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A general investigation has been made and analytic solutions are provided corresponding to the flows of an Oldroyd-B fluid, under
the consideration of slip condition at the boundary.The fluid motion is generated by the flat plate which has a translational motion
in its plane with a time-dependent velocity.The adequate integral transform approach is employed to find analytic solutions for the
velocity field. Solutions for the flows corresponding to Maxwell fluid, second-grade fluid, and Newtonian fluid are also determined
in both cases, namely, flows with slip on the boundary and flows with no slip on the boundary, respectively. Some of our results
were compared with other results from the literature. The effects of several emerging dimensionless and pertinent parameters on
the fluid velocity have been studied theoretically as well as graphically in the paper.

1. Introduction

Many materials in industry, for instance, grease, polymer
melts, drillingmud, clay coating, suspensions, certain oil, and
different emulsions, behave in such a way that we cannot
describe mathematically through Navier-Stokes equations.
For this reason, it is now generally accepted that non-New-
tonian fluid models are more appropriate than Newtonian
ones and, in practical applications, the behavior of non-
Newtonian fluids cannot be replaced with that of Newto-
nian fluids. Therefore, the study of non-Newtonian fluids
has become very important due to their large number of
applications in industry.

The reader can see [1] for the latest and complete dis-
cussion onOldroyd-B fluidmodels. To the best of the authors’
knowledge, the first exact solutions corresponding to these
fluid models seem to be those obtained by Tanner [2]. Fur-
thermore, some other useful as well as simpler solutions can
be found in [3] regarding the study of Oldroyd-B fluids.

In the above studies, the effect of fluid slippage is not
considered.Theflowof fluids induced by amotion of a plate is
called Stokes flow. Solution for some Stokes flows in different

geometries and under the assumption of no-slip boundary
condition can be found in [4–7].

However, the no-slip condition is inadequate in several
situations, for instance, mechanics of thin fluids, problems
havingmultiple interfaces,microchannel flows, flows inwavy
tubes, and flows of polymeric liquids with high molecular
weight [8].

It is vital to study the effect of fluid slippage as it finds
many applications in industry. When a surface moves, the
slip is mainly produced by the roughness of surface and rar-
efaction of the fluid and the velocity on the surface. Navier
[9] proposed slip boundary condition in which it was stated
that the velocity of the fluid depends on the shear stress.
For describing the slip that occurs at solid boundaries, a
large number of models have been proposed [10]. Other
studies of slip at the boundary can be seen in [11–14]. Some
non-Newtonian fluids, such as polymer melts, often exhibit
macroscopic wall slip, which is generally described by a
nonlinear relation between wall slip velocity and the friction
at the wall.

The aim of the present communication is to study Stokes
flows of an Oldroyd-B fluid on a flat plate under the slip
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boundary conditions assumption between the plate and the
fluid. The motion of the plate is a rectilinear translation in its
plane. Exact expressions for the velocity are determined by
means of the Laplace transforms. Expressions for the relative
velocity are also determined and the solutions corresponding
to flows with no slip at the boundary are presented. The
particular case, namely, sine oscillations of thewall, is studied.
Some relevant properties of the velocity and comparisons
between solutions with slip and no slip at the boundary are
presented by using graphical illustrations generated by the
software Mathcad.

2. Mathematical Formulation of the Problem

We consider an incompressible Oldroyd-B fluid occupying
the space over an infinite plate which is situated in the (𝑥, 𝑧)-
plane of the Cartesian coordinate system with the positive 𝑦-
axis in the upward direction. Initially, both the fluid and the
plate are at rest. At 𝑡 = 0

+ the fluid is set in motion by the
plate, which begins to move along the 𝑥-axis. The velocity of
the plate is assumed to be of the form𝑈

𝑜
𝑓(𝑡), where𝑈

𝑜
> 0 is

a constant and 𝑓(𝑡) is a piecewise continuous dimensionless
function defined on [0,∞) and 𝑓(0) = 0. Furthermore we
suppose that the Laplace transformof the function𝑓 exists. In
the case of parallel flow along the 𝑥-axis, the velocity vector is
^ = (𝑢(𝑦, 𝑡), 0, 0)whereas [15–17] lead us to the following gov-
erning equation:

𝜆

𝜕
2
𝑢 (𝑦, 𝑡)

𝜕𝑡
2

+

𝜕𝑢 (𝑦, 𝑡)

