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We construct a very rare integrable 2D mechanical system which admits a complementary integral of motion cubic in the velocities
in the presence of conservative potential and velocity-dependent (gyroscopic) forces. Special cases are given interpretation as a
motion of a particle on a sphere endowed with a Riemannian metric, a particle in the Euclidean plane, and new generalizations of
two cases of motion of a rigid body with a cubic integral, known by names of Goriachev-Chaplygin and Goriachev.

1. Introduction: History and Formulation of
the Problem

The search for potentials of conservative motions of a particle
in the plane, so that the motion admits an integral polynomial
in the velocities, was initiated by Bertrand in the middle of the
nineteenth century [1, 2]. His results were developed further
by Darboux [3] for the case of a quadratic integral. A large
number of works were devoted to construction of integrable
potentials in the plane admitting a complementary integral
of degree up to 6. Notable examples are [4-9]. For a detailed
account of relevant results up to 1985, see [10].

Birkhoff extended the method to accommodate general
2D mechanical systems acted upon by potential and gyro-
scopic forces. Those systems mostly live on Riemannian
manifolds and the presence of gyroscopic forces makes their
equations of motion time-irreversible. Birkhoff’s procedure
was completed to the end only in two cases: for reversible sys-
tems with an integral quadratic in velocities and irreversible
systems with an integral linear in velocities [11].

Time-irreversible systems were considered in much fewer
works. An almost complete list of those works is composed
of [12-24]. Of those articles [12, 15-19, 22, 24] are exclusively
devoted to irreversible systems with a quadratic complemen-
tary invariant.

An essential modification of Birkhoff’s method in Yehias
work [20] significantly reduced the number of PDEs deter-
mining the system and its integral and made it possible
to tackle the time-reversible and irreversible cases with a
polynomial integral. The culmination of the new method was
the construction and classification of 41 irreversible systems
admitting a quadratic integral [22] and the construction of
a gigantic reversible system involving 21 parameters called
“master system” with a complementary integral quartic in
velocities [25].

The new method also made it possible to construct for
the first time irreversible integrable systems which admit
a complementary integral cubic [21] and quartic [26] in
velocities, based on the equations derived in [20].

The present paper may be regarded as a continuation
of [21]. Here we study mechanical systems described by or
reduced to a two-dimensional system with Lagrangian

L= 5 (‘111‘11 +2a5,4,9, + ‘122‘12) taq +aq, -V, (1)

where a;;, a;,and V are functions of ¢, and q, and dots denote
differentiation with respect to time t. As in [21] we use a point
transformation to isometric coordinates and a change of the

time variable

dt = Adr, (2)



and one can always reduce (1) to the form

L= (x +y' )+llx'+lzy'+U, (3)

NI'—‘

where A, I;, and [, are certain functions of x and y and primes
denote derivatives with respect to T and

U=AMh-V). (4)

The equations of motion take the form

" ! aU
Q = -
Xy = o o
" _ Qx, — a_U
y ay >
where
ol, al,
@ e (6)
This system admits the zero-value Jacobi integral
=1 (x*+y*)-U=0. )

2

The Jacobi constant h for the original system (1) enters as a
parameter in the new force function (4) (see, e.g., [27]).

From the results of [20, 21] the Lagrangian and the cubic
integral can be written as

L= % (x%+ ")+ % (Px' - Q')+, (8)

I1=x"+Px"?+Q,x'y + Px' +Qy' + R=const, (9)
where P;, Q;, and R are functions in x and y satistying with

U the nonlinear system of seven partial differential equations
[21]:

oP, 0Q,
—Z_ =2,
ox 0y
% + @ -3Q0 =0,
dy  Ox
oP,  0Q, 50U
L +20 =0,
ox Oy Q+ ax
oP,  9Q,
1+ ==l _20p =0,
3y . ) (10)
oU ouU oQ
15 +Q,— 5 2Ua—yl -20QUQ, =0,
OR U an
R ag,+20,Y =0,
ax Q2R a tQy, G
oR oU
— - QP + =0.
dy Qo
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The irreversible case Q) # 0 was considered in [21], where
several parameter systems admitting a cubic integral were
found under the simplifying assumption that

Q=00(y), ()

U=u(y)+v(y) @ (x). (12)

In the present paper we will try, as in [21], to construct
Lagrangian systems admitting a first integral polynomial of
degree three in velocities, but instead of (11) we use the ansatz

Q=0,(y)(a;sinx +a,cosx) +AQ, (y).  (13)

As shown below, the problem is completely solved and an
integrable system involving 15 parameters is constructed,
adding two parameters to the system of [21]. Four new inte-
grable problems are obtained as special cases of this system: a
motion of a particle on a sphere endowed with a Riemannian
metric, a particle in the plane, and two problems in the
dynamics of a rigid body.

