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We study the mixed initial-boundary value problem for the capillary wave equation: iu, + lulPu = |8x|3/ 2u, >0, x>0; u(x,0) =

Up(x), x> 05 1(0,8) + u(0,6) = h(t), £ > 0, where [3,u = (1/v27) [ (sign(x - y)/\/[X = yDu,,,()dy. We prove the global
in-time existence of solutions of IBV problem for nonlinear capillary equation with inhomogeneous Robin boundary conditions.

Also we are interested in the study of the asymptotic behavior of solutions.

1. Introduction

This paper is concerned with the initial-boundary value
problem (IBV problem) for the nonlinear capillary wave
equation with mixed (Robin) boundary conditions posed on
a half-unbounded domain:
iu, + |8x|3/2 u=ufu t>0 x>0
u(x,0)=1uy(x), x>0, @
u(0,t) + Pu, (0,t) =h(t), t>O0.

Here |0, |*/% is a fractional derivative defined by

1 J"’O sign (x — y)
vam =l

/
|ax|3 ‘u= Uy, (y)dy. )

0

Mixed boundary value problems arise in a variety of applied
mathematics, engineering, and physics, such as gas dynamics,
nuclear physics, chemical reaction, studies of atomic struc-
tures, and atomic calculations. Therefore, the mixed problems
have attracted much attention and have been studied by many
authors. For detailed description of the mixed boundary
conditions, see [1-3] and the references cited therein. This
paper is the first attempt to investigate the inhomogeneous

mixed initial-boundary value problem for the dispersive
fractional nonlinear equation, considering as an example
the famous capillary water wave equation (1). Fractional
differential equations appear in many applications of the
applied sciences, such as the fractional diffusion and wave
equations [4], subdiffusion and superdiffusion equations
[5], electrical systems [6], viscoelasticity theory [6], control
systems [6], bioengineering [7], and finance [8]. Many articles
have appeared in the literature, where fractional derivatives
are used for a better description of certain material properties.
Thus, for example, the fractional NLS model (1) comes from
the study of the long-time behavior of solutions to the
water waves equations [9]. The operator i|8x|3/ 2 corresponds
to the dispersive relation of the linearized gravity water
wave equations for one-dimensional interfaces with surface
tension. Furthermore, thanks to the absence of resonances
at the quadratic level, one expects the nonlinear dynamics of
water waves to be governed by nonlinearity of cubic type like
those appearing in (1). Papers [9-11] addressed some other
applications of fractional Schrodinger equations. Works con-
cerning the Cauchy problem for fractional type Schrodinger
equations, which address the existence of small solutions,
and in particular the question of modified scattering, include
[12-14]. In paper [15], it was shown that (1) with dispersive
fractional derivative operator of order 1/2 admits global



solutions whose long-time behavior is not linear. Global
existence results and asymptotic behavior of small solutions
of Cauchy problem for capillary water wave equation were
obtained in [9]. The initial-boundary problems have been
much less studied than the Cauchy problems in spite of their
importance. The inhomogeneous problems are often called
forced ones, when an external force is applied to a system.
Frequently the forcing is putted as the inhomogeneous
boundary condition. In the case of the initial-boundary value
problems there appear new difficulties comparing with the
Cauchy problems due to the boundary. For example, in the
case of the initial-boundary value problems it is not clear
how many of the boundary conditions are required for the
well-posedness of the initial-boundary value problem. The
answer to this question relies on the construction of the Green
function for the linear capillary water wave equation that
is interesting on its own. Also it is necessary to take into
account the boundary effects which affect the behavior of the
solutions. Also usually we ask as less as possible regularity
on the initial and boundary data, since the regularity of the
solution implies the compatibility conditions on the initial
and boundary data. Observe that for the Cauchy problem
there is no such complication, in general, and we can ask more
regularity on the initial data.

It is well-known that boundary value problems with
homogeneous boundary conditions are easier than the cor-
responding homogeneous problems. However, we present in
this paper remarkable results, such as global in-time existence
of solutions and its large time asymptotic behavior. In book
[16], it was proved that in the case of mixed problem for
dissipative equations the solutions obtain more rapid time
decay comparing with the case of the Cauchy problem. This
phenomenon was also observed for some dispersive equa-
tions, such as intermediate-long wave and Benjamin-Ono
equations, posed on the positive half-line [17, 18]. However,
there are several important examples of equations whose
small solutions do not behave like linear ones, as it is the case
for the Schrodinger equation [19]. As we will show below, the
same happens for the case of the capillary wave equation (1)
with mixed boundary conditions: the cubic nonlinearity is
also critical with respect to the large time decay. Theorem 1
below shows that (1) admits global solutions whose long-
time behavior is not linear. In particular, a correction of
logarithmic type (see (9)) is needed in order to obtain the
t7'/% decay and the scattering of solutions. Our approach
is based on the estimates of the integral equation in the
Sobolev spaces. To construct the Green operator on a half-
line we adopt the analytic continuation method proposed
in the paper [20], based on the Riemann theory. To get
smooth solutions we use a method of the decomposition of
the critical cubic nonlinearity. A major complication of IBV
problem for nonlocal equation (1) on a half-line is that its
symbol K(p) = | p|3/ 2 is nonanalytic; therefore, we can not
apply the Laplace theory directly. The construction of the
Green operator involves the solution of the inhomogeneous
Riemann problem with discontinuous coefficients. Another
difficulty is that the symbol K(p) is dispersive. To get the
asymptotics of solution, we need to solve the nonlinear
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singular integrodifferential equation with Hilbert kernel. We
believe that the method developed in this paper could be
applied to a wide class of dispersive nonlinear nonlocal
equations.

2. Main Result and Notation

To state the results of the present paper, we give some nota-
tions. The usual direct and inverse Laplace transformations
we denote by & and Z . The Fourier transform % and the
inverse Fourier transform % " are defined as

Tk — 1 —ix§
Fo= = [ e 5
a1 4 _ 1 ix

The usual Fourier sine transform % and the Fourier cosine
transform & are given by

F b= \j% JW ¢ (x) sin px dx,
(4)

F P = \/7% JR+ ¢ (x) cos px dx.

Define the “distorted” Fourier sine transform %, and the
inverse “distorted” Fourier sine transform J as follows:

B(p) =7 9= [ 9w,
)
6= 9= 5| W (5 p)d(p)dp,

where
¥ (x,2)

-0

_izx TG) | —izx ~T(=i) , 1 J 2qx
=e™e +e e + — e (g)dg,
pp (9)dq

0

¥Y.=& (x,2) - & (x,-2),

ico ,—qzx JT(q)
& (x,*+z) = lim —_— J —dq, (6)

w—+i,Rew>0 2771 J_joo q-w
312 1@ 1

2 g ()" - 1) (i)™ - 1)

1™ (-ig)"” -1
F(S)— ﬁJ'O ln(q—s)dln(lfT_l.

@(q) =

For a detailed study of the properties of # ;¢ and F# :@,
see below Lemma 3.
Also we introduce the Green operator on a half-line as

L « —itk(p) 1
f-g(t) _(1 ﬁax)‘%se 1+ﬁ2p2‘%s(1+ﬁax)’ (7)

K(p)=p" Rep#0.
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Let ¢(q) be a complex function, defined in Regq = 0, which
obeys the Holder condition for all finite g and tends to a
definite limit ¢(co) as g — oo. Then, Cauchy type integral

F(z) = (1/2mi) _[ (c/)(q)/ (g — 2)) dq constitutes a function
which is analytic in the left and right complex semiplanes.
Here and below these functions will be denoted by F'(z)
and F~(z), respectively. These functions have the limiting
values F*(p) and F~(p) at all points of imaginary axis Re p =
0, on approaching the contour from the left and from the
right, respectively. These limiting values are expressed by
Sokhotzki-Plemelj formula (see [20] for these definitions and
a discussion of related issues):

1 up j $(a) i ®

(o) =236 () v | T

The usual Lebesgue space L = {¢ € S'; [[¢]l.» < oo}, where
the norm |[|¢ll;, = (_[R+ Igb(x)lpdx)l/f’ if1 < p < ooand
Pl = esssupx€R+|¢(x)| if p = oo. Weighted Lebesgue
space is L {¢p € S5 |@llx < oo}, where the norm
Ipllps = ||<->"¢(-)||Lp, k>0.

