [𝐷𝛼
𝑡
𝑉 − 𝑢

0
]

+ 𝑝 [𝐷𝛼𝑉 − 𝐿 (𝑉) − 𝑁 (𝑉) − 𝑓 (𝑥, 𝑡)]

= 0.

(10)

And, equivalently,

𝐻(𝑉, 𝑝) = 𝐷𝛼
𝑡
𝑉 − 𝑢

0

+ 𝑝 [𝑢
0
− 𝐿 (𝑉) − 𝑁 (𝑉) − 𝑓 (𝑥, 𝑡)] = 0,

(11)

where 𝑝 ∈ [0, 1] is an embedding or homotopy parameter,
𝐻(𝑥, 𝑡; 𝑝) : Ω𝑥[0, 1] → 𝑅, and 𝑢

0
is the initial approximation

for solution (9).
Clearly, the homotopy equations 𝐻(𝑉, 0) = 0 and

𝐻(𝑉, 1) = 1 are equivalent to the equations 𝐷𝛼
𝑡
𝑉 − 𝑢

0
= 0

and 𝐷𝛼𝑉 − 𝐿(𝑉) − 𝑁(𝑉) − 𝑓(𝑥, 𝑡) = 0, respectively. Thus, a
monotonous change of parameter 𝑝 from 0 to 1 corresponds
to a continuous change of the trivial problem 𝐷𝛼

𝑡
𝑉 − 𝑢

0
= 0

to the original problem. Now, we assume that the solution to
(9) can be written as a power series in embedding parameter
𝑝, as follows:

𝑉 = 𝑉
0
+ 𝑝𝑉
1
, (12)

where 𝑉
0
and 𝑉

1
are functions which should be determined.

Now, we can write (12) in the following form:

𝐷𝛼
𝑡
𝑉 (𝑥, 𝑡) = 𝑢

0
+ 𝑝 [−𝑢

0
+ 𝐿 (𝑉) + 𝑁 (𝑉) + 𝑓 (𝑥, 𝑡)] . (13)

Applying the inverse operator, 𝐽𝛼
𝑡
, which is the Riemann-

Liouville fractional integral of order 𝛼 > 0, on both sides of
(13), we have

𝑉 (𝑥, 𝑡) = 𝑉 (𝑥, 0) + 𝐽
𝛼

𝑡
𝑢
0

+ 𝑝𝐽𝛼
𝑡
[−𝑢
0
+ 𝐿 (𝑉) + 𝑁 (𝑉) + 𝑓 (𝑥, 𝑡)] .

(14)

Suppose that the initial approximation of solution (9) is in the
following form:

𝑢
0
=
∞

∑
𝑘=0

𝑎
𝑘
(𝑥) 𝑡𝑘𝛼

Γ (𝑘𝛼 + 1)
, (15)

where 𝑎
𝑘
(𝑥), for 𝑘 = 1, 2, are functions which must be

computed. Substituting (12) and (15) into (14), we get

𝑉
0
+ 𝑝𝑉
1
= 𝑉 (𝑥, 0) + 𝐽

𝛼

𝑡
(
∞

∑
𝑘=0

𝑎
𝑘
(𝑥) 𝑡𝑘𝛼

Γ (𝑘𝛼 + 1)
)

+ 𝑝𝐽𝛼
𝑡
[−
∞

∑
𝑘=0

𝑎
𝑘
(𝑥) 𝑡𝑘𝛼

Γ (𝑘𝛼 + 1)
+ 𝐿 (𝑉

0
+ 𝑝𝑉
1
)

+ 𝑁 (𝑉
0
+ 𝑝𝑉
1
) + 𝑓 (𝑥, 𝑡)] .

(16)

Synchronizing the coefficients of the same powers leads to

𝑝0:𝑉
0
= 𝑉 (𝑥, 0) + 𝐽

𝛼

𝑡
(
∞

∑
𝑘=0

𝑎
𝑘
(𝑥) 𝑡𝑘𝛼

Γ (𝑘𝛼 + 1)
)

𝑝1:𝑉
1
= 𝐽𝛼
𝑡
[−
∞

∑
𝑘=0

𝑎
𝑘
(𝑥) 𝑡𝑘𝛼

Γ (𝑘𝛼 + 1)
+ 𝐿 (𝑉

0
+ 𝑝𝑉
1
)

+ 𝑁 (𝑉
0
+ 𝑝𝑉
1
) + 𝑓 (𝑥, 𝑡)] .

