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The present paper deals with pseudo-Petrov symmetric Riemannian manifolds whose space-matter tensor satisfies a special
condition. Firstly, basic results of pseudo-Petrov symmetric Riemannian manifolds are obtained. Then, pseudo-Petrov symmetric
manifoldswhich are Einstein, quasi-Einstein, and locally decomposable are examined and some theorems involving thesemanifolds
are proved. Finally, two examples proving the existence of pseudo-Petrov symmetric Riemannian manifolds are given.

1. Introduction

In the sense of Chaki, a nonflat Riemannian manifold is said
to be pseudosymmetric [1] if its curvature tensor satisfies the
following relation:

(∇
𝑋
𝑅) (𝑌, 𝑍, 𝑈, 𝑉) = 2𝛼 (𝑋) 𝑅 (𝑌, 𝑍, 𝑈, 𝑉)

+ 𝛼 (𝑌) 𝑅 (𝑋, 𝑍, 𝑈, 𝑉)

+ 𝛼 (𝑍) 𝑅 (𝑌,𝑋,𝑈, 𝑉)

+ 𝛼 (𝑈) 𝑅 (𝑌, 𝑍,𝑋, 𝑉)

+ 𝛼 (𝑉) 𝑅 (𝑌, 𝑍, 𝑈,𝑋)

(1)

for all vector fields 𝑋,𝑌, 𝑍,𝑈, 𝑉 ∈ 𝜒(𝑀𝑛), where 𝛼 is a
nonzero 1-form, 𝜒(𝑀𝑛) denotes the Lie algebra of all smooth
vector fields [over 𝐶∞(𝑀)] on manifold 𝑀, and ∇ denotes
the operator of covariant differentiation with respect to the
metric tensor 𝑔. The 1-form 𝛼 is called the associated 1-form
of the manifold and an 𝑛-dimensional manifold of this kind
is denoted by (PS)

𝑛
.

In 1949, Petrov [2] introduced a tensor field𝑃 of type (0, 4)
and defined it by

𝑃 = 𝑅 +
𝑘

2
𝑔 ∧ 𝑇 − 𝜎𝐺, (2)

where 𝑅 is the Riemannian curvature tensor of type (0, 4),
𝑇 is the energy-momentum tensor of type (0, 2), 𝑘 is a
cosmological constant, 𝜎 is the energy density (scalar), 𝐺 is
a tensor of type (0, 4) given by

𝐺 (𝑋, 𝑌, 𝑍, 𝑈) = 𝑔 (𝑋,𝑈) 𝑔 (𝑌, 𝑍) − 𝑔 (𝑋, 𝑍) 𝑔 (𝑌, 𝑈) (3)

for all 𝑋,𝑌, 𝑍,𝑈 ∈ 𝜒(𝑀), 𝜒(𝑀) being the Lie algebra
of smooth vector fields on 𝑀, and the Kulkarni-Nomizu
product [3] 𝐸 ∧ 𝐹 of two (0, 2) tensors 𝐸 and 𝐹 is defined by

(𝐸 ∧ 𝐹) (𝑋1, 𝑋2, 𝑋3, 𝑋4)

= 𝐸 (𝑋
1
, 𝑋
4
) 𝐹 (𝑋

2
, 𝑋
3
) + 𝐸 (𝑋

2
, 𝑋
3
) 𝐹 (𝑋

1
, 𝑋
4
)

− 𝐸 (𝑋
1
, 𝑋
3
) 𝐹 (𝑋

2
, 𝑋
4
)

− 𝐸 (𝑋
2
, 𝑋
4
) 𝐹 (𝑋

1
, 𝑋
3
) ,

(4)

for 𝑋
𝑖
∈ 𝜒(𝑀), 𝑖 = 1, 2, 3, 4. The tensor 𝑃 is known as the

space-matter tensor of type (0, 4) of manifold𝑀.
Einstein’s field equation with cosmological constant [4] is

given by

𝑘𝑇 = 𝑆 + (𝜆 −
𝑟

2
) 𝑔, (5)
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where 𝜆 is a cosmological constant, 𝑟 is the scalar curvature,
and 𝑆 is the Ricci tensor of type (0, 2). By virtue of (5), (2)
takes the form