Weighted Sobolev space is H™* = {p € s : lPllgmse =
(1 + 0)"¢ll2x < o0}, where m,k € R. The usual Sobolev
space is H” = H™", so the index 0 we omit if it does not
cause a confusion. Also [¢llio = ¢l and el = lell.

Let Y = {h € H"*7; ||hlly < oo}, where |hly =
Allguz+, y > 0 is small. Different positive constants we
denote by the same letter C. We denote (t) = 1+t, {t} = t/(t).

Our main result is as follows.

Theorem 1. Let u, € Z = H* nHY, and h(t) € Y and the
norm |uglz + llhlly = €. Then, there exists €, > 0 such that
for all 0 < € < ¢, the initial-boundary value problem (1) has
a unique global solution u(t) € C([0, 00); HY). Furthermore,
there exists a unique final state A € L™ such that the large
time asymptotics

1 il A(s)[*A(s) lo —1/4—
u(®) = MA@ O () (9

is true, where y € (0,1/4), and

A(s)=e r<z>\/2 st
iBs

+26'® J ety ) dt> +0 (83) .
0

(‘%s (1 + ﬁax) Uy
(10)

3. Sketch of Proof

Firstly, we construct the Green operator defined by the linear
IBV problem posed on a half-line:
iug + o, u=0, t>0, x>0
u(x,0)=uy(x), x>0, 1)

(1+po,)u(0,t)=h(t), t>0.

To derive an integral representation for the solution of
problem (11), we adopt the analytic continuation method
proposed in the paper [20]. The Laplace transform of the
fractional operator |Bx|3/ *u with respect to space and time
variables is

Lo u=p o] u

Jm lal™? (12)

—ico 4 —W

= lim
w— p,Rew>0

(@ (q.8) - q'u(0,6) - g 1, (0,8)) dg,

where #i( &), 1(0,&), and %,.(0, &) are Laplace transforms of
u(x,t), u(0,t), and u, (0, t), respectively.
Thus, since
a(p.§) =P a(p.8)
(13)

i(q.£)dg,

100 1
= lim
w=pRew>0 J_joo g — W

applying the Laplace transforms to (11) with respect to space
and time variables we obtain

P {(K(p) +&)u(p.&)
@ (p) + K (p) (p~

3/2

50,6+ p 78, (0,9)]} (14

=0, K(p)=ilp|

Let ®*(p, &) be some complex function analytic in the left-
half complex plane and |®*(p,&)| < C(p)~°, & > 0, such that

P ®" (p,&) =0 for any Re& > 0. (15)

Thus, from (14), we obtain

a(p.§) = (p)

kel
K(p) (0.8 + p7,(0.9) + D" (p.8)].

Note that there are three unknown types of data, (0, &), %,.(0,
), and 6+(p, &) in (16). To find some of these data we use
analytic properties of 7(p, £), which is analytic in Re p > 0 by
the construction. Also, as we see in the left-hand side of (16),
K(p) is not analytic. We define the “analyticity switching”
functions Y*(p,£). Denote K™ (p) = i(ip)3/2. Note that for
Rep > 0 and Re& > 0 the equality K™ (p) + & = 0 has only

one root k(§) = —i(if)z/3 such that Rek(§) > 0in Re& > 0.
We make a cut along the negative imaginary axis. Let

w'=p" (p-k (&),
w = p(p+k@E)".
We prove that for Re& > 0

Kp)+Hw 1
I ()T O w 211 o

=0.

(16)

17)

J"“’ g K@) +8 w”
K= (p) +Ew" (18)



Therefore, via Index Zero Theorem, we have

K(p)+& Y (p,§)

= , (19)
K= (p)+& Y (p.?)
where
vyt = eri(p,f)wt’
- L[ A KE,
0 omi i gz K (g) +Ew?
Via Sokhotski-Plemelj formula, we have
+ - a0 (P)
U'-U = )
Y+ (p:§)
. .~ _K(@p?
I'-TI = —"—, (21)
Y+ (p:§)
_ K(p)p!
- +(p)p ,
Y+ (p:§)
where
U= Lj""" dq_ 9 (q)
21 Joico =2 Y* (q, &)’
_ 1 (™ dq K(q)q*
1= Loo q-zY*(q,%)’ (22)
= L[” dq K(a)q
27 )oico q—2 Y (q,8)
Applying (19) and (21) into (16), we obtain
~ Yt 1 —+
a(pt)=———— (U -U +—0 (p,

HI-)EOH (I -1)7,0.9).

For the analyticity of the function 7 in the right-half complex
plane, we need to put the following conditions:

%6* (p, &) +U" + I"ti, (0,&) + T (0,&) = 0,

U™ (k(&),8) + ] (k(),8)a(0,8) (24)
+1 (k (E) >£) ax (0) E) =0.

Thus, we must put in the problem (11) only one type of
boundary data. Another type of unknown boundary data can
be find from relation (24). For example, if we consider Robin
boundary condition, u(0, t) + fu,(0,t) = h(t), boundary data
u(0, t) and u,.(0, &) are completely determined by

u(0,8) = h(t) - Pu, (0,1),

U k@.H+ROT *kE®.H @
(I k©),8 - pI (k©).9)

ax (0) E) =
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where E(E) is Laplace transform of h(t). We will prove that
21,(0,&) is analytic in Re§ > 0 under condition Re 8 #
0. Finally substituting (25) and (24) into (23) and applying
inverse Laplace transform, we will prove that the solution (11)
is represented by u = €(t)#,, where

t

i, = H Du, + 2"V p'? J X (1) dr,
0
D =1+po,, (26)
1
1+ Bp?’
This fact is exploited in Proposition 2 below. Therefore, the
IBV problem (1) can be rewritten as

u= 9*%*67#1(([))
N

C(t) =D Hre KD 2" =1-po,.

| 27)

1+ pp?
The estimates of the integral equation (27) in the Sobolev

spaces yield an a priori estimate of |[ug. To get the L™-
estimate of u(x, t), we will prove the asymptotics

(it/2)K(&)+T (i) El/4

S0 (30

We introduce the new function ¢ as

t .
<ﬁ0 + iJ P 7 P juf? udT).
0

ZOPETAGE

¢ (pot) = iD* H:e KD j TP F Dl udr.  (29)
0

Then, we obtain from (1) and (27)
1/2_iK(p)t

&, = i Py |ul? - zpe—zpzh ®. (30

1+p

In Lemma 7 below, we will prove that the nonlinearity

V4 s{ululz} is decomposed into the resonant term and the
remainder such that

~1,-tK(p) A(1-iBp)
a(p)

@(p)) P (L gy OD

Fulul® = —t

(i

O((|8 @)y + Mhly + 10 0,101)’),

where A = ¢ TOED 5 0 and a(p) = eV +/2/3p". Also
we prove

6 (0,6)] < C (|6 (P)] 0 + Ml - (32)

Then, the estimates of |¢(p)ll, and [|¢(p)llg: follow. There-
fore, along with (28) and (29) we prove the L®-estimate
of u(x,t). Also we obtain asymptotics of the solution. We
construct the Green operator for the initial-boundary value
problem in the next section. Section 5 is devoted to several
lemmas involved in the proof of the main result. In Section 6,
we prove our main result.
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4. Green Operator

We consider linearized version of problem (1). We prove the
following proposition.