𝜕𝑡

= ](1 + 𝜆
𝑟

𝜕

𝜕𝑡

)

𝜕
2
𝑢 (𝑦, 𝑡)

𝜕𝑦
2

, (1)

where 𝜆 is the relaxation time, 𝜆
𝑟
is the retardation time, ] =

𝜇/𝜌 is the kinematic viscosity, 𝜇 is the dynamic viscosity, and
𝜌 is the constant density of the fluid. In this work we consider
the existence of slip at the wall and assume that the relative
velocity between the velocity of the fluid at the wall 𝑢(0, 𝑡)
and the speed of the wall is proportional to the shear rate at
thewall [18, 19].The adequate initial and boundary conditions
are given by

𝑢 (0, 𝑡) − 𝛽

𝜕𝑢 (0, 𝑡)

𝜕𝑦

= 𝑈
𝑜
𝑓 (𝑡) , 𝛽 ≥ 0, 𝑡 > 0,

𝑢 (𝑦, 0) =

𝜕𝑢 (𝑦, 0)

𝜕𝑡

= 0, 𝑦 ≥ 0,

𝑢 (𝑦, 𝑡) 󳨀→ 0 for 𝑦 󳨀→ ∞,

(2)

where 𝛽 is the slip coefficient.
By using the characteristic time𝑇, introducing the follow-

ing nondimensional quantities to (1) and (2),

𝑡
∗

=

𝑡

𝑇

; 𝑇 > 0,

𝑦
∗

=

𝑦

𝑈
𝑜
𝑇

,

𝑢
∗

=

𝑢

𝑈
𝑜

,

𝜆
∗

=

𝜆

𝑇

,

𝜆
𝑟

∗

=

𝜆
𝑟

𝑇

,

𝛽
∗

=

𝛽

𝑈
𝑜
𝑇

,

𝑔 (𝑡
∗

) = 𝑓 (𝑇𝑡
∗

) ,

(3)

and dropping out the ∗ notation we get the following non-
dimensional problem:

𝜆

𝜕
2
𝑢 (𝑦, 𝑡)

𝜕𝑡
2

+

𝜕𝑢 (𝑦, 𝑡)

𝜕𝑡

=

1

Re
(1 + 𝜆

𝑟

𝜕

𝜕𝑡

)

𝜕
2
𝑢 (𝑦, 𝑡)

𝜕𝑦
2

. (4)

The nondimensional initial and boundary conditions are

𝑢 (0, 𝑡) − 𝛽

𝜕𝑢 (0, 𝑡)

𝜕𝑦

= 𝑔 (𝑡) , for 𝑡 > 0, (5a)

𝑢 (𝑦, 0) =

𝜕𝑢 (𝑦, 0)

𝜕𝑡

= 0, for 𝑦 > 0, (5b)

𝑢 (𝑦, 𝑡) 󳨀→ 0, for 𝑦 󳨀→ ∞, (5c)

with Re = 𝑈
𝑜

2
𝑇/], the Reynolds number.

3. Calculations for Velocity Field

3.1. Oldroyd-B Fluid with Slip at the Wall. Applying Laplace
transform to (4), (5a), and (5c) and using (5b), we obtain the
transformed problem:

𝜕
2
𝑢 (𝑦, 𝑞)

𝜕𝑦
2

−

Re (𝜆𝑞2 + 𝑞)
(1 + 𝜆

𝑟
𝑞)

𝑢 (𝑦, 𝑞) = 0, (6)

𝑢 (0, 𝑞) − 𝛽

𝜕𝑢 (0, 𝑞)

𝜕𝑦

= 𝐺 (𝑞) , (7)

𝑢 (𝑦, 𝑞) 󳨀→ 0, 𝑦 󳨀→ ∞. (8)

The solution of the set of (6)–(8) is given by

𝑢 (𝑦, 𝑞) = 𝐹 (𝑦, 𝑞) ⋅ 𝐺 (𝑞) , (9)

where

𝐹 (𝑦, 𝑞) =

𝑏 exp (−𝑎√(𝜆𝑞2 + 𝑞) / (𝜆
𝑟
𝑞 + 1))

𝑏 + √(𝜆𝑞
2
+ 𝑞) / (𝜆

𝑟
𝑞 + 1)

,

𝑎 = 𝑦√Re, 𝑏 = 1

𝛽√Re

(10)

and 𝐺(𝑞) = 𝐿{𝑔(𝑡)}.
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In order to obtain the inverse Laplace transform of func-
tion 𝑢(𝑦, 𝑞), we consider the auxiliary functions

𝐹
1
(𝑦, 𝑞) =

𝑏 exp (−𝑎√𝑞)
𝑏 + √𝑞

,

𝑤 (𝑞) =

𝜆𝑞
2
+ 𝑞

𝜆
𝑟
𝑞 + 1

.