𝑃 = 𝑅 +
1

2
(𝑔 ∧ 𝑆) − (𝜎 − 𝜆 +

𝑟

2
)𝐺. (6)

The present paper deals with a Riemannian manifold
(𝑀𝑛, 𝑔) (𝑛 > 3) whose space-matter tensor 𝑃 (nonvanishing
identically) satisfies the condition

(∇
𝑋
𝑃) (𝑌, 𝑍, 𝑈, 𝑉) = 2𝐴 (𝑋) 𝑃 (𝑌, 𝑍, 𝑈, 𝑉)

+ 𝐴 (𝑌) 𝑃 (𝑋, 𝑍,𝑈, 𝑉)

+ 𝐴 (𝑍) 𝑃 (𝑌,𝑋,𝑈, 𝑉)

+ 𝐴 (𝑈) 𝑃 (𝑌, 𝑍,𝑋, 𝑉)

+ 𝐴 (𝑉) 𝑃 (𝑌, 𝑍, 𝑈,𝑋) ,

(7)

where𝐴 is a nonzero 1-form such that𝐴(𝑋) = 𝑔(𝑋, 𝜌) for all
𝑋. Such a manifold will be called a pseudo-Petrov symmetric
manifold and denoted by (PPS)

𝑛
.

In Section 2, we go through some basic results of (PPS)
𝑛

[5]. In Section 3, we study Einstein (PPS)
𝑛
and prove that

scalar curvature can not be vanished in such a manifold.
Section 4 is concerned about quasi-Einstein (PPS)

𝑛
where we

discuss (PPS)
𝑛
which is locally decomposable in Section 5.

Finally, the last section deals with nontrivial examples of
(PPS)

𝑛
and also of quasi-Einstein (PPS)

𝑛
.

2. Some Basic Results of (PPS)
𝑛

In this section, we deal with some basic results of (PPS)
𝑛
. Let

{𝑒
𝑖
: 𝑖 = 1, 2, . . . , 𝑛} be an orthonormal basis of the tangent

space at any point of the manifold.Then, the Ricci tensor 𝑆 of
type (0, 2) and the scalar curvature 𝑟 are given by

𝑆 (𝑋, 𝑌) = 𝑔 (𝑄𝑋, 𝑌) =
𝑛

∑
𝑖=1

𝑅 (𝑒
𝑖
, 𝑋, 𝑌, 𝑒

𝑖
) ,

𝑟 =
𝑛

∑
𝑖=1

𝑆 (𝑒
𝑖
, 𝑒
𝑖
) =
𝑛

∑
𝑖=1

𝑔 (𝑄𝑒
𝑖
, 𝑒
𝑖
) ,

(8)

where 𝑄 is the symmetric endomorphism corresponding to
the Ricci tensor 𝑆. From (6), we obtain
𝑛

∑
𝑖=1

𝑃 (𝑒
𝑖
, 𝑍, 𝑈, 𝑒

𝑖
)

=
𝑛

2
𝑆 (𝑍, 𝑈) − [

𝑛 − 2

2
𝑟 + (𝑛 − 1) (𝜎 − 𝜆)] 𝑔 (𝑍,𝑈)

(9)

for all𝑍 and𝑈. Differentiating the above equation covariantly
with respect to𝑋, we get
𝑛

∑
𝑖=1

(∇
𝑋
𝑃) (𝑒
𝑖
, 𝑍, 𝑈, 𝑒

𝑖
)

=
𝑛

2
(∇
𝑋
𝑆) (𝑍, 𝑈)