Proposition 2. Let uy,h € L'(R"), and Re 8 # 0. Then, the
solution u(x, t) of the initial-boundary value problem (11) has
the following integral representation:

u(x,t) = Giiy = 2" H e P ————1i (p),
1+ p%p (33)

)= 1ol

where iy(p) = H Du, + 2ie" @ p!/? Io ek P)Th(r)dr, and

operators K, and F ' were given by (6).

Proof. Substituting (25) and (24) into (23) and applying
inverse Laplace transform we prove that the solution (11) is
represented:

~ _ Y
u(p.£) k() E(U ~¥ (p,E)U (k(©),8) »

(T (p) =T (k@D (p.E)) R (),

where
(I (p.§) - pI" (p.%))
R T R R TR M
Denote
i ,=qy 1
& (ywk) = i LOO . wm (36)

where Y7 (g, &) was introduced by (20). Taking the Laplace
transform of (34) with respect to £ and p variables, we get

u(x,t) =Guy+ ¥h, (37)
where
Fuy= | (1 G (x50,
. (38)
h = J H(x,t —7)h(z)dr
0
with
1 2 rico+e . ico "
G(x, y,t) = - (Z_m) J_iwre dée* J-_ioo ef
Y (p) - (39)
PR (@ (g, p,
ot & 0D
_\Il(p’g) %7 (y’k(g)>f))dp)
2 rico+e ico
H(x,t) = (2%11) ‘L die™t J'_. eP*
Y* (p.§) (40)
J (ps
Kp) e (Y

~¥(p.&)J (k%)) dp.

Now we consider G(x, y,t) given by (39). Using analytic
properties of integrand functions for Im & > 0, we rewrite the
function G in the following form:

G(x, y,t) =G, (x, y,t) + G, (x, y, 1), (41)

where

1 2 —ooe
Gi ()=~ (55) |,

L

—ie

d&e&

0@¢®»@+Q%f

o K(p)+E
(42)
. J—ooe dfeft
0
' ico Y*t (P’ E) 1(47.,/3)k d
Lme K(p)+& Q(p, &) dp,
2 (—icoe
G, (x, y,t) = - (ﬁ) L it
' ico + (p’ E) 1(47.[/3)k d
J—iooe K(p) £ (P (E)) p -
1\2(° 5
~(5a) |
' ico me
J—ioo € K (P) + EQ (p7k (6)) dp,
where
Q(p.k®) =& (1.,p.8) - ¥ (.5 E (1k(©),8). (44)

Since e k(|Ele™™) = k(|E|e™), we get
G, (x,y,t) =0, (45)

which implies G(x, y,t) = G,(x, y,t). We make the changes
of the variables z = “/ k(&) and z = k(&) in the first
and second terms of (43) correspondingly. Using that, by the

definitions K™ (k(£)) = —& and K~ (" k(&) = -&, we
obtain

1 \2 +icoe €
G(X,y;t) = <2_7'[1) J’; .

Y7 (p,-K(2)
K(p) - K(2)

ico
dze K@K (2) J e

(& (7 po K (2) (46)

-¥(p.-K(2)) & (y,2,-K (2)))dp



Now we consider J(w, -K(z)) and I(w, —K(z)) given by (22).
Via (19) and Cauchy Theorem taking residue in the point g =
0, we get

1
J (w,—-K (2)) = pyr
'Jm 1 1 K(q)-K(2) +K(2)
“ico g - wY* (q,-K (2)) q
-
 2mi
. J’ioo 1 1 K (q9) -K(z) (47)
- lim —
so0Res>0 J_joo g —w Y (q, —K(z)) q-s
K (2) o 1 1
* 271 s—>031rlrels>0 j_im q-wY* (% -K (Z)) q- qu
ool . Kw) -K(2)
= K& Y 0Kk@) T w-K@)w
and by the same way
I(w,~K (2) = ] (0, -K (2). (48)

As a consequence of (47) and (48), from (35) it follows that

¥ (p,—K (2))

Z_zl—ﬁp(HK(P)—K(z) Y*(o,—K<z))) (49)
Pi-pz\ Y (p,K@) K@ )

Substituting (49) into (46), we attain
G (x,7,t) = Gy (x, 3,t) + G, (x, 1), (50)

where

ie

1 2 +icoe” _K(z
G, (x, y,t) = (%) J—iooeff dze K@K’ (2)
i J""O Y (p—K(2))
im e ————
K(p)-K(2)

s—0,Res<0 J_joo

- (g' (3, p»—K (2))
(51)
22 1- Br
(p-s)’1-pz

& (y,2,-K (Z))> dp,

1 2 p+icoe” _Klz
G, (x, y,t) = (2—7_”) J dze K&K (2)
—100¢€

2°Y"(0,-K (2))

K(z)(l—ﬁz) %_(y,z,—K(z))(x—ﬁ).
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By Jordan Lemma taking residue in the point p = -z, we
rewrite G, in the form

L[ k@yg+
G, (x, y,t) = -G, + e Y (-z,-K (2))

e (%_ (y,-2z,-K (2))

1+pz__ 1

l—ﬁzg (y,z,—K(z))) + (—)2

27i

. Iﬂm dze K&K (2) J_m e’ 0 (p,-K (2)) (52)
—ico 0

& (y,p,-K(2))dp - <i>2

271

. j * dze KO () J_OO @ (p,-K (2))
0

—1i00

21— _
%%% (y,2z,-K (2)) dp.
Here
O (p,—K (2))
_< 1 ~ 1 ) 53
\K(p)-K@ K (p)-K@) (53)

3/2

K* (p) =i(Fip)™"".

Since integrand is even function with respect to z-variable,
we get for the last summand of (52)

+ico
J dze KK (2)
(54)

' L " (p,—K (2)) & (v, p)dp = 0.
Therefore, G(x, y,t) = G,(x, y,t) + G,(x, y,t) takes the form

G (x, y.t)

2 p+ico
(LY [ e mov (e, 6
0

27i

2. =1-po,,
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where
Y (x,2) =Y (z,-K (2)) e - Y" (-z,-K (z)) e **

KI —00 2
- —(?) L eP@ (p, K (2)) %dp

27

¥(1,2) = ——& (3,2,-K (2)

1- Bz (56)
1 _
- 1+ﬁz% (3, -2,-K (2))
W (2) + B (12)
1-— ﬁZZZ :

Via Lemma 11 Y*(p, -K(z)) = e Tl Therefore, we
make the change of variables p — |z|p, p > 0, to get

\I/* (x’ Z) _ e—l"(i)ezx _ e—I‘(—i)e—zx

3 LT phalx 1)
22m‘L e e (p)dp, (57)

1 1 1
®‘P):F<K+<p>—1 ‘K-(p>—1>'

Also since via Lemma 3 z¥, = 0, 'Y,

DY, (1,2)

¥(y,z)= =27 58
(r2) === = (58)

Thus, finally we obtain

6= | 90)G 0y

i 1

=D H D7 D, (59)
Se 1 + ﬁzpz N ¢

K (p)=p”

where operators % and J# are defined by (6). By the same
way as in the proof of (59), we get

H (x,t)

T(0); +o0 1/2 (60)
-ty J dze_K(z)t‘{’: (x,2) ———dz.
T 0 1+ p*z2

Applying this relation into Z'h = jot H(x,t—1)h(t)dTt, we
obtain

1/2
T(0) .~ * % —iK| P
Hh=e i H e s
P

Therefore, via (61) and (59), Proposition 2 follows. O

t
J KO (1) dr. (61)
0

5. Lemmas

Section 5 is devoted to several lemmas involved in the proof
of the main result. Via Proposition 2 by Duhamel principle
we have for solution of (1)

u=D'K,;
e Klp)t t o) (62)
ey (ﬁo (p)+i L e PTH DN (w) dT>,
where
t .
iy (p) = H Du, +2ip1/2er(°)J KO (1) dr,
0
N (W) = [ul* u, (63)
K(p)=p".

