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This study concentrates on transient multiphysical wave problems for simulating seismic waves. The presented models cover the
coupling between elastic wave equations in solid structures and acoustic wave equations in fluids. We focus especially on the
accuracy and efficiency of the numerical solution based on higher-order discretizations. The spatial discretization is performed
by the spectral element method. For time discretization we compare three different schemes. The efficiency of the higher-order
time discretization schemes depends on several factors which we discuss by presenting numerical experiments with the fourth-
order Runge-Kutta and the fourth-order Adams-Bashforth time-stepping. We generate a synthetic seismogram and demonstrate

its function by a numerical simulation.

1. Introduction

Several formulations exist for modeling the seismic vibrations
as interaction between acoustic and elastic waves. Typically,
the displacement is solved in the elastic structure. The
fluid can be modeled using finite element formulations
based on fluid pressure, displacement, velocity potential, or
displacement potential [1]. Two approaches, in which the
displacement is solved in the elastic structure, predominate in
modeling the interaction between acoustic and elastic waves.
Expressing the acoustic wave equation by the pressure in the
fluid domain leads to a nonsymmetric formulation (see, e.g.,
[2, 3]), while using the velocity potential results in a symmet-
ric system of equations (see, e.g., [4-7]). Recently, a velocity-
strain formulation has been considered by Wilcox et al.
[8]. Essentially, the difference between the different models
is only in the choice of the variables presenting the wave
propagation in different domains. Nevertheless, from the
numerical point of view, this choice determines the features
of the coupled problem. Hence, it also gives the guideline for
using appropriate discretization and solution methods.
Discretization methods play a crucial role in the effi-
ciency. The key factor in developing efficient solution meth-
ods is the use of high-order approximations without compu-
tationally demanding matrix inversions. We attempt to meet

these requirements by using the spectral element [9] method
(SEM) for space discretization. The SEM was pioneered in
the mid 1980s by Patera [10] and Maday and Patera [11],
and it combines the geometric flexibility of finite elements
with the high accuracy of spectral methods. The method is
widely used for simulating seismic waves, in both frequency
and time domains (see, e.g., [12, 13]). We have applied it to
time-harmonic acoustoelastic equations in [14, 15], while this
paper concentrates on the accuracy and efficiency of the time
domain solutions.

In time domain simulations, the efficiency of the method
depends also strongly on the time discretization. The second-
order central finite difference (CD), or leap-frog, scheme
is a low-order method which is easy to implement and
thus in general use for discretizing in time domain. This
method is used with the SEM by Komatitsch et al. [16], and
a modification for utilizing larger time steps in the fluid than
in the solid media is presented by Madec et al. [17]. Since the
method is only of second-order accuracy, higher-order time
discretizations are needed for efficient computer simulations
based on higher-order space discretization. The fourth-order
central finite differences are not usable at this stage, since
the scheme is unconditionally unstable. Instead, a second-
order accurate time discretization scheme can be converted



to a fourth-order accurate one, as is done by Tarnow and
Simo [18]. This symplectic scheme is compared with the
CD method by Nissen-Meyer et al. [19]. The importance of
higher-order time discretizations, in the field of seismology,
has recently been considered by, for example, De Basabe and
Sen [20], Peter et al. [21], and Liu et al. [22] and references
therein.

Lax and Wendroff [23] introduced a higher-order gener-
alization of the finite difference scheme. The method has been
applied for acoustic wave equations to provide the fourth-
order accuracy, with the finite difference space discretization
by Dablain [24] and with the spectral element space dis-
cretization by Cohen and Joly [25]. However, this approach
does not fit to a case, in which an absorbing boundary
condition is used for truncating the computational domain,
unless velocity-stress or velocity-displacement formulation is
used [26].

By Kubatko et al. [27], Runge-Kutta time discretiza-
tion methods were used in conjunction with discontinuous
Galerkin (DG) finite element spatial discretization, and
Antonietti et al. [28] have applied the scheme for elastic
wave propagation problems. The second- and third-order
Runge-Kutta methods are presented, with a fourth-order
Hamiltonian-based space discretization for acoustic and
elastic waves in separate domains by Ma et al. [29] and with
hp-adaptive discontinuous Galerkin method for simulating
tsunami propagation by Blaise and St-Cyr [30], respectively.
Since there were no research results considering the accuracy
and efliciency of the numerical simulation of fluid and solid
waves, in which the fourth-order Runge-Kutta (RK) time dis-
cretization is combined with higher-order space discretiza-
tion, we have applied it for acoustic [31] and elastic [32] waves.
The method is used with the eighth-order finite difference
space discretization for solving an elastodynamic problem
also by Martin et al. [33].

With respect to the time step At, the CD method is
second-order accurate, while the RK method is fourth-
order accurate. Although the computational effort of the RK
method is approximately four times that of the CD scheme
at each time step, the results of using higher-order time-
stepping scheme were promising [31, 32]. Both methods lead
to an explicit time-stepping scheme. The drawback is that the
schemes need to satisfy the stability condition, which limits
the length of the time step. For acoustic waves, Yang et al.
[34] show that a fourth-order Runge-Kutta method is more
accurate for time discretization than the fourth-order Lax-
Wendroff method.