(11)

Seeing that 𝐹(𝑦, 𝑞) = 𝐹
1
[𝑦, 𝑤(𝑞)], we have

𝑓 (𝑦, 𝑡) = 𝐿
−1

{𝐹 (𝑦, 𝑞)} = ∫

∞

0

𝑓
1
(𝑦, 𝑥) ℎ (𝑥, 𝑡) 𝑑𝑥, (12)

where

𝑓
1
(𝑦, 𝑡) = 𝐿

−1

{𝐹
1
(𝑦, 𝑞)}

=

𝑒
−𝑦
2Re/4𝑡

𝛽√Re𝜋𝑡

−

1

𝛽
2Re

𝑒
𝑦/𝛽+𝑡/𝛽

2ReErfc(
𝑦√Re
2√𝑡

+

1

𝛽

√
𝑡

Re
) ,

(13)

and ℎ(𝑥, 𝑡) = 𝐿
−1
{exp(−𝑥𝑤(𝑞))} is given by

ℎ (𝑥, 𝑡) = exp (𝛾𝑥) 𝛿 (𝑡 − 𝜆𝑥

𝜆
𝑟

) − √

𝛾𝑥

𝜆
𝑟
𝑡 − 𝜆𝑥

⋅ 𝐽
1
(

2

𝜆
𝑟

√𝛾𝑥 (𝜆
𝑟
𝑡 − 𝜆𝑥))

⋅ exp(
(2𝜆 − 𝜆

𝑟
) 𝑥 − 𝜆

𝑟
𝑡

𝜆
𝑟

2
) ,

(14)

with 𝛾 = (𝜆 − 𝜆
𝑟
)/𝜆
𝑟

2.
Now, introducing 𝑓

1
(𝑦, 𝑡) and ℎ(𝑥, 𝑡) into (12), we obtain

𝑓 (𝑦, 𝑡) =

𝑏√𝜆
𝑟

√𝜆𝜋𝑡

exp(−
𝜆Re𝑦2

4𝜆
𝑟
𝑡

+

𝛾𝜆
𝑟

𝜆

𝑡) −

𝜆
𝑟
𝑏
2

𝜆

⋅ exp(𝑦𝑏√Re +
𝑏
2
+ 𝛾

𝜆

𝜆
𝑟
𝑡)Erfc(

𝑦√𝜆Re
2√𝜆
𝑟
𝑡

+ 𝑏√
𝜆
𝑟
𝑡

𝜆

) + ∫

∞

0

[

𝑏

√𝜋𝑥

⋅ exp(−
𝑦
2Re
4𝑥

+

(2𝜆 − 𝜆
𝑟
) 𝑥 − 𝜆

𝑟
𝑡

𝜆
𝑟

2
)

− 𝑏
2exp(𝑦𝑏√Re + 𝑏2𝑥 +

(2𝜆 − 𝜆
𝑟
) 𝑥 − 𝜆

𝑟
𝑡

𝜆
𝑟

2
)

⋅ Erfc(
𝑦√Re
2√𝑥

+ 𝑏√𝑥)] × √

𝛾𝑥

𝜆
𝑟
𝑡 − 𝜆𝑥

⋅ 𝐽
1
(

2

𝜆
𝑟

⋅ √𝛾𝑥 (𝜆
𝑟
𝑡 − 𝜆𝑥)) 𝑑𝑥,

(15)

and the velocity field corresponding to the flow, with slip at
the wall of an Oldroyd-B fluid, is given by

𝑢
𝑠
(𝑦, 𝑡) = (𝑓 ∗ 𝑔) (𝑡) = ∫

𝑡

0

𝑓 (𝑦, 𝑠) 𝑔 (𝑡 − 𝑠) 𝑑𝑠, (16)

where 𝑓(𝑦, 𝑡) is given by (15).