Firstly, we prove the main properties of the operators %,
HK.and H, K defined in (6).

Lemma 3. The following estimates are valid:

|78l + 1.7 ¢l < Clg]l.

0,5 ¢

< C |l ggou » (64)

|2° ¢

o = C[#

HO,Z *

Proof. Applying Sokhotski-Plemelj formula, we get

@ (X —iZ) _ _eizx+l"(—i)
b
1 ocoe 19 e—iqzx+F(iq)
—coeiml1)

2mi g+1

i3+ T(i
_ezzx (—i)

. L Joo e—iqzx (el"(iq) _ el"(—i))
271 J-oo

da
g+ 1 T (65)

dq

—i(m/4) .

ocoe —qzx+T(iq)

& (x,iz) = —¢ =0 4 1 J e
’ 2711 Jocoeimn g —1

—izx+T(i
- —¢ izx+T(i)

+ o=
27mi

1 o e—iqzx (el"(iq) _ el“(i))
J dq.

oo q-1



Thus, for x > 0,

Y. (x,2) =& (x,iz) - & (x,-iz)

izx+T(—i) —izx+T(i)
—e —e +®d (x,2),
((2) )

coe /4
D, (x,2) = —— J _
7T J_coei/4

Y.(x,2) =& (x,-2)+ & (x,2)

e—qzx+1“(q)

¢ g
G +1 1

izx+I(—i) —izx+T(i
=—e —e ) 4 D, (x,z
(x,2), (67)

coe 1 e—qzx+F(q)

qdq =-0,9, (x,2)

1
D, (x,2) = —_—
(x2) = mJ ¢ +1

Ooei(n/4)
andasa consequence

izV, = -0,Y,,
¥, (0,2) = 0,
0, Y, (x,2) = x¥. (x,2),

(%, 2) = —x¥ (x,2) .

By the definition,

K b= JOO Y. (x,2) ¢ (x) dx;
0
(69)
Hp=| W29

From (65) by Plancherel Theorem,

|7 .| < C II L €7 ¢ (x) dx

+C JOO T (x) dx
0

JOO (e — ¢T0)

—co q+1

+C

dq J e P (x) dx
0

o ( oLlia) _ erm) (70)

+CJ
—00

<clol 1+

dq J e (x) dx
0

q-1

oo (eruq)_er(—i))d
J—oo (g+ g

Joo (&M — 1)

d
o (q-1)g"?

+

q)scn¢||.
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By the same way, we can prove [ % ¢l < Cl¢|. Since via (68)
iz¥, = -0, '¥,, after integrating by part we have

X -8

ZH P = J:O z¥. (x,2) ¢ (x) dx
=- JOO ¢ (x)0,Y, (x,2)dx (71)
0

= JOO Y, (x,z) ¢, (x) dx.
0

Therefore,
[z ¢l < Clg.l- (72)
By the definition (6), 2" % ¢ = (1/27) [} ¥ (x, 2)$(2)dz,
where
¥* (x,2) = (1 - Biz) e“e ™ — (1 + piz) e e '
+®D(x,2),
D (x,2)=C J:OO ¢*4*e 1@ (73)

(1- Bzq) dq
g2 ((ig)"* - 1) ((-ig)"* - 1)
Using analytic properties of integrand function, we can

change the contour of integration such that Rezgx < 0 for
allg € €. Since leT@| < C, we have

o [ 305 dp|<c | Bp)]dp

-1/2-y |1 _

. J‘” q" (|pg +1i]) Bpal p"
0 g'2|(-ig)" - 1||(ig)” - 1| (74)

P50, <cle o).
n=0,1.

As a consequence via Plancherel Theorem and estimates (70)

and (72), we get
| <C|(p)’ 9| (75)

Since by the definition ap\ys(x, p) = ix¥.(x, p) applying
1% x|l < Cllxg|l we get

0557 ] < C ¢l (76)

thus via (70), (72), (75), and (76) the lemma is proved. O]

We introduce

E(xt™) =E® = (”‘)

K(p)=p"*.

(77)



Advances in Mathematical Physics

Lemma 4. Let ¢(p) be an analytic in the right-half complex
plane, except when p = x > 0. Then, the asymptotics
"B (p)dp

l +00
— J ePe
2 Jo
it(K(§)/2)

_ it/ etK" 5 Y(3) (78)

+(1- V)/4

+t! , x>0

O (&, +9l..)

is valid for x > 0.

Proof. We have, for & > 0, e = t~1/*7,

1 (5 k@t~
E e ¢ (p)dp
—&
(79)

_ e—i(ﬂ/4) e O
UK

Indeed, by the direct calculation, it follows that

Et+e . ’
J ) OPDG () dp

=@+ g |

Ete )
~ 3 L_ ¢ MO’ (80)

E+e . 2 —~
+ J MG (p) - $()) dp
Denote A(§) = K" (£)/2. Therefore, changing tp* = ¢*, we get
E+e . ) & . N
J ) O g, J_ O g

y )
_ L Jt G dq = 1 Jt © o7 g
v

VE )+ G RENIG)
-i(n/4) oo —i(m/4)
_ e 4 J’ e_qz dq _ e 4 7'[, (81)
tA (&) J-co tA (&)

r M ($(p+E)-$(©)dp

1 £ o (~( 4 ~
“o([L e (o) 90 )
v;(ﬂ Pl Te)¢®)da
Using analytic properties of function ¢, we can change the
contour of integration such that

e co—— (82)
|1 +Alq| |
and using
e q ‘Z/ \[+‘E
O T

<clp i

we get

[ o

~ o 1 ~
<clp]| A<l

+f)—$@ﬁd4
(84)

from which it follows (79). We use the stationary phase
method. Let f(p) = -K(p) + pX.

We define £(%) = ((2/3)%)” such that f,,(£) = -K'(£)+% =
0. Note that |[K" (&)1 = (2//3)E/*,

Denote K" (§) = 2A(§) = O ™'?), u(p,&) = f(p)-f(&)-
AME)(p-£)*, and (&) = K&) - EK'(2).

We rewrite &, ¢ as

I [* e —ik(p)t=
L1900 =5 L e g (p) dp
(85)

e—r(i) ) Ete ) .
= 0 J MO () dp 4 R,
us -

where

-T()
_¢ ’ ) J e MO8’ (eimw,s)t _ 1)@( p)dp
€

2m
(86)
E-¢ +00 . R
+ (J +J )e”f 98 (p) dp
0 +e
=R, + R, + R;.
Via (79),
i© [ -0
e L_s e (p)dp
2 &7
it
_ Hin/4) € -1/4-1/2+
T LCAU

= O(p~**(p—£)’) after changing
-1/2+y

Since f'(f) =0and u(p,&)
the variables p = p;t /% + & we get fore = t

IR,|

<t J o)
—t77
tY
< Cp23l "¢ (P)"Loo £(5/2)y Jﬁt,y P dp

< g (o)

To estimate

R, = J 1P (p) dp
Et+e

((pt‘”2 ¥ E)_m) po(pt2 + &) dp
(88)

2 - (89)
:ﬁj-ﬁ me&mw=&w&p
28

+&
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we use analytic properties of the function ¢(p). Since

f(p,&) = K(p) ~pK'(§) # 0for £+ & < p < 2, we can
to change the contour of the integration to obtain
itf(p.&) c “lty o\ -2p —1+1/4+y
e <———<C|p (py "'t ,
| | |f (p. )|t I (90)
y = 0.
Therefore,

% ~ .
Ry = Lﬂ 109G (p)dp = 0 (| (p)] ). O

Integrating by part, we get

Ry = LE e"'P9g (p) dp

00 ¢ (p) ¢ (28) 2
_ -1 itf (p,£)
' (Ls a"fp(p,f)dp+f’(2§))’
where
L8| cho)
0| Rk (p) - K @
A (93)
Clg, (p)|
K" (p) - K' (&)|