2. Solution of the Problem: The Conditional
Integrable System

Regarding (10) and (14) and (13), a suitable ansatz for the
reduced force function U has the structure

U=u(y)+ (af + ‘722)”1 (y)+ Azuz (»)
+v(y) (g sin (x) + p, cos (x))

(14)
+Aw (y) [a, cos x + a, sin x|

(y) [(al - aﬁ) €0s 2x — 2a,a, sin 2x]

where a,, a,, A, y;, and p, are arbitrary constants and u,,
u,, Uy, v, and w are functions to be determined of the single
variable y. Then the coeflicients of the integral (9) should take
the following forms:

P, = f, (y) [a; sinx + a, cos x] + Afy (¥),
Q=10)
)

P =fi(y (al - az) €0s 2x — 2a,a, sin Zx]

a, sin (x)],

[
[a, cos (x) —
[

+ fo (y) [ sin x + i, cos x]

+ A5 () [a, sinx + a, cos x]

+ (af +a§)f6a (y)+)L2f6a (y)’

Q = f; () [2a1a, cos 2x + (a; - a3 ) sin 2]

(15)

1 .
-2 £ cosx— iy sin %)

+ M () [a, cos x — a, sinx],
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in which f;,i = 1,...,8 are certain functions of y. Inserting
those expressions in (10), we obtain the following system of
ordinary differential equations:

(3009 <0,
o

d
A2<dL;h —200f0> =0,

y,(f2+2£> 0,
y,»(6v+2f4+2di;>—0,

(a7 + 2)( fw_fl )

a; (3 _dh +f2> i=12,
( )(f2 +2vd—£2—2vf4> =
Ag; (Zfzﬂo + f5+3w - Z—f) =0,

A [diy (Qfr - 4vfo) - 200f4] =0,

2 2
ai(fzd—”;’w%%udéuo):o, i=1,2
dy dy dy  dy
du,
Hi (2”0 df + £ 0) 0,
y(Zu af> f - 2vf, >:0, i=1,2,
2d Zd 6b

Ag; ( 2u, ‘Zf +2u,Qy f5 — duy fs)
o4

i=1,2,

Aa; <2£ —2fy —4Q, fo - 4QOf1> =0,
(ot +a2) (o

(af+a22) <2f7+ igf +f101) =0,

2
a, (3af —af) (—21/2 <f2 + 2(2—]; + 62—){:2 + 3v2f2))

o (G on) 5 5 0

-2f, —?wvz):o,
y

d*v
+ 4f1> - ZVﬁfz =0,

Hi‘ﬁ%( - ﬁ +2v° fa=vQ f, +f7d sz@
d
+2vdi;—vf3>—0, i=1,2,
du d
/\a? <_Vf3_zvf6a+f7d fz . Zdif +2v f4

df,

+2u15 +v—f2

v01f2+vdiy7>:0,
i=1,2,
fz ¥
R(x,y) = dy +f7Q1+4V f1+2f2V dy

. [a2 (3(1% - af) cos3x +a, (af - 3a§) sin 3x]

1 d
“3 (—4f1v— 4vdi; + L

~215 ) lnan

— Uyay) €08 2x — (1A, + Uya, ) sin 2x|

( Zfz +2Q0f7 + fO +2f1w+f2
Y

4

+ 8f0v2> [(af - ai) cos 2x — 2a,a, sin Zx]

(=200 +4vf,) [y sin x + p, cos x] = (a,

-sin x + a, cos x) [ (Qofs +2f0u)+2u2 4f>
dy

~|>»

du du d
R ) R S (i )