In this paper, we apply the CD and the RK methods to
multiphysical wave problems. We also present the fourth-
order Adams-Bashforth (AB) scheme to discuss the efficiency
factors of the higher-order time discretization schemes. In
what follows, we first consider the mathematical models and
boundary conditions in Section 2. Further, we discretize the
models with respect to space and time in Sections 2.2 and 2.3.
Numerical examples are considered for the validation of the
accuracy of the approximations and for demonstrating the
synthetic seismogram in Section 3. The concluding remarks
are presented in Section 4.
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FIGURE 1: The domain Q is divided into the solid part Q and the
fluid part Q.

2. Numerical Models

In what follows, we concentrate essentially on two multiphys-
ical linear models for simulating the transient propagation of
seismic waves. In both models, the domain Q ¢ R? is divided
into the solid part () and the fluid part Q (see Figure 1).
First, we present the model for elastic deformations in
and use it as a starting point for deriving the different models
presenting the propagation of acoustic vibrations in the fluid
domain Q. Then, we apply the coupling conditions to the
models and discretize the problems. We see that, despite the
fact the difference between the models is only in the choice
of the variable presenting the wave propagation, it affects the
structure of the coupled problem at the discrete level. For the
sake of the efficiency of the solving process and the accuracy
of the numerical solution, the numerical methods, relying on
the model-specific features, are presented.

2.1. Coupled Problems. The deformation of the elastic struc-
ture is modeled by the displacement u in the solid domain Q,,
such that

o*u

ﬁ—V'O'(u)Zf, (1)

ps (%)
where p,(x) is the density of the structure and f = (f,,f,)" is
the source function. We concentrate on isotropic materials,
for which the number of essential material constants reduces
to the two Lamé parameters, 4y = E/(2(1 + v)) and A =
Ev/((1+v)(1-2v)), where E is the Young modulus describing
the stiffness of the solid and v is the Poisson ratio presenting
the compressibility of the solid as the ratio of lateral to
longitudinal strain in a uniaxial tensile stress, such that 0 <
v < 1/2. Hence, the stress tensor can be presented as o(u) =
AV - u)F + 2ue(u), where 7 is the identity matrix. In
general, we assume the medium to be heterogeneous. Thus,
the partial derivatives in V - o apply to A and u as well as
to the displacement. The speed of pressure waves (P-waves)
¢ = AVAX) + 2u(x))/py(x) and shear waves (S-waves) ¢, =
\u(x)/p,(x) are presented as functions of the Lamé param-
eters and density. The P-waves move in a compressional
motion, while the motion of the S-waves is perpendicular to
the direction of wave propagation [35].
In principle, the wave equation in fluid media can be
derived as a special case of (1), by taking into account the
fact that there are no S-waves in fluids. That is because fluids
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are inviscid and, thus, have no internal friction and can not
support shear stresses. Thus, taking the divergence of (1)
leads to modeling acoustic waves in fluid domain Q) by the
pressure field p (see, e.g., [16, 36]),

1 @p _v.< 1
ps(x)c(x)* O pr(x)

VP) =f )
where pf(x) is the density of fluid, ¢(x) = \/A(x) / pf(x) is the
speed of the wave, p = —A(x)V - u depends on the vector-
valued displacement u in the fluid domain, and f = -V - f

is the source function. By using the velocity potential ¢, the
corresponding model is

L2
c(x)? o

- V2¢ = f¢> (3)

where f¢ is the source function (see, e.g., [4, 5, 17]).

The equations need to be completed by the initial and
boundary conditions to get a well-posed and physically
meaningful problem. In this paper, we use the first-order
absorbing boundary condition [37] for truncating the exte-
rior domain on the boundaries I,,; and I,;. On the interface
[; between fluid and solid domains, the normal components
of displacements and forces are balanced. That is presented,
depending on the choice of variable in the fluid domain, by

o(wng—pn; =0,

o*u op (4)
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where n; and n; are the outward pointing unit normal
vector on the boundary I}, with respect to the solid and fluid
domain, respectively. The interface conditions coupling the
two domains are needed to model the following fact: when
a wave coming from the fluid domain confronts the elastic
domain, it is not totally reflected, but part of it passes to the
elastic domain and turns to elastic vibrations. The analogous
action is seen when the elastic wave propagates to the fluid,
although usually the reflections from fluid to solid are minor
when compared with the reflections from solid to fluid. To
be more precise, the magnitude of the reflection depends on
the difference between the densities and the wave speeds of
the materials. Thus, the reflections are more significant from
comparatively stiff structures than for more flexible obstacles.

For the weak formulation of the system consisting of (1)-
(2) and (4) we introduce the function spaces V. = {v €
H'(Qp)} and W = {w € (H'(Q,))’}. By multiplying (1)
with any test function w in the space W and (2) with any
test function v in the space V, using Green’s formula, and
substituting the boundary conditions, we get the following

weak formulation: find (p, u) satistying (p(t), u(t)) € (VxW)
foranyt € [0,T] and

2
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where y, and g, = (8exi1> Bexra) are the source term acting
on the artificial absorbing boundaries. Respectively, we can
define the weak formulation for the system of (1), (3), and (5).