We have [¢(28)/ f'(28)] < Ct™ " 4$(p)ll . Also for 2¢ <
p<l,

$(p)
%5 ()

< Ct1/4+y

(94)
(P |¢ (p)| +Cp™ " |@, (p)])
and for p > 1

5 @(p)‘< Clg(p)|
P VBIK (p) - K (©)

Clg, (v ©3)
"R -K @)

<Cp (|8 (p)| o7 + 18, ()])-

Therefore,

(p7' |6 (p)| +|¢, (p)]) dp

-1 ®
+t L (p
e o

P+ @.,)

|R22| < t—1+1/4+y Jl
28

o)+ P08, (p)]) (%6)

< Ct—1+1/4+y ("(’/SP (
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Collecting estimates (91) and (96) from (89), we get
R, = Ry, + Ry, < Ct 14 (“‘7’ (P)“OO + “‘ﬁp (P)") - (97)

Since f(p) # 0 for p € (0,& — ¢) using analytic properties of
(7)( p), we can the change of the contour of the integration to
get

itf(p) C(t |P|)_1
< eme ) e

‘ ’ 1 (98)
K'(&)]|-@2/3) (K" (p) /K" (§)) + 1

< Ct—1+1/4+yp—1+y‘

<ct'p!

Thus, by the same way as in the estimation of R,, we
obtain

|Ry| < ceHET gL

< Ct—1+1/4+y (“(’/;P (

o)l [ ol..)

Finally collecting the estimates (87), (88), (97), and (99)
from (85), we obtain

/) eit<K<£>/2> -
Gip(x)=e""
(100)
+1 o l|</>p @) +[# ).
x>0
Lemma is proved. O
We introduce
T2 P 101
a(p) = \/3 1+ifp’ 1oy
Lemma 5. The following asymptotics is valid:
9*%* —-iK(p)
s € 1 + ﬁPZ ¢
(K(©)/2)
— o im/4) T 6—06(5)
+ 1Mo ll¢p @) ¢ @),)
x> 0.
Proof. By the definition (6), 2" # ¢ = (1/2n) f;o ¥ (x,
z)$(z)dz, where
¥* (x,2) = (1-ifz) e ™ - (1+ifz)
e T L P (x, 2),
B (x,2)=C J % ax 1@ (103)
0

. 1 - Bzq do.
2 ()" 1) (i 1)
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Therefore, we rewrite e KPIG in the form

%:e—iK(P)t$ = Zl(p + ?z(b + ?3(15’ (104)
where
@ ¢) _ e_F(i) Joo eit(fK(P)JrP%) 1 (»/;(P) dp
' 2 Jo 1+ifp ’
~T(-i) roo
_¢ itKp)-pr) 1 =
G = —$(p)dp, (105
2¢ 2 JO € ].—lﬂp(p(P) P
_ o —itK(p) ® 1 ~
“a¢ Jo ¢ (x, p) 1+ ﬁzpz(p(l’) dp.
Applying Lemma 4,
. KOy ()
G ¢ = e D TOE a(é) 3
Vi (106)
+0 ([9 (p)]y)-
To obtain asymptotics for &,¢ = (e T

27) j;o KD g p)dp, we observe that f/(p) =
(-K(p) - px)' # 0 along line of the integration. Therefore,
applying standard Laplace method after integrating by part,
we can prove

Gr(x) =t 0 (|90 - (107)

Also using decay properties of the integrand function, we
prove that

Gyp=t"""0(|¢],)- (108)

The lemma is proved. O

In the next lemma, we obtain asymptotics of boundary
operator #h given by

1/2 t
Fh =iz #ﬁpz J e KPED L (1 dr. (109)
0

Lemma 6. The asymptotics

it(K(§)/2)
wn) =287 g
(f)=e i (0)
n t—1+1/4+yo ("h“Y) , (110)
2 —~

are valid, provided the right-hand sides are finite.

11
Proof. From Lemma 5,

tei(K(E(t—T))/Z)(t—T) .
%%:J'————————{“W“a@a—r»huﬁh

0 Vt—1

+0(t-0) " h(r)dr
(111)

_ it 267 o (£ (1)) @ KEONDE J h(r)dr
0
+ 2 ) o
Thus, the lemma is proved. O
In the next lemma, we prove that % -transform of the

nonlinearity is decomposed into the resonant and remainder
terms.

Denote
N W) =iluu, 112)
5 1/4
_ g2 P 13
«(p)=e \/31+i,8p' 13
Lemma?7. Let

— on* opr —iK(p)t ¢ (p.t)

u=9 %se P Tﬁzpz (114)

Then, the asymptotic formula for large time t holds:

1 (T Y g
TN () = e MO

1 (I b
) | (p) & (p)| «(p) $(p) (115)

+C (|0, + 19B] + 0 0,001+ Tly)
+Clu (0,02 Vi
Moreover,
et ol
< CIOIL, (I8l + 2d] + Mty + 1w 0,01) - (16)
+Ct u(0,1).
Proof. We introduce a new function W (&) such that

u(x,t) = %eitf (W (&) + e VEu(0.1)),

f(p)=-K(p)+pK (p),
K' () =%,

E(xt™)=E®) = (?)2

(117)
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Note that in view of Lemmas 4 and 6,
W (&) = ¢ © e ™ a @)+t (¢ + Inlly)
— eV (0,1), (118)
W (0) = 0.

Making the change of variables K'(§)t = x, & € (0, +00),
we get

Tl @) =i [ (K @)1, p) VIR @
0

(119)
= 2 £
. |W +e " Vtu (0, t)| (W +e " Vtu (0, t)) dé,
where f(£) = ~K(&)+&K' (). By the stationary phase method
(see proof of Lemma 4), we get

—I'(i)

‘%s(|u|2u) == \/z

; I * K@ EPK ) g ©
0

. -£ 2
W (€) + Ve u 0,1)| 120)

(W @)+ Ve u(0,0)) dE+ R, = —+

. ¢ HK(p)t = (T(D+T (=) WP w (p) K"/2) (p) + R,
where

R =t o (| (W () W (p)] 0

|2 Ve tu (0, t)"Hl)
oW (el

Using (120), we obtain

+p7 2w (p) +lu(0, 0 (121)

1 _(r Ny
%S (|u|2 l/l) — _;e (T(@)+T( l))e iK(p)t

ﬁ o (p)i(p)lza(p)g)(p) LR, (22)

+R,,
where
1 1o
IR, <C (_“ o ||h||Y)) L)
From (117), we have
W (p) = Ve /P J ¢ K@y (K' (p)t.z)
1 ’ (124)
R _ P ,mitf(p)
1+ﬁngb(z)dz e’e u(0,1),
where by (6)
¥* (x,2) = (1—ifp) P e T
(125)

~(1+iBp)e e TO 4 @ (x,2),

Advances in Mathematical Physics

with

1 o0 r
D(x,2) = —.CJ e 1@
2i Jo

Vlal (1 - az)

. d X
(60" = 1) (i = 1)

(-ig)*” -
(ig)"* -1

(126)

1 (o)
=5 In(g-sdn Lig.