.<Qlf7+4v2fl+4u1d—f2—2 Zdj}%

2500|4100,

dv
21’fz@

(16)
where r(y) is a new function determined from

dr

1
@ ) (arp + aypy) (Q fy = fov) + /\390f6b

A(af+a§)

+—(Qlf5_f2w+2f6a00)’
df df
A ( 2u U, d 22 fO ° f8 dy
d 2u df, du
-0, 4 -5 G- di;d—z—olfsb—oofs)



=0, i=1,2
(//‘2‘11 _P‘laz) (zfz? f2 —-4fiv+ L,Q ) =
(nay +aypy) [ (Zf1 df2>

oi5)

+Ql<f2 4f, + f2>]:0,
{58 1) 132

(-%)

fzdzw Ql<df8 )
e e 2
2dy 2 \dy | fs

dQ, 1dQ, 2dfo dv
- -8vfy— | =0,
dy 7 2 dy f8 Vfody
d? d 2
& _2_ju1_ﬁ@_3£%_ﬁd Uy
y 2 dy dy dy

Aot )
s (5= f ~2fun) +v5 G- 41)

dv\* d*v .
+<d_y) f2+1/d—y2f2:|20, 1=1,2,

2 2\( 2
(al +2a1a, — az) (al -

[v( df7+Q1f2+2f3>_2f7§_;]=0’

2
2a,a, — az)

Aa,a, [V2 (=3£,Q, +3f5)

_3%0<Qlfz +fi+ 1df7>+3§76;; 3f8dy]
=0,

(6t +ad) [ %2 + 20,2 - 0,0 0.

(af +a;) [m <2diy7 - Qlf2> 2 f/;_l;l]
~ 0,

+2v< dfs + fs - 2f290+f8)—f2”;—‘y“] =0,
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Ui (af +a§) [v(Qlfz fz— 2ﬁ>

Va [2u0(90f2 ﬁ) fopw fsduz]:o,
i=1,2,
Aa,a, [Zfsilj +4u 1(3)%

_w<‘01f2_2f641 f3- df7>

d dv
+ 207 <f5 + Q- diy8> +4u, f,Q - 2vd—yf8

dw
— | =0.
+ f7 dy ]
17)
Building on the solution of the less general system of [21]
and after some tedious manipulations, the solution of (16)-

(17) was constructed. For convenience we introduce a new
variable v defined by the following relation [20]:

dv. (18)

\/9042 +12pv - 36av? — 124
- ,[ 493 + 6av - B

We give here only the final form of the Lagrangian and the
complementary cubic integral in the following form:

1 7? 3F 1 N
L0=2|:X —FV :|+§(P2X —QZV)

LB ¥® + 24a0* — 16B° - 540%9* + 12aBv — B
F 4F

4p%y + 3p; (41/3 - ,B) +6p,p, (21/2 - a)
+

F TP
F? (19)
el
1 3 2
+ = 2v" =3av+ B) + p (2v° +
(o (2" 300+ ) p (2 )]
3
-(csinx+dcosx)}—ﬁ[(cz—dZ)COSZx—ch
3/2
~sin2x]—1—(asinx+bcosx),
4F
I, = Xt PZx’2 + azx'v' + Plx' + 611’, +R, (20)

where F = 4v* + 1200 — 4By - 30>, F, = 4v° + 6av - 3, F, =
2V +a,and p; (i = 1,2,...,5), a, b, ¢, and d are arbitrary
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parameters, introduced instead of the original parameters C;

and g; for convenience, and

P, = % [ple +p, (21/3 -3av + ﬁ)] +3

81° + 12av* + 87 + 540’1

N

— 12y + 9o’ + 282 (

-sinx +d cos x),

9F
Q, = 2F3/2 (dsinx — ccosx),

Q, = _421 [ZCd cos2x +2 (62 - dz) sin 2x]

4 .
2\/1?13 {pSF [(d+Db)sinx — (a+c)cosx] + [ple
+ (21/3 - 3av + ,B) pz] (dsinx — ccos x)} ,

3F
P = =L [8° +3600" - 168v° — 180°7" — 9a

3 ﬁZ] [(C2

9F,
asinx + bcosx
A )