2.2. Spatial Discretization. The spectral element method is
obtained from the weak formulation of the coupled prob-
lem by restricting the problem presented in the infinite-
dimensional spaces into finite-dimensional subspaces. Thus,
in order to produce an approximate solution for the problem,
the given domain Q is discretized into a collection of N,
quadrilateral elements Q;, i = 1,...,N,, such that Q =
Uf\:]”l Q,. Each element is associated with four nodes. For the
discrete formulation, we define the reference element Q =
[0,1]* and invertible affine mappings &, : Q. — Q. such
that &,(Q,;) = ;. The boundary of Q; is a union of its
four edges, which are the images of the four edges of the
reference element, obtained by the mapping ;. Respectively,
the vertex nodes of (); are the images of the four vertices of
the reference element, obtained by the mapping &;. These
properties are essential for the mappings &; to be sufficiently
smooth. Each of N, elements is individually mapped to the
reference element, and we make use of the affine mapping
to make transformations from the physical domain to the
reference domain and vice versa. The mapping between the
reference element and the ith element is defined such that
Z, (&0 = x = (x,x,) € Q,, where £ and { are the Gauss-
Lobatto points in the reference element (see, e.g., [9]).
After the spatial discretization by the spectral elements,
the semidiscrete form of the coupled problem is stated as
’u  ou . _
M=+ S— + HU=F, 7)

where i € R is the global block vector containing the values
of the variables in both fluid and solid domains at time ¢



at the Gauss-Lobatto points of the quadrilateral mesh. The
variable which we use in the solid domain is the displacement
u(x, t). Thus, the number of degrees of freedom (DOF) in the
solid domain, N, is in the two-dimensional domain twice
the number of discretization points in the solid domain N_.
The total number of degrees of freedom, that is, N, depends
on the variable of the fluid domain. If the fluid domain is
modeled by using pressure p(x, t) or velocity potential ¢(x, t),
we have scalar values at each spatial discretization point,
and the number of degrees of freedom in the fluid domain,
expressed as N > is equal to the number of discretization
points in the fluid domain N.

In practice, the discrete counterparts of the variables are
approximated as linear combinations of the corresponding
nodal values and the spectral element basis functions ¢;,
i=1...,Npandy;i = 1,..., N, which are higher-order
Lagrange interpolation polynomials [9]. In the case of the
formulation with pressure and displacement, entries of the
N x N matrices ., &, and % and the right-hand side vector
F are given by the formulas

(M), 0 0

< 0 (), ©
(p), (p), #;
(8D (5, 0
S=| (S (S, 0 |,
< 0 0 I (8)

('%5)11 (‘%5)12 (’Q{sf)l

(’%5)21 (‘%5)22 (‘Qisf)z >
0 0 %f,

where the Ny x N matrix blocks and the N¢-dimensional
right-hand side vector corresponding to the fluid domain are

dx,
jnf Pr (x) ¢ (x)? b () c ) i

ds,
Jref pf (X) c (X) (plq)]

)

——Vo. - Vo.dx,
L)f Pf(X) Pt V9;

ff =, fﬁvidx+J Vext®;4S,
f Lef
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where i, j = 1,..., Ny. Respectively, the 2N, x 2N, block
matrices and the 2N -dimensional vector representing the
elastic waves are

M =

N

(" o)

5= (o o)

. ( (10)
-

N

(Fu (Fo )
(Z)n (F),

)

which have the components

((‘%5)11),'] = J-Q (x) le//,-dx,
((‘%5)22)1'] = JQ ps (X) yy;dx,
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wherei, j = 1,..., N,. The matrices arising from the coupling
between acoustic and elastic wave equations are & ¢, and o,
for which it holds that

(12)

For o/ (,i=1,...,Ngand j = 1,..., N, whereas, for &/,
i=1,...,N;and j = 1,...,Nf.

The computation of the elementwise matrices and vectors
involves the integration over the elementwise subregions.
Evaluating these integrals analytically is usually complicated
or even impossible. That is why a numerical integration
procedure is used. In practice, we replace the integrals by
finite sums, in which we use Gauss-Lobatto weights and nodal
points. The values of these sums are computed element by
element with the Gauss-Lobatto integration rule. Collocation
points are now the nodes of the spectral element. All but one
of the shape functions will be zero at a particular node. Thus,
fori # j, (My); = 0and (A,); = 0 implying that the
matrices / ; and //  are diagonal. Furthermore, the matrix
A is a lower triangular block matrix with diagonal blocks.
Thus, the inverse of the matrix . is also a lower triangular
block matrix with diagonal blocks,

-1
(), 0 0
(), o |,

-1 -1

_‘%}1 (‘dfs)l (‘%5)11 _‘%}1 (dfs)z (ﬂs)zz ‘%}1

(13)

and explicit time-stepping with central finite differences
requires only matrix-vector multiplications.

In practice, the stiffness matrix % is assembled once
at the beginning of the simulation. It is stored by using
the compressed column storage including only the nonzero
matrix elements. The other options would have been using a
mixed spectral element formulation [38].