− [
𝑛 − 2

2
𝑑𝑟 (𝑋) + (𝑛 − 1) 𝑑𝜎 (𝑋)] 𝑔 (𝑍,𝑈)

(10)

for all𝑋,𝑍, and𝑈.Then, using (6) in (7) and contractingwith
respect to 𝑌 and 𝑉, we obtain, by virtue of (10), that

𝑛 (∇
𝑋
𝑆) (𝑍, 𝑈) − [(𝑛 − 2) 𝑑𝑟 (𝑋) + 2 (𝑛 − 1) 𝑑𝜎 (𝑋)]

⋅ 𝑔 (𝑍, 𝑈) = 𝑛 [2𝐴 (𝑋) 𝑆 (𝑍, 𝑈) + 𝐴 (𝑍) 𝑆 (𝑋,𝑈)

+ 𝐴 (𝑈) 𝑆 (𝑍,𝑋)] − {(𝑛 − 2) 𝑟 − 2 (𝑛 − 1) (𝜆 − 𝜎)}

⋅ [2𝐴 (𝑋) 𝑔 (𝑍,𝑈) + 𝐴 (𝑍) 𝑔 (𝑋,𝑈)

+ 𝐴 (𝑈) 𝑔 (𝑍,𝑋)] + 4𝑃 (𝑋,𝑈, 𝑍, 𝜌) .

(11)

Setting 𝑍 = 𝑈 = 𝑒
𝑖
in (11) and taking summation over 𝑖, 1 ≤

𝑖 ≤ 𝑛, we get

𝐴 (𝑄𝑋)

−
1

𝑛
[
1

2
(𝑛2 − 𝑛 − 4) 𝑟 − (𝑛 + 2) (𝑛 − 1) (𝜆 − 𝜎)]

⋅ 𝐴 (𝑋) =
3 − 𝑛

4
𝑑𝑟 (𝑋) −

𝑛 − 1

2
𝑑𝜎 (𝑋) .

(12)

Assume that the scalar curvature 𝑟 and the energy density 𝜎
satisfy the relation

(𝑛 − 3) 𝑟 − 2 (𝑛 − 1) (𝜆 − 𝜎) = 0. (13)

Then, (12) reduces to

𝐴 (𝑄𝑋) =
2 (𝑛 − 1)

𝑛 (𝑛 − 3)
(𝜆 − 𝜎)𝐴 (𝑋) , (14)

that is, 𝑆 (𝑋, 𝜌) = 2 (𝑛 − 1)
𝑛 (𝑛 − 3)

(𝜆 − 𝜎) 𝑔 (𝑋, 𝜌) . (15)

From (5) and (15), we obtain

𝑇 (𝑋, 𝜌) =
(𝑛 − 1) (𝑛 − 2) 𝜎 − 2𝜆

𝑘𝑛 (𝑛 − 3)
𝑔 (𝑋, 𝜌) . (16)

This leads to the following theorem.

Theorem 1. In a (𝑃𝑃𝑆)
𝑛
admitting Einstein’s field equation,

((𝑛 − 1)(𝑛 − 2)𝜎− 2𝜆)/𝑘𝑛(𝑛− 3) is an eigenvalue of the energy-
momentum tensor𝑇 corresponding to the eigenvector 𝜌 defined
by 𝑔(𝑋, 𝜌) = 𝐴(𝑋) for all𝑋, provided that relation (13) holds.

3. Einstein (PPS)
𝑛

This section is concerned about a (PPS)
𝑛
(𝑛 > 3)which is also

an Einstein manifold. The Ricci tensor of Einstein manifold
[3] satisfies the condition

𝑆 (𝑋, 𝑌) =
𝑟

𝑛
𝑔 (𝑋, 𝑌) (17)

from which it follows that

𝑑𝑟 (𝑋) = 0,

(∇
𝑍
𝑆) (𝑋, 𝑌) = 0

∀𝑋, 𝑌, 𝑍.

