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We investigated the magnetohydrodynamic (MHD) boundary layer flow over a nonlinear porous stretching sheet with the help
of semianalytical method known as optimal homotopy asymptotic method (OHAM). The effects of different parameters on fluid
flow are investigated and discussed. The obtained results are compared with numerical Runge-Kutta-Fehlberg fourth-fifth-order
method. It is found that the OHAM solution agrees well with numerical as well as published data for different assigned values of
parameters; this thus indicates the feasibility of the proposed method (OHAM).

1. Introduction

Nonlinear differential equations are frequently arising from
mathematical modeling of many physical phenomena. Sev-
eral are solved by means of numerical methods and some are
solved using the analytic methods such as perturbation [1, 2].

Researchers and engineers have paid more attention
towards the analytical solution of boundary layer equations
arising in numerous fluids phenomena [3–5]. The study
of boundary layer flow for an incompressible fluid has
many important applications in science and engineering, for
example, the cooling of metallic plate in a cooling bath, the
boundary layer along liquid film condensation process, and
polymer industries.

In recent years, the analysis of magnetohydrodynamics
(MHD) flow of a fluid over a stretching sheet has more popu-
larity industrially and consequently becomes a fundamental
problem in fluid dynamics [6–11]. McCormack and Crane
[12] have initiated the stretching problem. The steady flow
over a stretching sheet has numerous aspects, such as MHD
flow, Non-Newtonian fluids, porous plate, porous medium,
and heat transfer phenomena. Sakiadis [13, 14] is pioneer
in this area who has investigated the boundary layer flow
with uniform speed over continuously stretching surface.
Later on, the work of Sakiadis was investigated and verified

experimentally with different aspects by many researchers
(see [15–17] and the references therein).

Most attention has so far been devoted to the analysis
of flow of viscoelastic fluids [18–21] and the joint effect of
viscoelasticity and magnetic field has been worked out by
Ariel [22]. Khan et al. [23] studied MHD nonlinear porous
stretching sheet using homotopy perturbation transform
method (HPTM). Moreover, Chiam [24], Dandapat and
Gupta [20], and Pavlov [25] have considered the motion of
micropolar, power-law fluids andMHDflowover a stretching
wall, respectively.

The optimal homotopy asymptotic method is a powerful
approximate analytical technique that is straightforward to
use and does not require the existence of any small or large
parameter. Optimal homotopy asymptotic method (OHAM)
is employed to construct the series solution of the problem.
This method is a consistent analytical tool and it has already
been applied to nonlinear differential equations arising in the
science and engineering [26–28]. So far as we know there
has been no OHAM solution of MHD flow over a nonlinear
porous stretching sheet.

This paper is organized as follows. First in Section 2,
we formulate the problem. In Section 3 we present basic
principles of OHAM. The OHAM solution for MHD flow
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problem is given in Section 4. In Section 5, we analyze the
comparison of the solutions using OHAM with numerical
method (NM). Section 6 is devoted for the concluding
remarks.

2. Governing Equation

Weconsider theMHDflowof an incompressible viscous fluid
over a nonlinear porous stretching sheet at 𝑦 = 0. Electrically
conducting fluid under the influence of appliedmagnetic field
𝐵(𝑥) normal to the stretching sheet, the induced magnetic
field is assumed to be negligible. Under such assumption the
MHD boundary layer equations are governed by

𝜕𝑢

𝜕𝑥
+
𝜕V
𝜕𝑦
= 0,

𝑢
𝜕𝑢
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2
𝑢
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(1)

where 𝑢 and V are the velocity components in the 𝑥- and
𝑦-directions, respectively. ] is the kinematic viscosity, 𝜌 is
fluid density, 𝜎 is the electrical conductivity, and 𝐵(𝑥) is the
magnetic field strength, where 𝐵(𝑥) = 𝐵

0
𝑥
(𝑛−1)/2.

The boundary conditions to the nonlinear porous stretch-
ing sheet are given below:

𝑢 (𝑥, 0) = 𝑐𝑥
𝑛
,

V (𝑥, 0) = −𝑉
0
,

𝑢 (𝑥,∞) = 0,

(2)

where 𝑐 is the stretching parameter and 𝑉
0
is the porosity of

the plate (whereas 𝑉
0
> 0 represents suction and 𝑉

0
< 0

corresponds to injection).
By introducing dimensionless variables for nondimen-

sionalized form of momentum and energy equations,
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(3)

Using (3), the governing equations can be reduced to non-
linear differential equation, where 𝑓 is a function of the
similarity variable 𝜂:

𝑓

+ 𝑓𝑓

− 𝛽𝑓
2
−𝑀𝑓


= 0, (4)

subject to the boundary conditions:

𝑓 → 𝐾,

𝑓

→ 1

as 𝜂 → 0,

𝑓

→ 0 as 𝜂 → ∞,

(5)

as
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(6)

𝛽 is the nondimensional parameter, 𝑀 is the magnetic
parameter, and𝐾 is wall mass transfer parameter.