In the case of the formulation with velocity potential and
displacement, the entries of the N x N matrices 4, S, and &
and the right-hand side vector # are given by the formulas

(), 0 0

M = 0 (ﬂs)zz 0 >
0 0 Uy
(095)11 (05)5)12 (ﬂSf)1
S = (53)21 (55)22 (‘Q{Sf)z >
(5), (45), Sy (14)

(H)y (), 0O

(*%5)21 (‘%3)22 0 >
0 0 %fa

for

where the N, x N, matrix blocks and the N (-dimensional
right-hand side vector corresponding to the fluid domain are

F =

(15)
pr (x) Vo, - Vo dx,

(t), = |, pr 0 fyped+ | py ) s,
f ef

for i,j = 1,...,Ny. The 2N, x 2N; block matrices and
the 2N -dimensional vector representing the elastic waves
are exactly the same as in the nonsymmetric formulation.
The matrices arising from the coupling between acoustic and
elastic wave equations are &/ ¢, and o/ ¢, for which it holds that

((‘Q[fs)1),‘j = L_ Pf (X) nsl‘/’j‘Pids’

((”@fS)z)i- = | pr(X) nuy;pds,
'] T
1 (16)

((é?fsf)l)ij = L pr (X)np@yds,

((dsf)z)ij = L pr (X) nppy;ds.

For &ifs, i= 1,...,Nf and j = 1,..., N,, whereas, for dsf,
i=1,...,N;andj=1,...,Ny.

Using the vector-valued cﬁsplacement u(x, t) in the fluid
domain doubles the number of degrees of freedom in the

fluid domain. In other words, N §= 2N - Therefore also the



memory consumption for computing the pure displacement-
displacement interaction is higher than in the case of the
other couplings considered. Furthermore, if the formula-
tion with displacement in both domains is considered, the
divergence of the variable in the fluid domain is involved
in the weak formulation, and we would need a scheme
that approximates the functions in H(div, Q) better than
the spectral element method does. For instance, Raviart-
Thomas finite elements, which are used for acoustic wave
equations [39], could be used for this purpose. Furthermore,
the Raviart-Thomas elements are not a good choice for
discretizing the solid domain. Nevertheless, the coupling
conditions should be satisfied at the interface of the two
domains. That is, we would need to change the discretization
approach in the solid domain as well, to make the degrees
of freedom coincide or fulfill the coupling conditions, for
example, by using Lagrange multipliers [40].

2.3. Time Discretization. After dividing the time interval
[0, T] into N time steps, each of size At = T/N, applying the
appropriate time discretization into semidiscretized form (7),
and taking into account the initial conditions, we obtain the
matrix form of the fully discrete state equation. Despite the
use of higher-order space discretization, the time-stepping for
transient wave equations is usually performed by low-order
methods like the central finite difference (CD) scheme. By
proceeding this way, in the case of the nonsymmetric formu-
lation, at each time step i we compute first the displacement
u’ and then the pressure p' from the equations

i+1 i i—1 i+1 i—1
-2 — .
e B SR . S T,
At? 2At
+ szfsfpi = fi,
. A 4 . (17)
p1+1 _zpz +pz 1 p1+1 _pz 1 ;
M +& + X
f Af? YN P
u1+1 _ 2ui + uz 1 .
+ 'Q(fs AtZ = ff’
with the initial conditions
0
u = esO’
0
P =€
u —u’! (18)
AE b
1 -1
por .
20t s

where u', p', f!, and f} are the vectors u, p, f;, and f; at
t = iAt. Because the matrix sums (#, + (At/2)S) and
(/4 it (At/2)S f) are diagonal, their inverses are obtained
simply by inverting each diagonal element. Respectively, the
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state equation for the formulation with velocity potential and
displacement is

i+1 i i—1 i+1 i-1
-2 - .
/%Su uru +oS’5u " +
At? 2At
¢i+1 _ ¢i*1 ;
o e
i+1 i i—1 i+1 i—1
— 2 + — .
/%f‘/’ A(fz ¢ +&f"5 2At¢ + F ¢ (19)
ui+1 _ ui—l :
t il =
a —u! ¢1 _ ¢—1

0 0
U= e, =€ T =€ T = €

where W', ¢/, f,
at t = iAt. In this case, u’"' and ¢*' need to be solved
simultaneously, and we need to invert (/ + (At/2)S) at each
time step. If the boundaries of the computational domain
consist only of horizontal and vertical lines, the coefficient
matrix (A + (At/2)S) needed for inversion at each time step
can be implemented as a block matrix consisting of diagonal
blocks. Then, u’ and ¢’ can be solved simply by using matrix-
vector multiplications from the formulas

f', and f<il>f are the vectors u, ¢, £, and fy;

; At At -1
u :<j—95 7d5f9f 7&{)%)
_ At _
'@sl(yl _Tﬂsf@f1y2)> (20)

. _ A .
¢ =} <y2—7t&ffsu’>, =1, N-1,

where 9, = M, + (At/2)S and Dy =My + (Mt]2)S f are
diagonal matrices and

(At .
y = (20, - AP H) ' + (76’3 - /%) u!

+ AP+ fgfsfgb’”,
2
A 2
v (2t =085 ) 6+ (S8, -t ) 67

i At i
2 pi i-1
+ At f([)f + 7627]%11 .

Remark 1. It would also be possible to uncenter one of the
two first-order derivatives in time to uncouple the problem.
That approach would involve first-order difference approx-
imations and introduce some dissipation. That is why we
neglect deeper considerations of the uncentered schemes.