(18)
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In view of (17), (18), and (6), we find that

(∇
𝑋
𝑃) (𝑌, 𝑍, 𝑈, 𝑉) = (∇𝑋𝑅) (𝑌, 𝑍, 𝑈, 𝑉)

− 𝑑𝜎 (𝑋)𝐺 (𝑌, 𝑍,𝑈, 𝑉) .
(19)

By virtue of (17), (19), and (7), we get

(∇
𝑋
𝑅) (𝑌, 𝑍, 𝑈, 𝑉) − 𝑑𝜎 (𝑋)𝐺 (𝑌, 𝑍,𝑈, 𝑉) = 2𝐴 (𝑋)

⋅ 𝑅 (𝑌, 𝑍, 𝑈, 𝑉) + 𝐴 (𝑌) 𝑅 (𝑋, 𝑍,𝑈, 𝑉) + 𝐴 (𝑍)

⋅ 𝑅 (𝑌,𝑋,𝑈, 𝑉) + 𝐴 (𝑈) 𝑅 (𝑌, 𝑍,𝑋, 𝑉) + 𝐴 (𝑉)

⋅ 𝑅 (𝑌, 𝑍, 𝑈,𝑋) + [𝜆 − 𝜎 −
(𝑛 − 2) 𝑟

2𝑛
]

⋅ [2𝐴 (𝑋)𝐺 (𝑌, 𝑍, 𝑈, 𝑉) + 𝐴 (𝑌)𝐺 (𝑋, 𝑍,𝑈, 𝑉)

+ 𝐴 (𝑍)𝐺 (𝑌,𝑋,𝑈, 𝑉) + 𝐴 (𝑈)𝐺 (𝑌, 𝑍,𝑋, 𝑉)

+ 𝐴 (𝑉)𝐺 (𝑌, 𝑍,𝑈,𝑋)] .

(20)

Setting 𝑌 = 𝑉 = 𝑒
𝑖
in (20) and then taking summation over 𝑖,

1 ≤ 𝑖 ≤ 𝑛, we find that

(𝑛 − 1) 𝑑𝜎 (𝑋) 𝑔 (𝑍,𝑈) = [
(𝑛 − 2) 𝑟

2𝑛
− (𝜆 − 𝜎)] [(𝑛

− 1) {2𝐴 (𝑋) 𝑔 (𝑍,𝑈) + 𝐴 (𝑍) 𝑔 (𝑋,𝑈)

+ 𝐴 (𝑈) 𝑔 (𝑍,𝑋)} + 𝐴 (𝑋) 𝑔 (𝑍,𝑈) − 𝐴 (𝑍)

⋅ 𝑔 (𝑋,𝑈) + 𝐴 (𝑋) 𝑔 (𝑍,𝑈) − 𝐴 (𝑈) 𝑔 (𝑋, 𝑍)]

−
𝑟

𝑛
[2𝐴 (𝑋) 𝑔 (𝑍,𝑈) + 𝐴 (𝑍) 𝑔 (𝑋,𝑈) + 𝐴 (𝑈)

⋅ 𝑔 (𝑍,𝑋)] − 2𝑅 (𝑋, 𝑍,𝑈, 𝜌)

(21)

by virtue of (18). Replacing 𝑍 and 𝑈 by 𝑒
𝑖
in (21) and taking

summation over 𝑖, 1 ≤ 𝑖 ≤ 𝑛, we have

𝑛 (𝑛 − 1) 𝑑𝜎 (𝑋)

= (𝑛 + 2) [(𝑛 − 3) 𝑟 − 2 (𝑛 − 1) (𝜆 − 𝜎)] 𝐴 (𝑋) .
(22)

Then, substituting 𝑋 and 𝑍 by 𝑒
𝑖
in (21) and taking summa-

tion over 𝑖, 1 ≤ 𝑖 ≤ 𝑛, we obtain

2 (𝑛 − 1) 𝑑𝜎 (𝑋)

= (𝑛 + 2) [(𝑛 − 3) 𝑟 − 2 (𝑛 − 1) (𝜆 − 𝜎)] 𝐴 (𝑋) .
(23)

By virtue of (22) and (23), we have

(𝑛 − 3) 𝑟 − 2 (𝑛 − 1) (𝜆 − 𝜎) = 0. (24)

Finally, in the view of (18) and (24), we get

𝑑𝜎 (𝑋) = 0 ∀𝑋 that is, 𝜎 is constant. (25)

Hence, we can state the following theorem.