(17)

Now, we obtain the coefficients 𝑎
𝑘
(𝑥), 𝑘 = 1, 2, and therefore

the exact solution can be obtained as the following:

𝑢 (𝑥, 𝑡) = 𝑉 (𝑥, 𝑡) = 𝑉 (𝑥, 0) + 𝐽
𝛼

𝑡
(
∞

∑
𝑘=0

𝑎
𝑘
(𝑥) 𝑡𝑘𝛼

Γ (𝑘𝛼 + 1)
) . (18)

Efficiency and reliability of the method are shown.

4. Finding Source Function for Inverse
Problem with Time-Fractional Derivative

In this section, we construct a new Homotopy Perturbation
Method to obtain the source function for inverse time-
fractional one-dimensional diffusion equation with initial-
boundary conditions. Model problems have been received
from Özkum et al. [22]. To obtain the unknown source
function, we have defined new methods through Homotopy
Perturbation Method as in the following subsections.

4.1. Finding of Unknown Source FunctionDepending on 𝑥. Let
us assume inverse time-fractional differential equation is as
follows:

𝐷𝛼
𝑡
𝑢 (𝑥, 𝑡) = ℎ (𝑥) 𝑢

𝑥𝑥
(𝑥, 𝑡) + 𝑓 (𝑥) , 𝑥, 𝑡 ∈ Ω, (19)

with the following initial and boundary conditions:

𝑥 > 0,

𝑡 > 0,

0 < 𝛼 ≤ 1,

(20)

𝑢 (𝑥, 0) = 𝑓
1
(𝑥) , (21)

𝑢 (0, 𝑡) = ℎ
1
(𝑡) , (22)

𝑢
𝑥
(0, 𝑡) = ℎ

2
(𝑡) , (23)

where ℎ
1
(𝑡) and ℎ

2
(𝑡) ∈ 𝐶∞[0,∞) and ℎ(𝑥), 𝑓

1
(𝑥), and

𝑓(𝑥) ∈ 𝐶∞[0,∞).
To find the source function for (19), we apply Homotopy

Perturbation Method. So, we construct the following homo-
topy:

𝐻(𝑉, 𝑝) = (1 − 𝑝) [𝐷𝛼
𝑡
𝑉 − 𝑢

0
]

+ 𝑝 [𝐷𝛼𝑉 − 𝐿 (𝑉) − 𝑁 (𝑉) − 𝑓 (𝑥)] = 0.
(24)
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And, equivalently,

𝐻(𝑉, 𝑝) = 𝐷𝛼
𝑡
𝑉 − 𝑢

0

+ 𝑝 [𝑢
0
− 𝐿 (𝑉) − 𝑁 (𝑉) − 𝑓 (𝑥)] = 0.

(25)

So we can write (25) in the following form:

𝐷𝛼
𝑡
𝑢 (𝑥, 𝑡) = 𝑢

0
(𝑥, 𝑡)

− 𝑝 [𝑢
0
(𝑥, 𝑡) − ℎ (𝑥) 𝑢

𝑥𝑥
(𝑥, 𝑡) − 𝑓 (𝑥)] ,

(26)

where 𝑝 ∈ [0, 1] is an embedding or homotopy parameter,
𝐻(𝑥, 𝑡; 𝑝) : Ω𝑥[0, 1] → 𝑅, and 𝑢

0
is the initial approximation

for solution (19).
Assume that the initial value of solution (19) is in the

following form:

𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) = 𝑢

0
=
∞

∑
𝑘=0

𝑎
𝑘
(𝑥) 𝑡𝑘𝛼

Γ (𝑘𝛼 + 1)
, (27)

where 𝑎
𝑘
(𝑥), for 𝑘 = 1, 2, are functions which must be

computed. Applying the inverse operator 𝐽𝛼
𝑡
of 𝐷𝛼
𝑡
to both

sides of (26), we obtain

𝑢 (𝑥, 𝑡) = 𝑢 (𝑥, 0) + 𝐽
𝛼

𝑡
𝑢
0

+ 𝑝𝐽𝛼
𝑡
[−𝑢
0
+ ℎ (𝑥) 𝑢

𝑥𝑥
(𝑥, 𝑡) + 𝑓 (𝑥)] .