3.2. Oldroyd-B Fluid with No Slip at the Wall. In this particu-
lar case, function 𝐹(𝑦, 𝑞) given by (10) becomes

𝐹ns (𝑦, 𝑞) = exp(−𝑦√Re√
𝜆𝑞
2
+ 𝑞

𝜆
𝑟
𝑞 + 1

) . (17)

By using the auxiliary functions,

𝐹
1ns (𝑦, 𝑞) = exp (−𝑦√Re 𝑞) ,

𝑓
1ns (𝑦, 𝑡) =

𝑦√Re
2𝑡√𝜋𝑡

exp(−
𝑦
2Re
4𝑡

) ,

(18)

together with the relation

𝑓ns (𝑦, 𝑡) = 𝐿
−1

{𝐹ns (𝑦, 𝑞)} = ∫

∞

0

𝑓
1ns (𝑦, 𝑥)

⋅ ℎ (𝑥, 𝑡) 𝑑𝑥 =

𝑦√Re 𝜆
2√𝜋𝜆

𝑟

𝑡
−3/2exp(

𝛾𝜆
𝑟

𝜆

𝑡

−

𝑦
2Re 𝜆
4𝜆
𝑟
𝑡

) −

𝑦√Re 𝛾
2√𝜋

⋅ ∫

∞

0

𝑒
−𝑦
2Re/4𝑥+((2𝜆−𝜆

𝑟
)𝑥−𝜆
𝑟
𝑡)/𝜆
𝑟

2

⋅

1

𝑥√𝜆
𝑟
𝑡 − 𝜆𝑥

𝐽
1
(

2

𝜆
𝑟

√𝛾𝑥 (𝜆
𝑟
𝑡 − 𝜆𝑥)) 𝑑𝑥.

(19)

The velocity field corresponding to the flow with no-slip
conditions of the Oldroyd-B fluid is given by

𝑢ns (𝑦, 𝑡) = ∫

𝑡

0

𝑓ns (𝑦, 𝑠) 𝑔 (𝑡 − 𝑠) 𝑑𝑠 =
2

√𝜋

⋅ ∫

∞

𝑦√Re𝜆/2√𝜆
𝑟
𝑡

𝑒
−𝑧
2
+𝛾Re𝑦2/4𝑧2

𝑔(𝑡 −

𝜆Re𝑦2

4𝜆
𝑟
𝑧
2
)𝑑𝑧

−

𝑦√Re 𝛾
2√𝜋

⋅ ∫

∞

0

∫

𝑡

0

𝑔 (𝑡 − 𝑠)

𝑒
−𝑦
2Re/4𝑥+((2𝜆−𝜆

𝑟
)𝑥−𝜆
𝑟
𝑠)/𝜆
𝑟

2

𝑥√𝜆
𝑟
𝑠 − 𝜆𝑥

× 𝐽
1
(

2

𝜆
𝑟

√𝛾𝑥 (𝜆
𝑟
𝑠 − 𝜆𝑥)) 𝑑𝑠 𝑑𝑥.

(20)
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It is important to point out that the solution given by (20)
is similar to that obtained recently by Fetecau et al. [20, Eq.
(4.28)].

3.3. Maxwell Fluid with Slip Condition. For the flows of Max-
well fluids with slip condition at the wall, (10) becomes

𝐹sM (𝑦, 𝑞)

=

(𝑏/√2) exp(−𝑦√𝜆Re√(𝑞 + 1/2𝜆)2 − (1/2𝜆)2)

𝑏/√2 + √(𝑞 + 1/2𝜆)
2

− (1/2𝜆)
2

= 𝑏
1
exp

(−𝑦√𝜆Re√(𝑞 + 𝑎
1
)
2

− 𝑎
2

1
)

𝑏
1

+ √(𝑞 + 𝑎
1
)
2

− 𝑎
2

1
= 𝐹
1
(𝑦,√𝑤

1
(𝑞)) ,

(21)

where 𝐹
1
(⋅, ⋅) is given by (11) and 𝑤

1
(𝑞) = (𝑞 + 𝑎

1
)
2

− 𝑎
2

1
, 𝑏
1
=

𝑏/√𝜆, and 𝑎
1
= 1/2𝜆.