Theorem 2. In an Einstein (𝑃𝑃𝑆)
𝑛
admitting Einstein’s field

equation, the energy density scalar is constant and it is
connected with the scalar curvature by the relation (𝑛 − 3)𝑟 −
2(𝑛 − 1)(𝜆 − 𝜎) = 0.

Now, in an Einstein (PPS)
𝑛
admitting Einstein’s field

equation, if possible, let the energy density scalar 𝜎 be equal
to the cosmological constant 𝜆. From (24), it follows that the
scalar curvature 𝑟 vanishes identically. With the help of (20),
we find that

(∇
𝑋
𝑅) (𝑌, 𝑍, 𝑈, 𝑉) = 2𝐴 (𝑋)𝑅 (𝑌, 𝑍, 𝑈, 𝑉)

+ 𝐴 (𝑌) 𝑅 (𝑋, 𝑍,𝑈, 𝑉)

+ 𝐴 (𝑍) 𝑅 (𝑌,𝑋,𝑈, 𝑉)

+ 𝐴 (𝑈) 𝑅 (𝑌, 𝑍,𝑋, 𝑉)

+ 𝐴 (𝑉) 𝑅 (𝑌, 𝑍, 𝑈,𝑋)

(26)

which shows that the manifold is a (PS)
𝑛
. This leads to a

contradiction, as an Einstein manifold can not accommodate
a pseudosymmetric structure [1]. So our assumption that 𝜎 =
𝜆 is not possible. Hence, we can state the following theorem.

Theorem 3. In an Einstein (𝑃𝑃𝑆)
𝑛
admitting Einstein’s field

equation, the energy density satisfies the relation 𝜎 ̸= 𝜆 and
the scalar curvature can not be vanished identically.

Definition 4. A vector field 𝑉 on a Riemannian manifold is
said to be concurrent [6] if and only if there exists a nonzero
constant 𝑘 such that ∇

𝑋
𝑉 = 𝑘𝑋 for all𝑋 ∈ 𝜒(𝑀).

𝑉 is said to be parallel, in case ∇
𝑋
𝑉 = 0 for all𝑋 ∈ 𝜒(𝑀).

Let us consider that an Einstein (PPS)
𝑛
in which the

vector field 𝜌 is defined by 𝑔(𝑋, 𝜌) = 𝐴(𝑋) is parallel. Then,
we have

∇
𝑋
𝜌 = 0 ∀𝑋. (27)

If 𝜌 is concurrent, we have

∇
𝑋
𝜌 = 𝜅𝑋, where 𝜅 is a constant. (28)

Therefore, by using Ricci identity, we get 𝑅(𝑋, 𝑌, 𝜌, 𝑈) = 0
which yields

𝑆 (𝑌, 𝜌) = 0. (29)

From (17) and (29), it follows that

𝑟 = 0 since 󵄩󵄩󵄩󵄩𝜌
󵄩󵄩󵄩󵄩 = 1 (30)

which is not possible according to our previous theorem. So
our assumption is not true; that is, 𝜌 can not be a concurrent
vector field. This leads to the following theorem.

Theorem 5. In an Einstein (𝑃𝑃𝑆)
𝑛
admitting Einstein’s field

equation, the vector field 𝜌 defined by 𝑔(𝑋, 𝜌) = 𝐴(𝑋) cannot
be concurrent.