(28)

Assume solution (28) has the following form:

𝑢 (𝑥, 𝑡) = 𝑢
0
(𝑥, 𝑡) + 𝑝𝑢

1
(𝑥, 𝑡) . (29)

Substituting (29) into (28) collecting the same powers of 𝑝
and equating each coefficients of 𝑝 to zero yield

𝑢
0
(𝑥, 𝑡) + 𝑝𝑢

1
(𝑥, 𝑡)

= 𝑢 (𝑥, 0) + 𝐽
𝛼

𝑡
𝑢
0

+ 𝑝𝐽𝛼
𝑡
[−𝑢
0
+ ℎ (𝑥) 𝑢

0𝑥𝑥
(𝑥, 𝑡) + 𝑓 (𝑥)] .

(30)

If initial conditions apply to (30), we obtain

𝑢
0
(𝑥, 𝑡) = 𝑓

1
(𝑥) + 𝐽

𝛼

𝑡
𝑢
0
(𝑥, 𝑡) . (31)

Synchronizing the coefficients of the same powers of 𝑝 leads
to

𝑝0: 𝑢
0
(𝑥, 𝑡) = 𝑓

1
(𝑥) +

∞

∑
𝑘=0

𝑎
𝑘
(𝑥) 𝑡𝑘𝛼+𝛼

Γ (𝑘𝛼 + 𝛼 + 1)
(32)

𝑝1: 𝑢
1
(𝑥, 𝑡) = −

∞

∑
𝑘=0

𝑎
𝑘
(𝑥) 𝑡𝑘𝛼+𝛼

Γ (𝑘𝛼 + 𝛼 + 1)
+ ℎ (𝑥) 𝐽

𝛼

𝑡
𝑢
0𝑥𝑥

+ 𝐽𝛼
𝑡
𝑓 (𝑥) .

(33)

We can write from (32) the following:

𝑎
0
(𝑥) = 𝑓

1
(𝑥)

𝑎
0
(𝑥) = 𝑎

1
(𝑥) = 𝑓

1
(𝑥)

𝑎
0
(𝑥) = 𝑎

1
(𝑥) = 𝑎

2
(𝑥) = 𝑓

1
(𝑥)

... .

(34)

Then, 𝑢
0
(𝑥, 𝑡) can be written as follows:

𝑢
0
(𝑥, 𝑡) = 𝑓

1
(𝑥) [1 +

𝑡𝛼

Γ (𝛼 + 1)
+

𝑡2𝛼

Γ (2𝛼 + 1)
+ ⋅ ⋅ ⋅] ,

𝑢
0𝑥
(𝑥, 𝑡)

= 𝑓
1
(𝑥) [1 +

𝑡𝛼

Γ (𝛼 + 1)
+

𝑡2𝛼

Γ (2𝛼 + 1)
+ ⋅ ⋅ ⋅] ,

𝑢
0𝑥𝑥

(𝑥, 𝑡)

= 𝑓
1
(𝑥) [1 +

𝑡𝛼

Γ (𝛼 + 1)
+

𝑡2𝛼

Γ (2𝛼 + 1)
+ ⋅ ⋅ ⋅] .

(35)

Then, putting (30) in place of (35), we get the following:

𝑢 (𝑥, 𝑡) = [ℎ (𝑥) 𝑓


1
(𝑥) + 𝑓

1
(𝑥)]

+ [ℎ (𝑥) 𝑓


1
(𝑥) + 𝑓 (𝑥)]

∞

∑
𝑘=1

𝑎
𝑘
(𝑥) 𝑡𝑘𝛼

Γ (𝑘𝛼 + 1)
.