The inverse Laplace transform of function (21) is

𝑓sm (𝑦, 𝑡) = [𝑓
1
(𝑦, 𝑡)

+ 𝑎
1
∫

𝑡

0

𝑓
1
(𝑦
1

√𝑡
2
− 𝑢
2
) 𝐼
1
(𝑎, 𝑢) 𝑑𝑢] 𝑒

−𝑎
1
𝑡

⋅

𝑏
1
𝑒
−𝑦
2Re𝜆/4𝑡−𝑎

1
𝑡

√𝜋𝑡

− 𝑏
2

1
𝑒
𝑦𝑏
1
√Re𝜆+𝑏2

1
𝑡−𝑎
1
𝑡Erfc(

𝑦√Re 𝜆
2√𝑡

+ 𝑏√𝑡)

+ 𝑎
1
𝑒
−𝑎
1
𝑡

∫

𝑡

0

[

𝑏
1
𝑒
−𝑦
2Re𝜆/4𝑧−𝑎

1
𝑧

√𝜋𝑧

− 𝑏
2

1
𝑒
𝑦𝑏
1
√Re𝜆+𝑏2

1
−𝑎
1
𝑧Erfc(

𝑦√Re 𝜆
2√𝑧

+ 𝑏
1
√𝑧)]

⋅

𝑧

√𝑡
2
− 𝑧
2

𝐼
1
(𝑎
1

√𝑡
2
− 𝑧
2
) 𝑑𝑧

(22)

and the velocity field is given by

𝑢sM (𝑦, 𝑡) = (𝑓 ∗ 𝑔) (𝑡) = ∫

𝑡

0

𝑓SM (𝑦, 𝑠) 𝑔 (𝑡 − 𝑠) 𝑑𝑠. (23)

3.4. Maxwell Fluid with No Slip at the Wall. Making 𝛽 → 0

and therefore 𝑏 → 0 into (21) or 𝜆
𝑟
→ 0 into (17), we have

𝐹nsM (𝑦, 𝑞) = exp(−𝑦√Re√𝜆𝑞2 + 𝑞)

= exp(−𝑦√Re 𝜆√(𝑞 + 𝑎
1
)
2

− 𝑎
2

1
) .

(24)

Using the formula

𝐿
−1

{𝑒
−𝑦√Re𝜆√𝑞

} = ℎ
1
(𝑦, 𝑡) =

𝑦√Re 𝜆𝑒−𝑦
2Re𝜆/4𝑡

2𝑡√𝜋𝑡

(25)

we obtain

𝑓nsM (𝑦, 𝑡) = [ℎ
1
(𝑦, 𝑡)

+ 𝑎
1
∫

𝑡

0

ℎ
1
(𝑦, 𝑧)

𝑧

√𝑡
2
− 𝑧
2

𝐼
1
(𝑎
1

√𝑡
2
− 𝑧
2
) 𝑑𝑧]

⋅ 𝑒
−𝑎
1
𝑡

=

𝑦√Re 𝜆
2𝑡√𝜋𝑡

𝑒
−𝑦
2Re𝜆/4𝑡−𝑎

1
𝑡

+ 𝑎
1
𝑒
−𝑎
1
𝑡

∫

𝑡

0

𝑦√Re 𝜆
2𝑧√𝜋𝑧

𝑒
−𝑦
2Re𝜆/4𝑧

⋅

𝑧

√𝑡
2
− 𝑧
2

𝐼
1
(𝑎
1

√𝑡
2
− 𝑧
2
) 𝑑𝑧

(26)

and the velocity field

𝑢nsM (𝑦, 𝑡) = (𝑓 ∗ 𝑔) (𝑡) = ∫

𝑡

0

𝑓nsM (𝑦, 𝑠) 𝑔 (𝑡 − 𝑠) 𝑑𝑠

=

2

√𝜋

∫

∞

𝑦√Re𝜆/2√𝑡
𝑒
−𝑧
2
−𝑎
1
𝜆Re𝑦2/4𝑧2

𝑔(𝑡

−

𝜆Re𝑦2

4𝑧
2
)𝑑𝑧 + 𝑎

1
∫

𝑡

0

∫

𝑠

0

𝑔 (𝑡 − 𝑠)

⋅

𝑦√Re 𝜆
2𝑧√𝜋𝑧

𝑒
−𝑦
2Re𝜆/4𝑧−𝑎

1
𝑠

⋅

𝑧

√𝑠
2
− 𝑧
2

𝐼
1
(𝑎
1

√𝑠
2
− 𝑧
2
) 𝑑𝑠 𝑑𝑧.