16v° + 32a0° — 648

- dz) cos2x — 2cd sin 2x] +

3 2 4
- - 120

2F2\F, [Pl( oy

— 64afy’ — 2160V + 8% + 48P’y — 9a* — 4aﬁ2)

+p, (167" + 288" — 1442° + 216" (o — B)

+249° (B +3a’) — 108Ba®s” + 81a*y + 360’

— 18fa’ - [3) FFI](csmx+dcosx)
3(+d
. (TZ) [16V° + 960" — 24p2° + 21607

—156apv" +36 (B
+ 27043) —9pa’ - ﬁs] ,

9F, 12
R=""1 [ﬁv+p2<v2— ﬁ)
F 3 2

FS
. ;/T:l {40+° + 1560 — 56p7°

- 20c3) v’ + 540’ + 3a (2/32

(asinx + bcosx)

— 18’y — 12aBv

~27a° - 2,82} [(3c2d - d3) cos 3x + (c3 - 3cd) sin 3x]

8p3 \/FT3

27

—8+/Fps

7F [4va +3p, (21/2 - oc)] -

(32 + 288a0” — 120B2° + 57607

2\/F\13(c2 + dz)
+ e —
27

— 612aBv* — 648’ v’ + 1448°7 + 342 v’ + 2700y

8F,

7 - 24a’y

—27a°B -2 ] [P1 (16ocv ~ 1287 -

+2aB) + p, (8v° + 60a’ — 288y’ — 18a’»* — 6oy

+9a° + 2[32)] [ple +p, (21/3 = 3av + ,8)] [csinx

+dcosx] + 16F12{ psby [pl (801} +256a0°

~ 967 + 1200’ v*

~ 128y’ — 1440’* + 128°9°
+ 24 v — 9a* - 2<x,82) +p, (801/9 + 38400

—144p° + 7209 — 120apv* + 120° (B

2
27F3 } [(Cz - dz)
64(c” +d*)
927F
— 120’y + o] - 16 [ (4ap, + Bp,) v* — 48 (6a’p,
+ ﬁpl) v + 576aBp,v" — 192p, (,82 - 6oc3) »

+ (2880’ p, — 5040’ Bp, — 487 p, ) v’ — 720 (~60 p,

~12a)

+8la*y + 6ap’y — 18’ — 28°)

- €08 2x — 2cd sin 2x] + {p5 [80cv3 -6

+7app, + .BZPZ) s (12/32 (p2 + 8apy)
— 5760 (apy + /3/)2)) v - 128 (ﬁ2P1
- 126 ap + i) - 9 (B, (3 + )

+4ap, (3’ + ) v+2p, (270° +184° B> + 2)

cap, (27 +90)]} - 22| Sy 62 - 300+ )

.pz] . 1} (B + s (v = 3av + B)]

9(ac+bd) 3 2 2
—T[S(xv - 67" - 12a v+oc/3].

(21)

3. The Generic Unconditional System

The Lagrangian (19) describes a system integrable on its zero-
level of Jacobi’s integral I;. Following the method devised
by Yehia [21, 25] (for a detailed account of this method, see



[28]), we now proceed to construct the corresponding uncon-
ditional system by performing the inverse of time transfor-
mation (2). Our conditional system involves 4 energy-type
parameters ps, py, a, and b. We first express those parameters
in terms of nine new parameters

1
P3 = ) (hy +&h),

ps=—(h +&h), (22)
a=h; +&h,
b=hy+eh

and then we can perform the time transformation (2) with

(49 + 6av - B)
" (a2 + 4By — 12ar” — 1Y) [(slv +e)

+\/47® + 6av — B (&5 sin x + &, cos x)

to the above system. Thus we obtain the Lagrangian

1
L= 2 [£1v+ & + 4% + 60y — B(e5sinx + g4 cosx)}

' [ (41/3 + 60y — ,B) i 372 :|

30 + 4By — 1200 — 4% (4% + 60y — )

(23)

+ % (sz - Q)

1 {hl

+ —_—

ey +e, + 43 +6av — ey sinx + &, cosx) | 2
v+ hy + 493 +6ocv—ﬁ<h3 sinx + h, cos x

P (21/2 + (x) + P (21/3 - 3av + ﬁ)
- [ 49t + 12002 — 4By — 302

(24)