(36)

In order to define the unknown source function, taking
over the boundary conditions, we are taking ℎ

1
(𝑡) and ℎ

2
(𝑡)

functions of Taylor series expansion for the spacewhose bases
are

∞

∑
𝑘=0

𝑡𝑘𝛼

Γ (𝑘𝛼 + 1)
, 0 < 𝛼 ≤ 1 (37)

ℎ
1
(𝑡) = ℎ

1
(0) + ℎ



1
(0)

𝑡𝛼

Γ (𝛼 + 1)
+ ⋅ ⋅ ⋅ (38)

ℎ
2
(𝑡) = ℎ

2
(0) + ℎ



2
(0)

𝑡𝛼

Γ (𝛼 + 1)
+ ⋅ ⋅ ⋅ . (39)

Then, putting (36) in place of (22), (23), (38), and (39), we get
the following:

𝑢 (0, 𝑡) = ℎ
1
(0) + ℎ



1
(0)

𝑡𝛼

Γ (𝛼 + 1)
+ ⋅ ⋅ ⋅ (40)

ℎ
1
(𝑡) = [𝑓

1
(0) + ℎ (0) 𝑓



1
(0)]

+ [ℎ (0) + 𝑓


1
(0) + 𝑓 (0)]

⋅ [
𝑡𝛼

Γ (𝛼 + 1)
+

𝑡2𝛼

Γ (2𝛼 + 1)
+ ⋅ ⋅ ⋅] .

(41)
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From (38) and (41), we can write

ℎ
1
(0) = 𝑓

1
(0) + ℎ (0) 𝑓



1
(0)

ℎ
1
(0) = [ℎ (0) + 𝑓



1
(0) + 𝑓 (0)]

ℎ
1
(0) = [ℎ (0) + 𝑓



1
(0) + 𝑓 (0)]

ℎ
1
(0) = [ℎ (0) + 𝑓



1
(0) + 𝑓 (0)]

...

ℎ(𝑛)
1
(0) = ℎ

(𝑛−1)

1
(0) = ⋅ ⋅ ⋅ = ℎ



1
(0) = ℎ



1
(0)

= [ℎ (0) + 𝑓


1
(0) + 𝑓 (0)] ,

(42)

ℎ
2
(𝑡) = [𝑓



1
(0) + ℎ



(0) 𝑓


1
(0) + ℎ (0) 𝑓



1
(0)]

+ [ℎ (0) 𝑓


1
(0) + ℎ (0) 𝑓



1
(0) + 𝑓



(0)]

⋅ [
𝑡𝛼

Γ (𝛼 + 1)
+

𝑡2𝛼

Γ (2𝛼 + 1)
+ ⋅ ⋅ ⋅] .

(43)

From (39) and (43), we can write

ℎ
2
(0) = [𝑓



1
(0) + ℎ



(0) 𝑓


1
(0) + ℎ (0) 𝑓



1
(0)]

ℎ
2
(0) = [ℎ



(0) 𝑓


1
(0) + ℎ (0) 𝑓



1
(0) + 𝑓



(0)]

ℎ
2
(0) = [ℎ



(0) 𝑓


1
(0) + ℎ (0) 𝑓



1
(0) + 𝑓



(0)]

...

ℎ(𝑛)
2
(0) = ℎ

(𝑛−1)

2
(0) = ⋅ ⋅ ⋅ = ℎ



2
(0) = ℎ



2
(0)

= [ℎ (0) 𝑓


1
(0) + ℎ (0) 𝑓



1
(0) + 𝑓



(0)] .

(44)

Using the above data in the following Taylor series expansion
of unknown function 𝑓(𝑥), we get

𝑓 (𝑥) = 𝑓


1
(0) + ℎ



1
(0) − ℎ (0)

+ [𝑓
1
(0) − ℎ



(0) 𝑓


1
(0) − ℎ (0) 𝑓



1
(0)] 𝑥

+ 0.

(45)

4.2. Finding of Unknown Source Function Depending on 𝑡. Let
us assume inverse time-fractional differential equation is as
follows:

𝐷𝛼
𝑡
𝑢 (𝑥, 𝑡) = ℎ (𝑥) 𝑢

𝑥𝑥
(𝑥, 𝑡) + 𝑓 (𝑡) , 𝑥, 𝑡 ∈ Ω, (46)

with the following initial and boundary conditions:
𝑥 > 0,

𝑡 > 0,

0 < 𝛼 ≤ 1

(47)

𝑢 (𝑥, 0) = 𝑓
1
(𝑥) (48)

𝑢 (0, 𝑡) = ℎ
1
(𝑡) (49)