Sate equation (7) can be presented as a system of differ-
ential equations 0y/0t = f(t,y(t)), where § = (4,¥)" is
a vector of time-stepping variables U and v = 0u/ot and
the function f(t, y(t)) = ¥, -4 (S¥ + Fi — F))'. To
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this modified form, we can apply the fourth-order Runge-
Kutta method, which is a Taylor series method. In general, the
Taylor series methods keep the errors small, but there is the
disadvantage of requiring the evaluation of higher derivatives
of the function f(t,y(t)). The advantage of the Runge-Kutta
method is that explicit evaluations of the derivatives of the
function f(t,y(t)) are not required, but linear combinations
of the values of f(t,y(t)) are used to approximate y(t). In the
fourth-order Runge-Kutta method, the approximate y at the
ith time step is defined as

y=y"'+ % (ky + 2k, +2k; + k), (22)

where ifi = (&',0u'/ot)T contains the global block vector i,
including the values of the variables in both the fluid and the
solid domain at the ith time step, and its derivative ¥ = ot /ot
attime t = iAt,i = 1,..., N. The initial condition is given by
7" = e = (epe,)’, and k; = (kj, ka)T, j =1,2,3,4, are the
differential estimates as follows:

(k11> fi (int,w,¥)
k) \ f, (ise@,9) )
. At — k —~i k
<k21)_ fl (lAf+?,ul+%,V +%)
= o ,
kzo fs (iAt+§,ﬁ'+i,A’+@
2 2 2

(23)
ky i Ky

. At
(kg,l)_ f1<1At+7,u +7V +7>

Atk K ’
sz £y (iAt+—,ﬁ’+£V‘+£>
2 2 2

(k“) (fl (iMt + AL + kg, ¥ + k32)>

Ky f (ist + AL + Ky, ¥ + k)

In other words, in order to get differential estimates (23), the
function f is evaluated at each time step four times, and then
the successive approximation of ¥ is calculated by formula
(22).

If the matrix . is diagonal, as is in the formulation with
the velocity potential, the only matrix inversion needed in
time-stepping is computed simply by inverting each diagonal
element in the matrix .. This requires only 7 floating point
operations, which is the number of diagonal elements in the
matrix ./ and known as the number of degrees of freedom
in the space discretization. Since the matrix & contains
only diagonal blocks and coupling terms, the operation
count of the matrix-vector product &V is of order 7. In the
matrix-vector multiplication involving the sparse stiffness
matrix J, only nonzero matrix entries are multiplied, which
requires the order of *7 operations, where 7 is the order
of the polynomials in the spectral element basis. Besides
these, 271 additions and 3# multiplications are needed for a
single evaluation of the function f. According to (22), the
computation of §' needs 147 floating point operations. Thus,
the computational cost for each time step of the state equation

is of order O(r*71) also with the RK time-stepping. Although
the computational cost is of the same order for both the
CD and the RK time-steppings, the number of floating point
operators needed for the RK is nearly four times that of the
CD.

Next, we make an effort to decrease the computing time
and still maintain the high accuracy provided by higher-order
time discretizations. For this purpose, we present the fourth-
order Adams-Bashforth (AB) method based on approximat-
ing the functions f(¢,¥(¢)) by interpolating polynomials. It
gives the solution y at the ith time step as

V=7"'+ 2—}; (55 (-1 ALy ™)
~59f (-2 A7) +37f ((-3) Ay ) (24

—9f (-9 AL5™)),

where ?i = (@,0u'/0t)" contains the vector @ and its
derivative ¥ = aﬁi/at at time t = iAt, i = 4,...,N. Hence,
it is a multistep method that requires information at four
previous time steps implying that another method is needed
for starting the time marching. At this stage, we utilize the
fourth-order Runge-Kutta method for computing the start-
up values §°, §', 7, and §° to initialize the multistep method.

3. Numerical Examples

In this section, the computational accuracy and efficiency of
solving seismic wave problems are considered. The focus of
Section 3.1 is on different formulations and implementation
processes. In Section 3.2, the efficiency is further analysed
by using higher-order time discretization. Finally, simulated
seismograms and two-dimensional illustrations presenting
the seismic wave motion are given in Section 3.3. The
numerical experiments presented in this section are carried
out on an AMD Opteron 885 processor at 2.6 GHz.

3.1. Comparison between Symmetric and Nonsymmetric For-
mulations. We illustrate the computational cost of both
symmetric and nonsymmetric formulations by solving a
time-dependent problem both expressing the acoustic wave
equation by the pressure and by using the velocity potential in
the fluid domain. The right-hand sides and initial conditions
are defined to satisfy the analytical solution p = wp(x)sin(w-
x)cos(wt), ¢ = —sin(w - x)sin(wt), and u = (cos(w - x/
cp(x)) cos(wt), cos(w - x/c,(x)) cos(wt))T.