+p5:| (csinx

1 3
3(4
12 (49* + 12a9% — 4By — 3a?) [ ( ’

+dcosx)> +

2
+ 60y — [3) [(c2 - dz) cos 2x — 2cd sin 2x] - 8p12v
- 12p,p, ((x - 2v2) -6 (41/3 - ﬁ) P +3 (c2 + dz)
. (81/6 + 240" — 1637 — 540’7 + 12y — ﬂz)”»
+ h.
The presence of the arbitrary parameter / in the last Lagran-
gian as an additive constant is insignificant and it can be

ignored, as it does not contribute to the equations of motion.
The same arbitrary constant / is now interpreted as the value
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of the Jacobi integral. Thus, we have the unconditional Jacobi
integral

1
I = 3 [slv+ & + 4% + 60y — B(e5sinx + g, cosx)}

[ (41)3 + 60y — ﬁ) i 332 ]

+
32 + 4By — 12002 — 40t (493 + 60w — fB)

1 {hl
v+ + |49 + 6av — B (e;sinx + &, cosx) | 2
v+ hy + 493 +6ocv—/3<h3 sin x + h, cos x

p (2 + ) + p, (29 = 307 + B)
- 494 + 1200 — 4fv — 30

(25)

+p5} (csinx

1 3
3(4
12 (4v* + 12a9% — 4fv — 3a?) [ ( ’

+dcosx)> +

+ 60y — ﬁ)z [(c2 - dz) cos 2x — 2cd sin Zx] - 8p12v

- 12p,p, (0= 2°) - 6(49° = B) p3 + 3 (80" + 2400
—16Bv’ — 54a°v* + 12a3v — ﬁz) (c2 + dz)]]» =h.

The final form of the second integral can be obtained by
replacing (x',v") in (20) by (Ax, A¥). The Lagrangian (24)
characterizes a new integrable system. It contains fifteen
arbitrary parameters «, f3, €, &, €5, €4, P1> P2> P5» 6 ds By, iy, b,
and h,. Note that the angle variable x can be shifted by a phase
angle in such a way to make one of the four parameters &5, &,
¢, and d equal zero. The last system is an extension of the two
systems with a cubic integral obtained in [21, 28] by adding
the parameters ¢ and d which invoke a part of the gyroscopic
(irreversible) and potential terms.

4. Applications

In its full capacity, the fifteen-parameter system with the
Lagrangian (24) has not yet found a mechanical interpreta-
tion for the full range of values of the parameters. In this
section we provide four applications as special cases of that
system: one integrable system on the sphere, one in the
Euclidean plane, and two new integrable cases in rigid body
dynamics. Those special cases indicate the richness of this
system.

4.1. An Integrable System on the Sphere. The metric

2
ds” = [81v+ &

i+ 6 — ey s + £, cosx)| 2o

(47/3 + 60y — ﬁ) dx? 3dr?
302 + 4By — 1200? — 4t (49 + 6y — B)
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of the configuration space of the system described by (24)
was considered in [28] and sufficient conditions for it to be
Riemannian and well defined on S* were found. Regarding
this result we formulate the following.

Theorem 1. Suppose that 8« + > < 0 and let v,, v,, and
vy such that vi < vy, < v, v; + v, + v3 = 0 be three real
roots of the cubic polynomial 4v* + 6av — f. Let also &, +

&, > & + e2[(-2)*"* - Bl. Then the Lagrangian (24) for
v € [v;,v,] describes an integrable time-irreversible system on
s

4.2. A New Integrable System in the Plane. As in [21], the
Lagrangian (24) acquires the simplest form when one sets
a=pf=¢ =¢g =¢ =0,¢ = 1. Then, introducing the
change of variables x — i \V3x, v — e¥, we reduce the
Lagrangian (24) to the form

L:%(x2+j/2)+P15C—V+h,

y+V3x y—3x

— g eV -2y
P =xe 7 +ae 7 +aze + aue ,

4y —2y

-6y 2 —
—2;0pe 7 —2oe 7 —age

27)

where «;, i = 1,2,...,6 are arbitrary parameters, introduced
instead of the original parameters for convenience:

ov

Qjy = ——,

X + y ax

y-Qx = —a—V,
dy (28)

-4 -2 3
Q=-dae ™ - 205 7 +oc3ey+\fx

+ oc4ey_\6x.