𝑢
𝑥
(0, 𝑡) = ℎ

2
(𝑡) , (50)

where ℎ
1
(𝑡) and ℎ

2
(𝑡) ∈ 𝐶∞[0,∞) and ℎ(𝑥), 𝑓

1
(𝑥) ∈

𝐶∞[0,∞), and 𝑓(𝑡) ∈ 𝐶1
𝜇
[0,∞), 𝜇 ≥ −1. As in the previous

case, we apply Homotopy PerturbationMethod to determine
the unknown 𝑓 function of 𝑡:
𝐻(𝑊, 𝑝) = (1 − 𝑝) [𝐷𝛼

𝑡
𝑊− 𝑢

0
]

+ 𝑝 [𝐷𝛼𝑊− 𝐿 (𝑊) − 𝑁 (𝑊) − 𝑓 (𝑡)]

= 0,

(51)

𝐻(𝑊, 𝑝) = 𝐷𝛼
𝑡
𝑊− 𝑢

0

+ 𝑝 [𝑢
0
− 𝐿 (𝑊) − 𝑁 (𝑊) − 𝑓 (𝑡)] = 0,

(52)

where 𝑝 ∈ [0, 1] is an embedding or homotopy parameter,
𝐻(𝑥, 𝑡; 𝑝) : Ω𝑥[0, 1] → 𝑅, and 𝑢

0
is the initial approximation

for solution (46).
So, we can write (52) in the following form:
𝐷𝛼
𝑡
𝑢 (𝑥, 𝑡) = 𝑢

0
(𝑥, 𝑡)

− 𝑝 [𝑢
0
(𝑥, 𝑡) − ℎ (𝑥) 𝑢

𝑥𝑥
(𝑥, 𝑡) − 𝑓 (𝑡)] .

(53)

Assume that the initial value of solution (46) is in the
following form:

𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) = 𝑢

0
=
∞

∑
𝑘=0

𝑎
𝑘
(𝑥) 𝑡𝑘𝛼

Γ (𝑘𝛼 + 1)
. (54)

Applying the inverse operator 𝐽𝛼
𝑡
of 𝐷𝛼
𝑡
to both sides of (53),

we obtain
𝑢 (𝑥, 𝑡) = 𝑢 (𝑥, 0) + 𝐽

𝛼

𝑡
𝑢
0

+ 𝑝𝐽𝛼
𝑡
[−𝑢
0
+ ℎ (𝑥) 𝑢

𝑥𝑥
(𝑥, 𝑡) + 𝑓 (𝑡)] .

(55)

Suppose solution (55) has the following form:
𝑢 (𝑥, 𝑡) = 𝑢

0
(𝑥, 𝑡) + 𝑝𝑢

1
(𝑥, 𝑡) . (56)

Substituting (56) into (55) collecting the same powers of 𝑝
and equating each coefficients of 𝑝 to zero yield

𝑢
0
(𝑥, 𝑡) + 𝑝𝑢

1
(𝑥, 𝑡)

= 𝑢 (𝑥, 0) + 𝐽
𝛼

𝑡
𝑢
0
(𝑥, 𝑡)

− 𝑝𝐽𝛼
𝑡
[𝑢
0
− ℎ (𝑥) 𝑢

0𝑥𝑥
(𝑥, 𝑡) − 𝑓 (𝑡)] ,

𝑝0: 𝑢
0
(𝑥, 𝑡) = 𝑓

1
(𝑥) +

∞

∑
𝑘=0

𝑎
𝑘
(𝑥) 𝑡𝑘𝛼+𝛼

Γ (𝑘𝛼 + 𝛼 + 1)

𝑝1: 𝑢
1
(𝑥, 𝑡) = −𝐽

𝛼

𝑡
[𝑢
0
− ℎ (𝑥) 𝑢

0𝑥𝑥
(𝑥, 𝑡) − 𝑓 (𝑡)]

(57)
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so

𝑢
1
(𝑥, 𝑡) = −

∞

∑
𝑘=0

𝑎
𝑘
(𝑥) 𝑡𝑘𝛼+𝛼

Γ (𝑘𝛼 + 𝛼 + 1)
+ ℎ (𝑥)

∞

∑
𝑘=0

𝑡𝑘𝛼

Γ (𝑘𝛼 + 1)

+ 𝐽𝛼
𝑡
𝑓 (𝑡) .