The problem is solved in a domain, which consists of the
solid part Q; = [-1,0] x [0, 1] and the fluid part Qf = [0,1] x
[0,1] (see Figure 1). We use square-element meshes with
mesh step size h = 0.1, and the element order is increased in
both parts of the domain from1to 5. The meshes are matching
on the coupling interface I} set at x; = 0 for x, € [0,1].
On the other boundaries we have the absorbing boundary
conditions. The material parameters in the fluid domain are
pf(x) = 1.0 and ¢(x) = 1.0. In the solid domain, we use the
values ¢, (x) = 6.20, ¢(x) = 3.12, and p,(x) = 2.7. The angular
frequency w = 4m is the same for both media, and we set
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FIGURE 2: CPU time (in seconds) and memory (in kilobytes) consumed for solving a time-dependent problem with different formulations.
The number of time steps is fixed to be 400, and square-element meshes with mesh step size & = 0.1 are used in both media.

the propagation direction (1, 0) by the vector w = (w;, w,) =
(1, 0)w. The time interval [0.0,0.5] is divided into 400 steps,
each of size At = 0.00125, to guarantee the stability condition
also for the higher element orders.

When the pressure formulation is considered, the time
marching involves only matrix-vector multiplications, and
actual matrix inversions are not needed. In the implemen-
tation of the velocity potential formulation, a “one-shot”
method is required for solving the linear system including
u'*! and ¢! at each time step i = 1,...,N. In that case,
the matrix which is needed to be inverted is stored either as
a band matrix or by using the compressed column storage
including only the nonzero matrix elements.

The Lapack LU decomposition routines dgbtrf and
dgbtrs use the band matrix storage mode. With these
routines the memory and CPU time consumption increases
rapidly when the element order is increased (see Figure 2).
The SuperLU library routines perform an LU decomposi-
tion with partial pivoting, and the triangular system solves
through forward and backward substitution. At this stage, we
also utilize the sparsity of the matrix by using the compressed
column storage mode. Since all the nonzero elements are
not near the diagonal of the matrix, the compressed column
storage mode requires less storage and computing operations
than the band storage mode. That is why the SuperLU
library gives a less demanding procedure for solving the
linear system than the Lapack library. This is because the
matrices arising from the space discretization and including
the coupling terms have, in general, a sufficiently large
bandwidth. Thus, a remarkably larger amount of memory is
needed for storing the sparse coefficient matrix in the band
matrix form used in conjunction with Lapack routines than
in the compressed column storage utilized with the SuperLU.
Consequently, less time is needed when fewer elements are

employed in the solution procedure with the SuperLU. The
performance of the Lapack routines could be improved, for
instance, by using an appropriate node numbering of the
mesh.

We conclude that the computational efforts are of the
same order of magnitude whether the problem in the fluid
domain is solved with respect to pressure or whether we use
velocity potential formulation in conjunction with the linear
solver provided by the SuperLU library.

The comparison between numerical and analytical solu-
tion shows that in both media the accuracy improves when
the element order grows until a certain error level is reached
(see Figure 3). This error level, shown as a horizontal line in
Figure 3, reflects the error level of time discretization. Since
we use a fixed number of time steps at all element orders,
the error of time discretization becomes dominant for higher-
order elements. Hence, finer time steps or higher-order time
discretizations are needed in conjunction with higher-order
elements.

In principle, both symmetric and nonsymmetric formula-
tion should lead to the same order of accuracy at each element
order. The results obtained in the solid domain and depicted
in Figure 3(a) are perfectly in balance with this hypothesis.
However, in Figure 3(b) we see that in the fluid domain
higher accuracy is obtained with the velocity potential than
with the pressure formulation at each element order. In
the case of pressure formulation, the interface condition is
derived by differentiating the displacement component twice
with respect to time. From the physical point of view, some
information is lost in that procedure, and linear growth of
the displacement with respect to time is not eliminated at
the interface. However, the solutions of the pressure formu-
lation converge towards the analytical solution. Although
the pressure formulation gives less accurate results than the
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FIGURE 3: Maximum errors, computed as L*°-norms, with respect to the element order. The number of time steps is fixed to be 400, and
square-element meshes with mesh step size h = 0.1 are used in both media.

velocity potential formulation, it is still a plausible choice at
some point. For instance, the implementation process can be
hastened when the preexisting solvers of acoustic and elastic
problems can be harnessed in the implementation, and no
additional linear solvers are needed.

3.2. Higher-Order Time Discretizations. We demonstrate how
the efficiency of the method can be improved by using
the fourth-order Runge-Kutta scheme instead of the central
finite difference time discretization. In principle, the central
finite difference scheme is second-order accurate, while the
fourth-order Runge-Kutta method is fourth-order accurate.
However, the error of space discretization limits the accuracy
of the overall time-stepping scheme as well, and the stability
issue restricts choosing a feasible length of the time step. To
better illustrate the error of time and space discretization, we
continue with the example presented in Section 3.1, except
that we change the mesh step size to & = 1/20 and use
various time step lengths to observe stability and accuracy
issues. The number of time steps needed for stability is first
determined numerically by using 50i time steps per time
period, for i = 1,2,3,..., until a stable solution is achieved.
From these results, we can define stability constant e, for each
element order r such that

A
R
max {c, Cpo cs} V2

The stability conditions corresponding to the largest stable
time step are given in Table 1. The stability region seems to be
exactly the same with both the CD and the RK time-stepping
for the element orders r = 1,2,3 and differs only slightly
for the higher-order elements. The results reflect the well-
known CFL condition and are in a good agreement with the
experiments presented for acoustic waves with the CD time
discretization by Cohen [9].