3. Basic Principles of OHAM

We review the basic principles of OHAMas developed in [26]
in the following steps.

(i) Let us consider the following differential equation:

𝐴 [V (𝑥)] + 𝑎 (𝑥) = 0, 𝑥 ∈ Ω, (7)

where Ω is problem domain, 𝐴(V) = 𝐿(V) + 𝑁(V), where 𝐿,
𝑁 are linear and nonlinear operators, V(𝑥) is an unknown
function, and 𝑎(𝑥) is a known function.

(ii) Construct an optimal homotopy equation as

(1 − 𝑞) [𝐿 (𝜙 (𝑥; 𝑞)) + 𝑎 (𝑥)]

− 𝐻 (𝑞) [𝐴 (𝜙 (𝑥; 𝑞)) + 𝑎 (𝑥)] = 0,

(8)

where 0 ≤ 𝑞 ≤ 1 is an embedding parameter and 𝐻(𝑞) =
∑
𝑚

𝑘=1
𝑞
𝑘
𝐶
𝑘
is auxiliary function on which the convergence

of the solution is greatly dependent. The auxiliary function
𝐻(𝑞) also adjusts the convergence domain and controls the
convergence region.

(iii) Expand 𝜙(𝑥; 𝑞, 𝐶
𝑗
) in Taylor’s series about 𝑞; one has

an approximate solution:

𝜙 (𝑥; 𝑞, 𝐶
𝑗
) = V
0
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V
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𝑗
) 𝑞
𝑘
,
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(9)

Many researchers have observed that the convergence of the
series equation (9) depends upon 𝐶

𝑗
(𝑗 = 1, 2, . . . , 𝑚); if it is

convergent then we obtain

Ṽ = V
0
(𝑥) +

𝑚

∑

𝑘=1

V
𝑘
(𝑥; 𝐶
𝑗
) . (10)

(iv) Substituting (10) into (7), we have the following
residual:

𝑅 (𝑥; 𝐶
𝑗
) = 𝐿 (Ṽ (𝑥; 𝐶

𝑗
)) + 𝑎 (𝑥) + 𝑁 (Ṽ (𝑥; 𝐶

𝑗
)) . (11)

If𝑅(𝑥; 𝐶
𝑗
) = 0, then Ṽwill be the exact solution. For nonlinear

problems, generally this will not be the case. For determining
𝐶
𝑗
(𝑗 = 1, 2, . . . , 𝑚), Galerkin’s Method, or the method of

least squares, can be used.
(v) Finally, substitute these constants in (10) and one can

get the approximate solution.
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Table 1: Comparison of OHAM results with numerical method for 𝐾 = 0, 𝛽 = 5, and𝑀 = 5.

𝜂
𝑓(𝜂) 𝑓


(𝜂)

OHAM NM % error OHAM NM % error
0.0 0 0 0 1 1 0
0.1 0.086665 0.086668 0.0034 0.746974 0.747032 0.0078
0.2 0.151657 0.151663 0.0039 0.562191 0.562169 0.0039
0.3 0.200655 0.200658 0.0014 0.424101 0.424023 0.0183
0.4 0.237614 0.237598 0.0067 0.319327 0.319201 0.0394
0.5 0.265301 0.265277 0.0090 0.237681 0.237665 0.0067
0.6 0.285709 0.285688 0.0037 0.172819 0.172901 0.0474
0.7 0.300262 0.300252 0.0033 0.119889 0.120035 0.1216
0.8 0.309964 0.309969 0.0016 0.075254 0.075405 0.2002
0.9 0.315493 0.315512 0.0060 0.036055 0.036162 0.2958
1.0 0.317278 0.317303 0.0078 0 0 0

4. Series Solution via OHAM

According to the OHAM, applying (8) to (4),

(1 − 𝑞) (𝑓

+ 𝑓

)

− 𝐻 (𝑞) (𝑓

+ 𝑓𝑓

− 𝛽𝑓
2
−𝑀𝑓


) = 0,

(12)

where primes denote differentiation with respect to 𝜂.
We consider 𝑓 and𝐻(𝑞) as the following:

𝑓 = 𝑓
0
+ 𝑞𝑓
1
+ 𝑞
2
𝑓
2
,

𝐻 (𝑞) = 𝑞𝐶
1
+ 𝑞
2
𝐶
2
.