(58)

If we define 𝐽𝛼
𝑡
𝑓(𝑡) as 𝐽𝛼

𝑡
𝑓(𝑡) = 𝜔(𝑡)(𝑡𝑘𝛼/Γ(𝑘𝛼 + 1)), then we

can write for 𝑝 = 1

𝑢 (𝑥, 𝑡) = 𝑓
1
(𝑥) +

∞

∑
𝑘=0

𝑎
𝑘
(𝑥) 𝑡𝑘𝛼+𝛼

Γ (𝑘𝛼 + 𝛼 + 1)

−
∞

∑
𝑘=0

𝑎
𝑘
(𝑥) 𝑡𝑘𝛼+𝛼

Γ (𝑘𝛼 + 𝛼 + 1)

+ [ℎ (𝑥) + 𝜔 (𝑡)]
∞

∑
𝑘=0

𝑡𝑘𝛼

Γ (𝑘𝛼 + 1)

(59)

By using boundary conditions (49) and (50) into (59), we
obtain the following coefficients:

𝑎
0
(𝑥) = 𝑓

1
(𝑥)

𝑎
1
(𝑥) = 𝑎

0
(𝑥) = 𝑓

1
(𝑥)

𝑎
2
(𝑥) = 𝑎

1
(𝑥) = 𝑎

0
(𝑥) = 𝑓

1
(𝑥)

...

(60)

and so on. Then, we can write

𝑢 (𝑥, 𝑡) = 𝑓
1
(𝑥) + [ℎ (𝑥) + 𝜔 (𝑡)]

∞

∑
𝑘=0

𝑡𝑘𝛼

Γ (𝑘𝛼 + 1)
. (61)

Since 𝐷𝛼
𝑡
𝐽𝛼
𝑡
𝑓(𝑡) = 𝑓(𝑡), we find source function 𝑓(𝑡) as

follows:

𝑓 (𝑡) = 𝐷
𝛼

𝑡
{[𝑢 (𝑥, 𝑡) − 𝑓

1
(𝑥) − ℎ (𝑥)]

⋅ [1 +
𝑡𝛼

Γ (𝛼 + 1)
+

𝑡2𝛼

Γ (2𝛼 + 1)
+ ⋅ ⋅ ⋅]} .

(62)

5. Numerical Examples

5.1. Example 1. We consider problem as follows:

𝐷𝛼
𝑡
𝑢 (𝑥, 𝑡) = 2𝑢

𝑥𝑥
(𝑥, 𝑡) + 𝑓 (𝑥) , (63)

with the following initial and boundary conditions:

𝑥 > 0,

𝑡 > 0,

0 < 𝛼 ≤ 1

(64)

𝑢 (𝑥, 0) = 𝑓
1
(𝑥) = 𝑒

𝑥 + sin𝑥 (65)

𝑢 (0, 𝑡) = ℎ
1
(𝑡) = 𝑒

2𝑡 (66)

𝑢
𝑥
(0, 𝑡) = ℎ

2
(𝑡) = 𝑒

2𝑡+1, (67)
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u(x, t 𝛼 = 1/2 and 1 < t < 10 𝛿t = 0.1 for f(x) = 1 + 2x)

Figure 1: 𝑢(𝑥, 𝑡) values for source function 𝑓(𝑥) at 𝛼 = 1/2 value.

where ℎ
1
(𝑡) and ℎ

2
(𝑡) ∈ 𝐶∞[0,∞) and ℎ(𝑥), 𝑓

1
(𝑥), and

𝑓(𝑥) ∈ 𝐶∞[0,∞).
If the initial conditions (66) and (67) are applied to (36),

(63) can be written as the following equation:

𝑢 (𝑥, 𝑡) = [3𝑒
𝑥 − sin𝑥] + [2𝑒𝑥 − 2 sin𝑥 + 𝑓 (𝑥)]

⋅ (𝑒𝑥 + sin𝑥)
∞

∑
𝑘=1

𝑡𝑘𝛼

Γ (𝑘𝛼 + 1)
.