Jacobi’s integral for this motion is

L=-(+7)+V=h (29)

l\)lr—t

and the cubic integral can be written as

L =5 -3  +9 (o™ + ae™) &
+3V3¢” [oc3e\/§x - oc4efﬁx] xy-3 [oclef‘}y

V3x N “46—\/§x>:| ).}2

2V3 2 -2vV3
fx_a4e fx)

-2y y
+oe 7 te (oc3e

+ [3€2y ((x3¢x4 - aje
2¢% 1 \ax VEx

+ ? (0646 — e )

+3a,e (ogeﬁx + oc4e_\/§x)

+9a,e (oc eV 4 oye fx) +6age

2 -4 2 -8 -6 .
+2405e 7 + 16a5e " + 36a, e y] x

+ [—3 V3e? (ocieibﬁx - oéeng)

_ 2v3e! (0646\/5)( + ocsefﬁx)
+3V3a,e” ((X3€ﬁx - 0c4eﬂ/§x)
+3V3ae (ocseﬁx - oc4e\/§x)] ¥
+10ace (0436\”‘ + 06467\6)6)

+ 18, cye

-5 3
i (0436\5‘ +aye

3 4
o :
eV [e@‘ (o, +27050;)

+e V3 (27(x§¢x4 - 041045)]

-2V3 2V3
\fx_(xse \fx)

2e”
5 [ ¥ (4oga, + 270501

+e V3 (27a,0 — 4a2a5)]

—e¥ [2 (ocie_ng + (xzeng)

- 3000 ((X3€ﬁx +a \Fx)] +2e (80¢2

2/3x 22\Fx

+ 3041046) — 6, (ocﬁe’ +ase ) + Soc e

2 -10 -4 2 -8
+28mage 7 + 6oyage T + 36a 058

-2
+ 9,508

- 2005 + Zoci]

(30)



This integrable system can be viewed as a generalization of a
previously known one due to Yehia [21] by the introduction
of two constants a; and e, to equations of motion. It also
generalizes the reversible Toda-like system obtained by Hall
[13] by the presence of the four parameters «;, ,, &5, and .

4.3. Applications to Rigid Body Dynamics. The problem of
motion of a rigid body whose principal moments of inertia
are A, A, and C, about a fixed point under forces with a scalar
potential V(y) and vector potential 1 = (0,0, 1;), reduces after
ignoring the cyclic angle of precession y to the Routhian

. 2\ .2
B, Cc(1-13)¢
1-y2 A-(A-0)y}

AlA-(A-O)y]

2
Ly (f - Lys)
—_—— + s
A 2[A-(A-0O)y?]
where y; = cos(0), 0 is the nutation angle, ¢ is the angle of
proper rotation, and f is the value of cyclic integral. For more
details see [21].

As in [21], the Lagrangian (24) can be identified with the
Routhian (31) in the following two cases.

l\.)lr—l

4.31 Case (a): A = 4C,a = -1/2, 3 = 1, ¢ = -1/3, ¢, =
-1/6, and e5 = ¢, = 0. In this case, using the substitution
v=(1/ 2)(3)/; — 1), the Lagrangian (24) can be identified with
the Routhian (31) if we assume that the moments of inertia
satisty A = 4C, set the cyclic constant f = 0, and choose

I, = 4Cny,,
I, = 4Cny,,
2 1 e
l=C[k+e <———) —1+ey + ey
’ N\ 3/ ey 2T
+”Y3]’
& 2 4 2 5
V=Clesy +esy, + = +e (—————)
R T T 2
(32)
e, (k+ey—2e) et €/
- 22 TS 22_?(V2+V3)
Y1t 2(y?+932)
2 2
e 3n
— 663N, T ?27’22 + TY§
2
eo(V3_2)
+‘| m —ny; — 12 (exy1 +e37,)
V3 Yith:

e )
+n<[0())3—3)—y3(k+ 26‘1 2)H
V3 Nty
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The cyclic integral can be written in the form