Denote

1(p) = VR | O (K (p)n.z)
0

R (127)
¢ (2)

. dz.
1+ fz? ‘

We rewrite I(p) in the form
I(p) =L (p) + L(p) + I (p). (128)

where

L) =vE[ e

f(zp) = (K(p)-

itf (z,p) ¢ (Z)
1+ zﬁz

K(2)-(p-2)K'(p),

L(p)

(129)
_ T K J o SHCK@-2K (p) ¢ (2) 4@ 4

0 1 —lﬁ
L(p)

_ iK(p)t © _iK(z) ' <75(z)
=¢ \/ZL e CD(K (p)t,z)1+‘822dz_

Now we estimate I, (p).
Integrating by the part, we have

Ctl2 Iooo e""@PNy(p, z)dz, where

I1P(P) =

¥ (p,2)

(0@ (E D @),

\/_

Y (130)

¢ (2)

$(2) = T 1+iBz
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We have
+ -1/4- 2 o0 +
b oy = | gy
o) dp [ e (pz,) d,
0

o 2 —
' J P2 (p,2,) dz,
0

(131)
_¢ J ¢ KE) g J oK) gy
0 0
+oo 1/2+2y ~1/2-2y =
([ et () (pr2) Tz,
. ei(zl—zz)K'(p)t> =1+ 1, + 15
where
L=t J' e—itK(zl)¢1 () dz, J eitK(zz)(/)l (2,) dz,
0 vz 0 vz
e Y242y ; \-1/2-2y 1 iz —z)K (pt
' dp{pt"" " (p) —e ;
0 p
O itK(z)
—itK(z,
L, =t L e NG (Zl) dz,
| VER (@) d
(132)

) (L dp {p}1/2+2y <p>—1/2—2y %ei(zl—zz)K'(‘D)t> ’

8] .
L=t L e_ltK(zl)‘/’lz (2))dz,
. JO et (Zz)¢lz (Zz)dzz

+00 . ’
: <L dp {p}!* (p) P K <P>f> .

Since ¢/®172)K ()t jg analytic for all p € C except for p < 0,

we can change the contour of the integration such that

'ei(zl—ZZ)K'(P)t| < C(l tlzy - 2| [ ) T a3

13
Applying (133) by Young inequality, we have
L = tJ e K& 71/2‘/51 (Zl) dz,
. Jm th(zz) 1/2¢ (Zz) d22
0
) (J 1/2+2y <p>—1/2—2y
0 (134)
_ 2
) (1 + |21 — 2, IPll/z ) ) < C”zl 1/2‘/51 (Z1)"
) J dp | p}1/2+2y (p) 1/2-2y 3/2dp
0
_ 2
<C ||zl 1/2¢1 (zl)“ .
Since ¢(0) = 0, we have
6 (P) < CvP |6 [ (135)
and as a consequence
_1/2112
oz < Clll 136)
Thus, from (134),
I, <C ||‘/5||i11 : (137)
Using the same approach, we obtain
I+ 1 < Clglle - (138)

Thus, from (137), (138), and (131), we obtain
oy (o) | s (8] + |VEsl). o)
By analogy, we can estimate I,,, and I
[} (o)™ | + (o} (p) T
< C([¢ + I291)-

which imply the following estimate for I, = I, + I, + I3

||{p}1/4+y <p>,1/4,,, Ip" <C (”(75"}11 + “zg7>||) (141)

Note that by the same way we can prove that

Jioh (o) | <l ). oo

Now we estimate

J(p)=e"

(140)

e Py 0,1). (143)
We have

ltpy o) 1, < s 0]

~1/4+y ~1/4-y (144)
[to) 7 (o) 7| < Clu,0.
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Thus,
[ter " <) w]

<C (|8l + 28] + 14 0.001).

(145)
[ip o)™ w|
< C (@] + 8] + &) lu 0.1).
Since by the construction W(0,t) = 0, therefore we get
p
W)l < | weldg < cp™r [prw | ad0
Therefore, from (141) and (142), it follows that
[ we| = Jm P W dp
0
- Jl p 2 IW(°dp
0
+wt jm P rwl dp  (47)
1
1
<clipwl || op
—1/4- 6
=l v,
Also
1
A I W AN
w3 ]l WP
1
. (148)
2
sl [ il ar
+3IWIE Lm w,|" dp.
Therefore,
oW} < C (18l + [y + O 1 001)". 0149)
Also we can prove
|7 W (p)] e,
<C(|8) + |8 or + ©) 0. 00)"”,
(150)

o™ (W (p) Vee Pu(0,0)|
2

<[Vt 0] ([@] + ¢

Substituting estimates (149) and (150) into (123), we get the
first estimate of Lemma 7.

o (8 [1(0,0)])

Advances in Mathematical Physics

Now we prove the second estimate of Lemma 7. We have

|0, o ()

L?(1,00)

< Clp™'3, pe™ P H N () (151)

L?(1,00)

+C|p e P H N ()

L2(1,00)

Firstly, we estimate IIpflappeiK(P)t,%s./V(u)IILz(l)OO).
Denote F(p) = peP' % ¥ (u).

Via (117),

u= 2D (W () + e F Vi (0,1)),

E(xt) =E®) = (?)2 (152)
f(p)=-K(p)+pK'(p)

from which it follows that

du = ¢ EE 12 (W &)+t \EWE )

(153)
ve Sty (0, t)) .
Applying (0, p) = 0, we get
F(p) ="' 0, lulu
‘ (154)
— e P (0,p) [u(0,1)Pu(0,1),
where via (152) and (153)
Nl u =t wEE)
(155)

: (W (&) + £\ EWE ©) + 500, t)) .

Therefore, making the change of variable x = K'(£)t, we
get

F(p) = peP"H N (u)
=F (p)+E(p)+F(p),

(156)

where

F (p)

_ o2 K joo

'O (K' ()t p) ¢, (2) dz,
0

¢ (2) =2 W)W (2),
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E, (p)

o0
_ O 32K J
0

v (K' (2)t,p) ¢, (2) dz,

W (2)]> W,.
(157)

¢2 (=) =

Now we estimate || (p)_lapFl (p)ll. By the definition (67),

\I’l (x Z) _ eizx+I‘(i) + e—izx+I‘(—i)
icoe 1Y) e—qzx+F(q) (158)
+C J ———dq, x20.
—icoe®®  q*+1
We estimate the first “more difficulty” term =T of

W.(x, p). Another term can be estimated by the same way
using Laplace method (see Lemma 4).

Fy, (p) = ce'h L eitf(z’P)fp (2, p) ¢, (2) dz,

¢, (2) = W (@I’ W,, f(zp)

Therefore, as in the proof of estimate (141), we get

1™ ol = C I 0 @ W
(163)

<CIWIL |47 () w| .
Also we have

t||p_1F3p

L?(1,00)

< t]po,e P |V (u(0,1))]

12 R
(beo) (164)

<t "p_lapeiK(p)t

|V (0, 1)}

12(1,00)
< C u(0,8)].
Applying (163) and (160) into (156), we obtain

" "p—lap (peiK(p)t,%fs/V (u))HLZ(LOO) (165)
165

2 |[,-1/4 -2 2 3
<CIWIL |27 () W, | + CE lu (0, 0)]° .
Note that, using the same procedure, we can prove

t“p—l IK(P)t o N ()

L?(1,00
(166)
<CIWIZ, |= <z>‘2V AR
Therefore, via (165) and (166) from (151), we obtain

t"apé

(167)
< CIWIL, |27 &)Y W | + € u 0, 1) .

=K(p)-K(z)+(z

15

As in the proof of (131) integrating by part, we obtain

Fy, (p) = ct'? J P (p,z) dz, (159)
0

where f(z, p) and O(p,z) were defined by (124) and (130)
with ¢(z) = z_1/2|W(z)|2W(z). By the same way as in the
proof of estimate (141), we obtain

t|<p) " Fy, (p)]

(160)
<clw@rz"|+clwe@r=""
+Cle W (2) W
, (161)
<CIWIL |z = w, |
By the direct calculation,
(162)

-p)K'(p), f,(zp)=(z-p)K" (p).

For small |p| <
[W(2)|*W (z), we get

1 using estimate (130) with ¢,(z) =

t 0,6 N (u)

L2(0,1)
(168)

<CIWIL [ () W, .