(68)

In order to define the unknown source function taking
over the boundary conditions, we are taking ℎ

1
(𝑡) and ℎ

2
(𝑡)

functions of Taylor series expansion for the spacewhose bases
are ∑∞
𝑘=0
(𝑡𝑘𝛼/Γ(𝑘𝛼 + 1)) 0 < 𝛼 ≤ 1. Therefore, we obtain

𝑓 (𝑥) = 1 + 2𝑥. (69)

If we write (70) into (69), we obtain the following equation:

𝑢 (𝑥, 𝑡) = [3𝑒
𝑥 − sin𝑥] + [2𝑒𝑥 − 2 sin𝑥 + 1 + 2𝑥]

⋅ (𝑒𝑥 + sin𝑥)
∞

∑
𝑘=1

𝑡𝑘𝛼

Γ (𝑘𝛼 + 1)
.

(70)

Figures 1 and 2 show the Homotopy Perturbation Method
solutions 𝑢(𝑥, 𝑡) for source function𝑓(𝑥) at different𝛼 values.

5.2. Example 2. We consider problem as follows:

𝐷𝛼
𝑡
𝑢 (𝑥, 𝑡) =

1

2
𝑥2𝑢
𝑥𝑥
(𝑥, 𝑡) + 𝑓 (𝑡) , (71)
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Figure 2: 𝑢(𝑥, 𝑡) values for source function 𝑓(𝑥) at 𝛼 = 1 value.

with the following initial and boundary conditions:

𝑥 > 0,

𝑡 > 0,

0 < 𝛼 ≤ 1

𝑢 (𝑥, 0) = 𝑓
1
(𝑥) = 𝑥

2 +
1

2

𝑢 (0, 𝑡) = ℎ
1
(𝑡) =

1

2
𝑒2𝑡

𝑢
𝑥
(0, 𝑡) = ℎ

2
(𝑡) = 0,

(72)

where ℎ
1
(𝑡) and ℎ

2
(𝑡) ∈ 𝐶∞[0,∞) and ℎ(𝑥), 𝑓

1
(𝑥), and

𝑓(𝑥) ∈ 𝐶∞[0,∞).
From (61), we can write the following equation:

𝑢 (𝑥, 𝑡) = 𝑥
2 +

1

2
+ [

1

2
𝑥2 + 𝜔 (𝑡)]

∞

∑
𝑘=0

𝑡𝑘𝛼

Γ (𝑘𝛼 + 1)
. (73)

In order to define the unknown source function taking
over the boundary conditions, we are taking ℎ

1
(𝑡) and ℎ

2
(𝑡)

functions of Taylor series expansion for the spacewhose bases
are ∑∞
𝑘=0
(𝑡𝑘𝛼/Γ(𝑘𝛼 + 1)) 0 < 𝛼 ≤ 1. Therefore, we obtain

𝜔 (𝑡) = 𝑒
2𝑡. (74)

In the definition𝐷𝛼
𝑡
𝜔(𝑡) = 𝐷𝛼

𝑡
𝐽𝛼
𝑡
𝑓(𝑡) = 𝑓(𝑡) finally we obtain

the source function

𝑓 (𝑡) = 𝑡
−𝛼𝐸
1,1−𝛼

(2𝑡) , (75)

where 𝐸
1,1−𝛼

(2𝑡) is Mittag-Leffler function with two parame-
ters given as [23].

Figure 3 shows the Homotopy Perturbation Method
solutions 𝑢(𝑥, 𝑡) for source function 𝑓(𝑡) at 𝛼 = 1/2 value.

6. Conclusion

Being effortless and also simple to apply, we can say that the
new Homotopy Perturbation Method is an effective method
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Figure 3: 𝑢(𝑥, 𝑡) values for source function 𝑓(𝑡) at 𝛼 = 1/2 value.

and has appropriate technique to find the analytic solution to
inverse problems and many complex problems. Matlab has
been used for presenting graph of solution in the present
paper.

Nomenclature

𝑝: Homotopy parameter
𝐻(𝑉, 𝑝): Homotopy function
Γ: Gamma function
𝑢(𝑥, 𝑡): Diffusion
𝐷𝛼
𝑡
𝑢(𝑥, 𝑡): Diffusion with Caputo-time-fractional

derivative
𝐽𝛼
𝑡
𝑢(𝑥, 𝑡): Diffusion with Riemann-Liouville

fractional integral
𝑓(𝑥, 𝑡): Source function of 𝑥, 𝑡
𝑓(𝑥): Source function of 𝑥
𝑓(𝑡) : Source function of 𝑡
𝐸
𝛼
(𝑧): Mittag-Leffler function.
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