(27)

3.5. Second-Grade Fluid with Slip at the Wall. Making 𝜆 → 0

into (10) and (14) and using the results

𝑀
1
=

𝑏

√𝜋

∫

∞

0

𝑒
−𝑦
2Re/4𝑥−𝑥/𝜆

𝑟
𝑑𝑥

√𝑥

=

𝑏

√𝜋

∫

∞

0

𝑒
(−𝑦
2Re/𝜆

𝑟
)/4𝑧
2
−𝑧
2

2√𝜆
𝑟
𝑑𝑧

= 𝑏√𝜆
𝑟

2

√𝜋

∫

∞

0

𝑒
−𝑧
2
−(𝑦√Re/𝜆

𝑟
)
2
/4𝑧
2

𝑑𝑧

= 𝑏√𝜆
𝑟

2

√𝜋

⋅

√𝜋

2

𝑒
−1⋅𝑦√Re/√𝜆

𝑟
= 𝑏√𝜆

𝑟
𝑒
−𝑦√Re/√𝜆

𝑟

(28)
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we obtain the velocity field of the second-grade fluid with slip
at the wall in the equivalent forms

𝑢sSG (𝑦, 𝑡) = 𝑏√𝜆
𝑟
𝑒
−𝑦√Re/√𝜆

𝑟
𝑔 (𝑡) − 𝑏

2

𝑒
𝑏𝑦√Re

𝑔 (𝑡)

⋅ ∫

∞

0

𝑒
𝑏
2
𝑥−𝑥/𝜆

𝑟Erfc(
𝑦√Re
2√𝑥

+ 𝑏√𝑥)𝑑𝑥 +

1

𝜆
𝑟

⋅ ∫

∞

0

[

𝑏𝑒
−𝑦
2Re/4𝑥

√𝜋𝑥

− 𝑏
2

𝑒
𝑦𝑏√Re+𝑏2𝑥Erfc(

𝑦√Re
2√𝑥

+ 𝑏√𝑥)]

⋅ 𝑒
(−𝑥+𝑡)/𝜆

𝑟
√

𝑥

𝑡

𝐼
1
(

2

𝜆
𝑟

√𝑥𝑡)𝑑𝑥

(29)

or

𝑢sSG (𝑦, 𝑡) = 𝑏 (𝑏
2
√𝜆
𝑟
− 𝑏 + √𝜆

𝑟
) 𝑒
−𝑦√Re/√𝜆

𝑟
𝑔 (𝑡)

+

𝑒
−𝑡/𝜆
𝑟

√𝜆
𝑟
𝑡

𝑔 (𝑡) × ∫

∞

0

[

𝑏𝑒
−𝑦
2Re/4𝑥−𝑥/𝜆

𝑟

√𝜋𝑥

− 𝑏
2

𝑒
𝑏𝑦√Re+𝑏2𝑥−𝑥/𝜆

𝑟Erfc(
𝑦√Re
2√𝑥

+ 𝑏√𝑥)]

⋅ √𝑥𝐼
1
(

2

√𝜆
𝑟

√𝑥𝑡)𝑑𝑥.

(30)

3.6. Second-Grade FluidwithNo-SlipCondition. Making𝜆 →
0 into (17) and using (18) and (28) we have

𝑢nsSG (𝑦, 𝑡) = 𝑒
−𝑦√Re/𝜆

𝑟
𝑔 (𝑡) +

𝑦√Re
2𝜆
𝑟
√𝜋

⋅ ∫

∞

0

∫

𝑡

0

𝑔 (𝑡 − 𝑠)

𝑥√𝑠

𝑒
−𝑦
2Re/4𝑥−𝑥/𝜆

𝑟
−𝑠/𝜆
𝑟
𝐼
1
(

2

𝜆
𝑟

⋅ √𝑥𝑠) 𝑑𝑠 𝑑𝑥.

(31)

3.7. Newtonian Fluid with/without Slip Condition. These
cases are obtained easily from (6) and (10) by making 𝜆 =

𝜆
𝑟
= 0. We obtain the following expressions for the velocity

field:

𝑢sN (𝑦, 𝑡) = ∫

𝑡

0

𝑔 (𝑡 − 𝜏) VsN (𝑦, 𝜏) 𝑑𝜏,

𝑢nsN (𝑦, 𝑡) = ∫

𝑡

0

𝑔 (𝑡 − 𝜏) VnsN (𝑦, 𝜏) 𝑑𝜏,

(32)

where

VsN (𝑦, 𝑡) =
1

𝛽√Re
1

√𝜋𝑡

exp(
−𝑦
2Re
4𝑡

) − (

1

𝛽√Re
)