Thus, applying (141) and (118) along with (168) and (167), we
have

t|0,e™ " H o ()]

< C[A1L, (8l + 18l + Wiy + 1t @,1]) - 169)
+CE u(0,0).
By the same way, we can prove
o
(170)
< C[1L, (8l + 18l + Wby + 1t 0,1
The lemma is proved. O
In this lemma, we estimate the Green operator:
Cii, = 9*%;‘@"'K(P”T;2p2ﬁo, 171)
where
i, (p) = H Du, + 2ie" 0 p''? Jot KO () dr. (172)
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Lemma 8. The following estimate is valid:
€504 < C ([|p]lggr + IPllggrares) - (173)

Proof. ViaLemma3, |2" % <75||H1 <C| (p)%ll and therefore

|80l < C ] - (174)
Denote by 0(x)
1, x>0,
0 (x) = { (175)
0, x<0.

Integrating by the part, we get for |p| > 1

t K 1
J KO (r)dr = ——
0 i

h(0) - P n(t
K(p)< (0)-e ®

. (176)
+ J SKOTR! (7) dr).
0
Therefore, we rewrite operator 7 in the form
iy =(1-06(p))u, +6(p)
S (177)
= Ugy + Ugp,
where
~ _ JiK(p)t _ \/ﬁ
uOl e h(t)(l e(p)) lK(p)
178
c1-0() P+ (p) 7Y
iy, = 0(p) o
where
_ VP
ul(p)_%59u0+il<(p) )’
\/_ . (179)
__V\P iK(p)ry !
u, (p) K (p) L e K (7)dr.
Since | Z Pl + | Pl < Clipll, we get
5o ]| < l[Fou]l + 1F0all < C (Jsollggr + WPllggraaes) . (180)

Thus, via (174), we get the estimate of the lemma. The
lemma is proved. O

Now we estimate the nonlinear term of (62).

Lemma 9. The following estimate is valid:

Jt Ct-1)|u’u)dr
0

t
<C [ 1l Bl dr. 180
H! 0

Proof. From Lemma 3, [|[€¢|i: < CI|H Dl Therefore, we
have

Jt G(t-1)|ulu)dr
0 H

t (182)
<C H%S J K g (|u|2 u) dr|.
0
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Thus, using ||ax|u|2u|| < CIIuIIiO

lleall g we get

Jt Ct—1)|lu’u)dr
0

t
< cj lul?, lullg dr. (183)
H! 0

The lemma is proved. O

Lemma 10. Let
i e—zK(p)t N
u(0,t) = hm@ Hi——— s <u0 (p)

t .
+i J XPTH DN (1) dr) ;
0

(184)

then, the following estimate holds:

(®) 1u (0, 1)] < Cllug|, + Clinlly + C )

'(Jot/z (tir) +J:/2 (i -

1
W) lulleg () lullg:— (185)
- (1)dr.

Proof. Taking residue in the point p = 0, we have

u(0,t) = H e PG (p)
(186)

t .
+iF, J e KD g Gy (u) dr,

0

where

Hop=p [ he)dp )

Using the analytic properties of the integrand by Cauchy
Theorem, we can change the contour of the integration to get

|‘%:oe_iK(P)t‘75 (P)'

00_3/
SCJ e P!
0

1+ ,Bp |dp (188)

<l Ile_Pmtl +p/3P2

" 9]

Therefore,

t .
‘%jo I KO o g i () dr
0

t/2 1
t 1
c J — L \w2H W) de].
t2 (t—1)77
Since via Lemma 3
|% 2/ W)|| < CIDN W) < CllullZ, lulg:,  (190)
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from (189) we get

t .
lzf:o L e KO g7 G () de

t2 t
SC‘(L (t-1) " .[t/Z (t -

Nullen (7) dr|.

1
T)l_y) lulld, (@) (191)

Also via (180),

l%:oe—iK(P)tﬁ (p | <C(t)” ||u0 ol
(192)
< C7 (ol + Mhllggars) -

By virtue of (186), (191), and (192) Lemma 10 is proved. [

In the next lemma, we consider “analyticity switching”
functions Y*(p, -K(z)) = €' @2)* where

1 1 K" (q) - K (2) w™
Fw2) =0 [R q-w i K~ (q) - K (2) w* ’ (193)

K(2) = |2,

K* (2) = (7i2)*?, w* (g.2) = (g7 2)""*.

Lemma 11. The following formula is valid for Re z = 0:

Yt (p,-K (2)) = 2% TP (194)
where
1+ K'(q)-1
T = — 1 —-s)dln ————. 195
(<) 2m‘L n@-s) rlK-(q)—l (193
Moreover,
"] < c sy (196)

Proof. Using analytic properties of the integrand function
after integrating by part and changing variables g — glz|, we
get

I (p, K (2))
e e K @)1
- JO In(q- plz™)din - o 197

3.1 N1 1
~2vP— | In(g- — ).
4 ZﬂiLRn(q Pl )<q—i q+i>

Also taking residue in the point g = i, we get

13 4 1 1
VP—-=| 1 - _—
2ni4,|;Rn(q Pl )(q—i q+i>

(198)
=lnw".
Thus, substituting (198) into (197), we obtain
+ + 3 -1
I'" (p,-K (2)) = -Inw" + S Inlel - T(plzl™) (199

17
and as a consequence
Yt (p,-K (2)) = 2/ TP, (200)
Also we have (we make a cut along the negative axis)
K" (q)-1 © K'(gq)-1
na (K421 _ L j aln (@)1
K (q)-1 27i Jo K (q) -1
oo (201)
1 K" (g)-1 3
= —Arg————| =-.
2ni © K (q) - 4

Since for |[s| > g > 1:In(g—s) =In|s| + In(1 - qlsl_l) =
In|s| +O(gls|™) and ind((K*(q) - 1)/(K"(q) - 1)) = —3/4 we
get

~ 1 +00 () 1
r(S)—ﬁJ'O 1n(q—s)d1n K (q-1 2mi
Kt -1 1
J (q—S)dln%J’ﬁ
K'(g)-1_3
J ln(q—s)dlnm = Zln|5|
LM ) (202)
+%L ln(l—q|5| 1)
K" (@) K () !
'(K+(q1)—1 TK(@)-1)" "
+00 K* (Q) -1 _ 3
+0(s7),
also for, |s| < 1,
I'(s)
1 +00 K" (Q) K’ (q) )
= — 1 - d
27ri J|3| nq(K+ (@9-1 K (q9)-1 ! (203)
1 +00 S
+2—mL5| hl(l—ZI)@(‘Z)dq-"o(l)
we get
|er(s)| <C. (204)
Lemma is proved. -

6. Proof of Theorem 1

Via Proposition 2 by Duhamel principle, we have for solution
of (1)

u=D K,

-iK(p)t ot Kok (205)
Ry (”o (p) +i JO XOTH DN (u) dr),
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where
t .
iy (p) = K Duy + 2p1/2er(0) J KOy (1) dr,
0

W () = i |ul u, (206)

K (p) = p™.
We introduce X = {¢ € C({[0, T); HY); ||¢||XT < 00}, where

Iflx, = sup (O N1+ f O]
te[0,T] (207)

+ O 0].)-

The local existence in the function space X can be proved
by a standard contraction mapping principle. We state it
without a proof.

Theorem 12. Letu, € Z = H" nHY, h(t) e Y = HV2Y 0
H!, and the norm lugllz+Nhlly = €. Then, there existe, > 0 and
T > 1 such that for all 0 < € < g, the initial value problem (1)
has a unique local solution u € C([0, T']; Xr) with the estimate

lul, < V.