TABLE 1: Stability conditions for the CD and the RK time discretiza-
tion schemes.

r 1 2 3 4 5
Number of CD 100 200 350 550 800
time steps RK 100 200 350 600 900
N CD 0.8765 0.4383 0.2504 0.1594 0.1096

o

RK 0.8765 0.4383 0.2504 0.1461 0.0974

We start the computations with the largest stable time step
and then repeatedly add the number of time steps N = T'/At
by 300, until their number is larger than 3000. Proceeding
in this way, for each element order we achieve a series of
numerical results with various lengths of the time step. The
maximum errors between the numerical and the analytical
solution with respect to At/h are computed as L°°-norms.
Accuracy of the numerical solution is shown in Figure 4
with respect to the ratio between the time step At and
the mesh step size h for both the CD and the RK time-
steppings with five element orders r. Every curve represents
computations with a particular polynomial order which has
a characteristic discretization error. Naturally, the order of
the space discretization error decreases when higher-order
elements are used. It is worth mentioning that errors are
somewhat smaller in the solid domain than in the fluid
domain.

Itis seen that with the element ordersr = 1and r = 2both
time-stepping schemes give the same accuracy even when
sufficiently large time steps are used. Moreover, this is the
accuracy of the space discretization since the error of spatial
discretization dominates with low-order elements. In other
words, the spatial error is larger than the temporal error, and
the maximum error with respect to the length of the time step
is not decreasing significantly even if smaller time steps are
used.



10

107

At/h

1072}

1071 10 107 1077 10® 107> 107* 107 1072 107!

Maximum error

—— CD,r=1 —A— RK,r=1
-X- CD,r=2 -v- RK,r=2
-%- CD,r=3 -©- RK,r=3
(- CD,r=4 0 RK, r=4
-0- CD,r=5 -O- RK,r=5

(a) Solid domain

Advances in Mathematical Physics

10—1 L

At/h

-2
1072,

~

OOV0-0-0 -0 -0 -----O
B R T o

GeGG G g
00D O D O OO

107 10 10 107 10 107 107* 107 1072 107!

Maximum error

—— CD,r=1 —A— RK,r=1
-X- CD,r=2 -v- RK,r=2
-%- CD,r=3 -©- RK,r=3
(- CD,r=4 -0 RK, r=4
-©- CD,r=5 -O- RK,r=5

(b) Fluid domain
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and the time step refinement gives a series of numerical results with various lengths of the time step for each element order.

Naturally, for each element order r the solution with
the RK time-stepping is at least as accurate as the one
computed with the CD time-stepping. When higher-order
elements are used, results computed with the RK time
discretization are more accurate than the ones computed with
the CD time discretization. Depending on the accuracy of
the time discretization, the error of temporal discretization
might be dominating with large time steps. This is shown
especially in the case of the CD time discretization with space
discretization orders r > 3. In principle, also with these
higher-order elements, the error curves turn to vertical lines,
reflecting the accuracy of the space discretization, when the
length of the time step is refined enough. In the case of the
RK time discretization, the error of space discretization is
dominant even when long time steps are used. With the RK
time discretization, very fine time steps are needed only for
r = 5 in the solid domain to achieve the error level of spatial
discretization.

With the help of the results depicted in Figure 4 we can
extrapolate that very fine time steps are needed with the CD
time discretization to keep the temporal error smaller than
the spatial error when higher-order elements are involved.
For r = 3, we would already need thousands of time steps
with the CD time discretization to get the same accuracy
as with the RK time discretization with 350 time steps.
Tens of thousands of time steps are required to conceal the
temporal error with the CD time discretization with r = 4.
Respectively, for ¥ = 5 we need hundreds of thousands of

TaBLE 2: Constants k, concealing the temporal error with the CD
and the RK time discretizations.

r 1 2 3 4 5
k CD 0.8765 0.1096 0.0167 0.0017 0.0003
" RK 0.8765 0.4383 0.2191 0.0730 0.0266

time steps to achieve the error level of space discretization.
The values of k,, satisfying

At k,

h  max {c, Cpo cs} V2

and concealing the temporal error, are reported for different
element orders in Table 2.

Since refining the time steps means more evaluations,
we are also interested in measuring the CPU time needed
in these simulations. The numerical results about CPU time
consumption are seen in Figure 5. To conceal the temporal
error for v = 1 and r = 2, less computation time is
needed with the CD time discretization than with the RK time
discretization. With higher-order elements, more remarkable
time saving occurs by using the RK time discretization to
attain the accuracy of the space discretization. Although
the difference in time consumption is not significant with a
sufficiently small number of degrees of freedom, it can play
an important role in large-scale real-life applications.