2

⋅ exp(
𝑦

𝛽

+

𝑡

𝛽
2Re

)

⋅ erfc(
𝑦√Re
2√𝑡

+

√𝑡

𝛽√Re
) ,

(33)

for flows with slip on the boundary, and

VnsN (𝑦, 𝑡) =
𝑦√Re
2𝑡√𝜋𝑡

exp(
−𝑦
2Re
4𝑡

) , (34)

for flows with no slip on the boundary, respectively.
Wemention that the results given by (33) and (34) are the

same as those obtained by Fetecau et al. (see [21], Eq. (29), for
𝑀 = 0, 𝛾 replaced by 𝛽√Re and 𝑦 replaced by 𝑦√Re).

Also, if in our results we consider 𝑔(𝑡) = sin(𝜔𝑡) or 𝑔(𝑡) =
cos(𝜔𝑡), (32)–(34) become equivalent to the results of Khaled
and Vafai (see [22], Eqs. (8), (9), (10), (16)) and to the results
obtained by Hayat et al. (see [23], Eqs. (13), (14), with𝑀 = 0

and𝐾 →∞).
In the case of no slip on the boundary, our solution (32)

together with (34) is identical with the result obtained by
Fetecau et al. (see [24], Eq. (31) with𝐾eff = 0).

4. Numerical Results and Conclusions

In this paper we have studied the flow of Oldroyd-B fluids
generated by a moving flat plate. Using Laplace transform
method, we obtained analytical expressions of the velocity
for both cases of flows with slip at the boundary and without
slip on the boundary. The plate velocity was considered in a
general form𝑈

0
𝑓(𝑡); therefore, solutions for several practical

problems can be obtained by choosing suitable forms of the
function 𝑓(𝑡). From the dimensionless form of the studied
problem it can be seen that only Reynolds number and
nondimensional relaxation and retardation time influence
the fluid flows. From this reason, the numerical studies are
made for several values of Reynolds number and of the time
𝑡. Graphs of velocity were plotted versus spatial coordinate 𝑦
for the case of translation of the plate with constant velocity,
namely, for𝑓(𝑡) = 1. Velocity fields corresponding to flows of
Maxwell fluid, second-grade fluid, and Newtonian fluid were
also determined, in both cases, namely, flows with slip on the
boundary and flows with no slip on the boundary. In order
to study the physical behavior of the fluid, some numerical
simulations were made using the Mathcad software. In Fig-
ures 1 and 2, curves corresponding to velocity of the Oldroyd-
B fluid for 𝜆 = 0.25 and 𝜆

𝑟
= 0.15 and the dimensionless

friction coefficient 𝛽 = 0.75 are sketched. In Figures 1 and
2, the velocity curves for three values of time 𝑡 and for three
values of Reynolds number Re in the case of flow with slip at
the plate and in the case of no slip at the plate are plotted.
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Figure 1: Velocity profiles of Oldroyd-B fluid for slip condition (16) with 𝛽 = 0.75 and no-slip condition (20) for 𝜆 = 0.25, 𝜆
𝑟
= 0.15, and

different Reynolds number.

For a fixed value of the time 𝑡 or for a fixed value of the
Reynolds number the issues whichmust be highlighted are as
follows.

The fluid flows more slowly if slippage occurs on the
boundary. Increasing of the Reynolds number values leads

to slowing of the flows in both cases, with or without slip. If
the values of the time 𝑡 are increasing, then it increases the
thickness of the velocity boundary layer.

Figure 3 was drawn in order to compare the velocity
flows for Oldroyd-B, Maxwell, and Newtonian fluids. It is
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Figure 2: Velocity profiles of Oldroyd-B fluid for slip condition (16) with 𝛽 = 0.75 and no-slip condition (20) for 𝜆 = 0.25, 𝜆
𝑟
= 0.15, and

different values of the time 𝑡.

important to note that, for the flow with no slip on the
boundary, the velocity of Maxwell fluid has significant varia-
tions in the area near plate.This no longer occurs if the flow is
with slip at the boundary. Also, the thickness of the boundary

layer of the Maxwell fluid is the smallest and the speed of this
type of fluid becomes zero more quickly than other fluids. If
the values of the time 𝑡 are increasing, then the differences
between velocities of the three fluids become insignificant.
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