Let us prove that the existence time T can be extended
to infinity which then yields the result of Theorem 1. By
contradiction, we assume that there exists a minimal time
T > 0 such that the a priori estimate ||1/l||XT < +/e does not

hold; namely, we have [lully, < Ve
Applying Lemmas 8 and 9 from (205) and Theorem 12, we
get

t
1
Il < C llully, J g dr+Clhlly < Ct'e*. (208)
0

From Lemma 10 and Theorem 12, we obtain

(&) 14 (0, 8)] < C ug|l, + C Iklly + C (£

'(Knaiﬂ+L;a—

(1) dt < C g, + Cllklly + C (1) ||u||§(T

.<.[0H (t—l‘r) ’ .[:_1 (t_i)l‘%) lT-ry‘rdT

< Ct'e¥?,

1
T ) lull?, (7) el

(209)

where
—zK(p)

‘82

(%@Hﬂf“W%@mwa.

u(0,t) = 11m /8 %
(210)

To estimate L*°-norm of the solution, we find the solution in
the form

e—iK(p)t
A A—— . 211
u 9 L%.91_+_ﬁ2172¢)(1)’t) ( )
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Via Proposition 2, we obtain for the new function ¢(p, t) the
following ordinary differential equation for ¢ > 1 depending
on a parameter p € R":

—iKi
. e iK(p)t

*‘%s 1 +ﬁ2 2¢t (p’t)

12 (212)
ﬁz 2°

¢ (p1) =¢°

= W) +h(O)DF P

from which it follows that

¢ (p.t) = P (14 p°) H 2" ()
(213)
+h®)p'” ¢ (p1)=¢"
By the direct calculation,
(1+pp")H D' W (w)
(214)
=FHN W)+ DN ()], -
Thus, using |D A (u)],—o| < Clu(0, H*|h(t)], we get
¢ (p.1) = P IH N @)+ h (1) p'?
(215)

+ DN W) (pr1) = ¢".

From Lemma 7, the asymptotic formula for large time t holds:

TN (W) = ‘1‘“K@’“(p) (a(p)é(p))
(ol le] 9
Hlu©,0))),

where A = ¢ TOTED) 5 g and
—
“(p) = gliiﬂp’ (217)
K(p)=p™"

Firstly, we consider the case of p < ¢'”?. Multiplying both
sides of (216) by «(p), from (215) we get

a(p) ¢ (p:t)
= %/V(“ (p) b (p)) +“Pa(p) p*h (1)
: (218)
+a(p) e Par Wl
£ 10(([# )]y + |8 ()] + b 0.01)’).
Denote
v (1) = ¢ M hamigpordr
1 (219)

A= TN e R ¢ =a(p) g, [y =p].
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Then, from (218) we have
ly )] =[]

<Cly )|+ L |h (7)| dT

+ Jt |h (7)] |u (0, 7)* dr
0

(220)
+O((J6 (D) + |23 (D] + 1w 0,001))
< Cly ()] + lIklly
O (I8l + @0+ 11 0.01)’).
Therefore, from (220) we get
loc (£) ¢ (2) 00,01,
(221)

<C (||(75|'H1 + '|(75||H0,1 + "h”Y + |tu (0, t)|)3 :

Now we consider the case of p > t'”Y. We multiply both
sides of (215) by a(p) to get

¢ (pt) = CN P p™ (pH N (W) + (1) p'?
(222)
+ DN W)oo =t YO (PH N (1)).

Via Lemma 3, we have p¥(x, p) = 0,%Y.(x, p). Therefore,
integrating by part, we obtain

PHEN (u) = K 0N (u) — N (u(0,1)). (223)
Also since
L%fcax/l/ (u)| < C||ax/!f(u)||L1 < C||u||io el
(224)

-1+ 3
< Ct ully,

from (222) we obtain «a(p)¢,(p,t) = t71776%2 and as a
consequence
6 (2) oo 00 < Clull, - (225)

Thus, along with (221), applying [tu(0, )| < Cllullx we get

loc (p) & (P)leo < C (Ilgs + Wiy + Il )" (226)
Via Lemmas 4 and 6, we have
u(xt)=Hie NP (p,t)
—ﬁe"(ﬁ“’%x &) (227)

N t—1/2—1/4 (||¢||H1 " "h”Y)S )

19

Thus, from estimate (226) along with Theorem 12 it follows
that

sup O Ol
t>

< Csup "p1/4¢"00 (228)
t>0

+CO (6l + 109l + Wl + N, )

Now we estimate [|¢]lg1. Via (212),

to.
16 (Pl = C || |57, )]

+[¢ Ol » (29

leg (p.1)] <CJ | p 7 ()| d

+[lpg 0] .

From estimate (116) of Lemma 7, we have

t e g (u)”Hl
, (230)
= O ([l (Iell: + N2l + 122 0, 1)1))

From Lemma 3 we have [[¢p[lg < Clp(1 + ap)%5¢|| and
therefore

6 Ol < 166) y GOl + ot O < C il @30
Applying (230) and (231) into (229), we get

600
< Cug|l, + C lInlly

(232)
+ClBlE, [ = (Il + ool + )
Also, we have
lpe (p:t)]| < C ol + Cliklly
. (233)
e ”J KO 5 i () dr| de
0
We have
PHN (1) = H DN () +u(0,t) |u(0,1)]. (234)
Integrating by part, we attain for |p| > 1
t .
U X Py (0,7) [u (0, 7)) dr| < Cp > <|u (0,0)]?
0
(235)

+u (0,0 + Jt |u, (0,7)] [ (0, 7)) dr)
0

=0(p7").
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From estimates (221) and (232) along with Theorem 12, it
follows that

Ig]l < CE'e¥2. (236)
Via (208), (226), and (236), we get that
lullg, < Ce < Ve (237)

which implies the desired contradiction. Thus, there exists a
unique global solution u € C([0, 00); X) of (27) with the time

decay estimate sup,., <t>1/2||u(t)||oo <C.
We now prove the asymptotics of solutions. Denote

. 2 .
v t) =« (P) ¢e—)u|oc(p)¢(p,t)| log te—/h(D(t)’
o (238)
A= e TOTED o o

where
1
¢ (p.t) = T4 pp <=%59“0

(239)
— O pt/2 J KOy dr+ H DN (u)> .
0

By (215), we have
t
||1/’ ) -y (S)"Oo < Ce? J Mg < ¢l (240)
with y € (0,1/4) and

‘ d
o (1) = L (lv (ol - v (1)) f (241)

Thus, we see that there exists a unique final state y, € L™
such that [[y(p,t) — v, (P)lls < Ce*2771/* We consider the
asymptotics of the phase function @(t) given by (241). By a
direct calculation, we have

@ (p,t) - @ (p,s)

([ (woo -y () &

(242)

+(lv (e - v (p s)lz)logs),
where 1 < s < 7 < t. Hence,

o ()= (5l
t dr
scf v @-v Ol Uy @l + Iy ©)

+Clly &) =¥ Ol oo (I 9o + ¥ B)] o) log s

t
< e J ' dr 4 CeP "  log s

from which it follows that there exists a unique real valued
function ®_ (p) such that

|o @) - @, |, < e (244)
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Therefore, we have the asymptotics of the phase function

f v (p.o)f L

TT = ®+ + (@(t) - q)+) + l’/~/+10gt
+ (f/} (t) - f/}Jr) logt
=0, (P)

(K" (p)) " v, (p)| gt
+0(t7),

(245)

where ¥ = [y(p, 7). We also have

a(p)$ (p) = ¢ h YO Iy (p,1)

_ ei(lh—)ti‘l’(p) logt

v, (p)

4 /P3Py logt (v (p,t) —v,)

(e)u [P/ A (p) logt) .

(246)

+y (pt)
Collecting these estimates, we find
e (0) 61 (p,£) = P8y ()]
<Cly® -yl + vl [0 @) = @

il v ® = yalloo (vl + v ©)]o) logt

< e,

247)

Via Lemma 4, estimate (247) means that

u(t) - ei\l;;gtAG)

= o im/4)

< ey 1an12 (248)

o0

where A(s)
proved.

Y, (s) expi®,(s). Theorem 1 is now
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