I, =4py, +4qy, + [r+k+e2y1 +es), + ﬁ
Yty

2 1
ra( -5 ) |enliti o)+l -0
Y3 0
The complementary cubic integral is

eo (2 -2
I = |:r—k+ez)/1+e3yz+ny3+0(—4)/3>
Y3

8y? — 1 2
_el (2’/1 2 )] [<P+nyl+%2)/3>

(7 +13)

(exn1 +e37,)

(1—8)/f)
2

eo (375 - 675 +4) ._a <61
2y ity

. 8y; (vs—2) -2y +9)5 -8
2y;

Vs [(23162 - e,k + es) <P +ny + %)

+(2e,e5 — esk + eg) <q +ny, + 62_3)’3)]

e, € (1 B 2Y2)
+k [( g 2 23 (ex71 +e372)

Yty

4‘31)’12 (eo - 2‘31)’32)
v (vi +v3)

dey
s e +<q+nyz>m]
ntY;
860‘31@3)’2)’5 ( € ) (
-t S - esy1 + €12
B+ \n V1+Vz e
+ 4e )/2 (Z_eg + c )— 86162)}13 (
1
! Y36 (Vl + Vz) Yi+v;

de,e?
+e_°)+—4 31% > [8v1 (15 - 2)
v s (v +13)
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e 62 +62
o) -9 2D

8e3y3 (1 - 49?2
—9y§+13y32—4]+M
(i +93)
+861(Y12_Y22)
ity

2
y%ej_y;% [(q +ny,) (33 (5)’12 - Y;) - 262)’1)’2)

(q+ny,)’

+(p+mp) (ex (391 +73) - 2e3m72) |

16,17, [ ee; ]
R (@ +mnp) (p+ny) = ==n |,
(34)
where k, e,n,and ¢; (i =0, 1,...,6) are arbitrary parameters,

introduced instead of the original parameters. This choice
(32) characterizes a new integrable problem in the dynamics
of a rigid body, which generalizes all previously known
integrable cases with a cubic integral in this field, as in Table 1.

4.32.Case (b): A=4/3)C,a=0,f=1,ande, =& =¢, =
0. For this case we use the substitution v = y32/ *. We construct

the integrable case of a rigid body dynamics in which A = B =
4/3,C =1,and

2/3 € (2 + Y32)

LL=n+—5——|3n+eyy; +
Rty ’ y32/ ’
€)1 t+és),
23
Y3
_ ey tesy, e
V= 2/3
Y3
2 2\(.2 .2
N (es - ez) (Yl - Yz) —4e,e3719,
173
4)’3/
2 2
1 e, (4 - 7)/3) :
+ 2/3 ~ %4 (5V3 - ) (35)

2+ L on

2 4 2
€] (13)/3 —8y; + 4)
4/3
2)’3/

- 350”)’;;/3 -

2.2
- 3ne1y§/3 (y32 + 2) + %T% (y32 - 4)]

2, 2

e te 2 &Y ey, [ 2/3
- 22 (55 +1) - =5—2% | 3¢y + 3e1y;3

4y ( ) 3(v1+13)

+(e; +9n)y; +4—/3—W

43 6e €7 ]
bl
3 3
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TABLE 1

Conditions Authors Reference
ep=e, =e=n=0 Sokolov and Tsiganov [32] 2002
e,=e;=0 Yehia [21] 2002
e, =e =e,=¢e;=0 Yehia [33] 1996
egp=e =e,=e;=e=n=0 Sretensky [34] 1963
=€ =¢e,=es=k=n=0 Goriachev [29] 1915
=€ =¢e,=e;=k=e=n=0 Goriachev [35] 1900
where nand e;, i = 0,1,...,7, are arbitrary constant. This

choice (35) gives a new integrable case in a rigid body
dynamics. This case adds two arbitrary parameters e, and e;
to the case found by Yehia [21] and has five arbitrary param-
eters 11, e, €y, €,, and e;, more than the original case found by
Goriachev [29] in 1915.

Although having no obvious physical meaning, Gori-
achev’s case has received a growing interest in the last years
[30, 31]. It turns out to be the first example of a mechanical
system whose complex invariant varieties are strata of Jaco-
bians of a nonhyperelliptic curve, here a trigonal curve of
genus 3 [31].
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