Advances in Mathematical Physics

Qo
10° t ®@®
.
go . _
& T~
©
.
..
O
2
10° | & %11 o % \
Q 1 ] \v4
£ & 2
2 X
® X
10} ¥
X
\
\
\
X
10°
107 107 10 107 10° 10° 10* 10 1072
Maximum error
—+ CD,r=1 —— RK,r =1
-X- CD,r=2 -v- RK,r=2
-%- CD,r=3 -o- RK,r=3
~E- CD,r=4 @ RK, r=4
- CD,r=5 -O- RK,r=5

(a) Solid domain

11
10° %1
Q.
O
®
o
I}
10 }
)
£
o)
A~
@)
10t}
\
\
X
100}
107 107 10® 107 10° 10° 10* 10 1072
Maximum error
—+ CD,r=1 —— RK,r =1
-X- CD,r=2 -v- RK,r =2
-%- CD,r=3 -6- RK,r=3
~E- CD,r=4 @ RK,r =4
-©- CD,r=5 -O- RK,r=5

(b) Fluid domain

FIGURE 5: Accuracy with respect to CPU time consumptions (in seconds) with the CD and the RK time discretizations. The mesh step size
is fixed to be h = 1/20, and the time step refinement gives a series of numerical results with various lengths of the time step for each element

order.

Next, we consider the Adams-Bashforth (AB) time-
stepping scheme, with which only one evaluation of the
function f(t,y(¢)) is needed at each time step. The values
are stored to be used in the four following time steps.
Hence, the memory consumption is of the same order of
magnitude as when the fourth-order RK method is utilized.
In theory, employing the fourth-order AB time-stepping
scheme, instead of the fourth-order RK method, saves time.
Nevertheless, the stability region is smaller for the fourth-
order AB than the fourth-order RK method. The largest stable
time steps with the AB method, determined numerically in
the same way as is done in the previous example, are reported
in Table 3. This practical realization shows that the length of
the time step that guarantees the stability conditions is much
smaller with the AB method than with the RK method. The
computations are continued by carrying out the simulations
with the AB time discretization with smaller time steps. That
is, for the element order r the addition of 3007 time steps is
repeated until the number of time steps is larger than 3000r.
The results are presented in Figure 6 as accuracy with respect
to CPU time consumption. For comparison, the results of

fo=
O)

1\? 1\2 T
| -11527 1—1152n<t—ﬁ> exp —5767T<t—§) , x=1(0.9,0.5)",

the RK time discretization from the previous example are
also depicted there. Clearly, stability restrictions deteriorate
the efficiency of the AB time-stepping scheme. The CPU
time used for the computation is in favor of the RK time
discretization; time that is more than an order of magnitude
longer is consumed to get the same accuracy with the AB
time discretization than with the RK time discretization.
Thus, the efficiency of the method can not be improved by
utilizing the AB time discretization. Furthermore, the AB
time discretization requires the solutions of the earlier time
steps to be stored and, hence, is not memory efficient.

3.3. Simulated Seismogram. In the last example, we consider
a Runge-Kutta time-simulation for the velocity potential
formulation with the element order r = 4. We use the
same computational domain as in the previous examples with
matching square-element meshes with step size h = 1/20. The
material parameters are pf(x) = 1.0, c(x) = 1.5, cp(x) = 4.0,
¢,(x) = 2.0, and py(x) = 2.5. A point source is set on the fluid
domain, such that

(27)
x # (0.9,0.5)7.
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TABLE 3: Stability conditions for the AB time discretization scheme.

r 1 2 3 4 5
Number of AB 500 1550 3250 5450 8250
time steps
« AB 0.1753 0.0565 0.0270 0.0161 0.0106

r

It generates an impulse and is typical for modeling seismic
waves related to earthquakes or explosions (see, e.g., [29,
41, 42]). The other source functions, Yy, f, and, g, as
well as the initial conditions, ey, €y, and e, are zero-
valued. The simulation has been run from¢t = 0tot =
2 with 3100 time steps, each of size At = 0.000645. The
results, observed as the values of the velocity potential at the
point (0.7,0.5), are presented in Figure 7. Respectively, the
horizontal and vertical components of the displacement at
the point (-0.3,0.5) are seen in Figure 8. That is, we have
simulated results corresponding to measurements obtained
by a receiver, such as a seismometer, placed at a particular
place. Further, we present in Figure 9 a two-dimensional
snapshot of both the domains at time step 1450.

4. Conclusions

We considered the spectral element space discretization for
time-dependent equations considering acoustic and elastic

wave propagation and their interaction. It is possible to
construct the spectral element formulation such that it results
in a global mass matrix that is diagonal by construction,
which leads to efficient implementation. This is an advantage
compared with the classical finite element method.

The temporal discretization for time-dependent equa-
tions was made by the second-order accurate central finite
difference scheme or the fourth-order accurate Runge-Kutta
or Adams-Bashforth approaches. The performances of the
different time discretization schemes were compared numer-
ically. We found out that the Adams-Bashforth scheme has
such strict stability conditions that it is not a feasible choice at
this stage. The CPU time used for the computation is in favor
of the RK time discretization; namely, time that is more than
one order of magnitude longer is consumed to get the same
accuracy with the AB time discretization than with the RK
time discretization.

We can conclude that, to make good use of higher-order
elements, also the time discretization should be done with a
higher-order scheme. As a rule of thumb we can say that the
efficiency of the overall method suffers from the error of time
discretization if the order of the element is greater than the
order of the time discretization method used. The second-
order central finite difference time discretization method is
efficient with finite elements, but when high accuracy is
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needed, it is best to use efficient higher-order time discretiza-
tion methods such that the Runge-Kutta scheme.
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