(13)

Using (13) in (12) and some simplifying and rearranging the
terms based on the powers of 𝑞, we obtain zeroth-, first-, and
second-order problems as follows.

Zeroth Order Problem. Consider

𝑓


0
(𝜂) + 𝑓



0
(𝜂) = 0, (14)

with boundary conditions

𝑓
0
(0) = 𝐾,

𝑓


0
(0) = 1.

(15)

Its solution is

𝑓
0
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. (16)

First Order Problem. Consider
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with boundary conditions
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(18)

It solution is
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And this goes on.
We obtain the three-term solution using OHAM for 𝑞 =

1:

�̃� (𝜂, 𝐶
1
, 𝐶
2
) = 𝑓
0
(𝜂) + 𝑓

1
(𝜂, 𝐶
1
) + 𝑓
2
(𝜂, 𝐶
1
, 𝐶
2
) . (20)

We use the method of least squares to obtain the unknown
convergent constants 𝐶

1
, 𝐶
2
in (20); for particular case, if

𝑀 = 1, 𝐾 = 0, and 𝛽 = 1.5, then the values of 𝐶
1
, 𝐶
2
are

𝐶
1
= −0.2233887095; 𝐶

2
= 0.8569476324.

5. Results and Discussion

Table 1 shows the comparison of OHAM results with numer-
ical (NM) for different values of parameters; in Table 2 we
compare the numerical values of 𝑓(0) via OHAM with
existing solution [23, 24]. It is noteworthy to mention here
that theOHAMgives lowest% error than othermethods.This
analysis shows that OHAM suits for MHD boundary layer
flowproblems. In Figures 1–3,we have shown the effects of the
dimensionless parameter 𝛽, the magnetic parameter𝑀, and
the mass transfer parameter 𝐾 with various assigned values.
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Table 2: Comparison of 𝑓(0) via OHAM with other methods for various values of𝑀 at 𝐾 = 1 and 𝛽 = 1.5.

𝑀 Chiam [24] HPTM [23] Present results % error Chiam
[24]

% error HPTM
[23]

% error
present results

0 −1.4902 −1.4902 −1.4897 0.2826 0.2826 0.2489
1 −1.5253 −1.5253 −1.52529 0.0019 0.0019 0.0013
5 −2.51616 −2.5161 −2.51611 0.0015 0.0039 0.0035
10 −3.36632 −3.3658 −3.3659 0.0002 0.0151 0.0021
50 −7.16471 −7.16354 −7.16366 0 0.0163 0.0146
100 −10.0664 −10.0648 −10.0653 0 0.0158 0.0109
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Figure 1: Effect of wall mass transfer parameter on dimensionless
velocity for 𝛽 = 1.5,𝑀 = 0.2.

Figure 1 is displayed for the influence of 𝐾. It is observed
that the dimensionless velocity and associated boundary
layer thickness decrease with an increase in 𝐾. Figures 2
and 3 are given for the velocity profile against 𝜂 in order
to show the influences of parameters 𝑀, 𝛽, respectively.
Figure 2 exhibits the effect of magnetic parameter on the
dimensionless velocity. It is observed that the velocity profile
of the fluid is significantly reduced with increasing values of
𝑀. Physically an increase in magnetic parameter 𝑀 results
in a strong reduction in dimensionless velocity 𝑓. This is
due to the fact that magnetic field introduces a retarding
body force which acts transverse to the direction of the
appliedmagnetic field.This body force, known as the Lorentz
force, decelerates the boundary layer flow and thickens the
momentum boundary layer and hence induces an increase in
the absolute value of the velocity gradient at the surface as
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𝛽 = 0.5,K = 0.1

Figure 2: Effect of magnetic parameter on dimensionless velocity
for 𝛽 = 0.5, 𝐾 = 0.1.

shown in Table 2. Figure 3 is plotted to show the influence of
𝛽. The dimensionless velocity decreases with an increase in
𝛽 and it is also seen that the hydrodynamics boundary layer
thickness is higher for small value of 𝛽.

6. Concluding Remarks

In this study, we have successfully applied the optimal homo-
topy asymptotic method for MHD flow over a nonlinear
porous stretching sheet. Both numerical and approximate
analytical results are obtained for the problem. The results
are presented in tabular and graphical forms for different
controlling parameters. It was found that OHAM results
are closer to numerical results. The solution obtained using
OHAM is also consistent with solution obtained using a
numerical method for variation in 𝛽,𝑀, and𝐾.
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