4. Quasi-Einstein (PPS)
𝑛

In this section, we discuss a quasi-Einstein manifold admit-
ting a pseudosymmetric space-matter tensor. A Riemannian
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manifold (𝑀𝑛, 𝑔) (𝑛 > 3) is said to be quasi-Einstein [7] if its
Ricci tensor 𝑆 is not identically zero and satisfies that

𝑆 = 𝛼𝑔 + 𝛽𝐿 ⊗ 𝐿, (31)

where 𝛼, 𝛽 ( ̸= 0) are associated scalars and 𝐿 is a nonzero 1-
form which is defined by 𝑔(𝑋, 𝜍) = 𝐿(𝑋) for any vector field
𝑋, with 𝜍 being a unit vector field, called the generator of the
manifold. Relation (31) implies

𝑟 = 𝑛𝛼 + 𝛽. (32)

Differentiating covariantly (31) with respect to𝑋, we obtain

(∇
𝑋
𝑆) (𝑍, 𝑈)

= 𝑑𝛼 (𝑋) 𝑔 (𝑍,𝑈) + 𝑑𝛽 (𝑋) 𝐿 (𝑍) 𝐿 (𝑈)

+ 𝛽 [(∇
𝑋
) 𝐿 (𝑍) 𝐿 (𝑈) + (∇𝑋) 𝐿 (𝑈) 𝐿 (𝑍)] .

(33)

In view of (33), (11) takes the following form:

𝑛 [𝑑𝛼 (𝑋) 𝑔 (𝑍,𝑈) + 𝑑𝛽 (𝑋) 𝐿 (𝑍) 𝐿 (𝑈)

+ 𝛽 {(∇
𝑋
) 𝐿 (𝑍) 𝐿 (𝑈) + (∇𝑋) 𝐿 (𝑈) 𝐿 (𝑍)}]

− [(𝑛 − 2) {𝑛𝑑𝛼 (𝑋) + 𝑑𝛽 (𝑋)} + 2 (𝑛 − 1) 𝑑𝜎 (𝑋)]

⋅ 𝑔 (𝑍, 𝑈) = 𝑛 [2𝐴 (𝑋) 𝑆 (𝑍,𝑈) + 𝐴 (𝑍) 𝑆 (𝑋,𝑈)

+ 𝐴 (𝑈) 𝑆 (𝑍,𝑋)] − {(𝑛 − 2) 𝑟 − 2 (𝑛 − 1) (𝜆 − 𝜎)}

⋅ [2𝐴 (𝑋) 𝑔 (𝑍,𝑈) + 𝐴 (𝑍) 𝑔 (𝑋,𝑈)

+ 𝐴 (𝑈) 𝑔 (𝑍,𝑋)] + 4𝑃 (𝑋,𝑈, 𝑍, 𝜌) .

(34)

Firstly, taking contraction of (34) with respect to𝑍 and𝑈, we
have

𝑛 (𝑛 − 3) [𝑛𝑑𝛼 (𝑋) + 𝑑𝛽 (𝑋)] + 2𝑛 (𝑛 − 1) 𝑑𝜎 (𝑋)

+ 4𝑛𝐴 (𝑄𝑋) = 2 [(𝑛2 − 𝑛 − 4) (𝑛𝛼 + 𝛽)

+ 2 (𝑛 + 2) (𝑛 − 1) (𝜎 − 𝜆)]𝐴 (𝑋) .

(35)

Then, also contracting (34) with respect to𝑋 and 𝑈, we have

(𝑛 − 4) [𝑛𝑑𝛼 (𝑋) + 𝑑𝛽 (𝑋)] + 4 (𝑛 − 1) 𝑑𝜎 (𝑋)

+ 4𝑛𝐴 (𝑄𝑋) = 2 [(𝑛2 − 𝑛 − 4) (𝑛𝛼 + 𝛽)

+ 2 (𝑛 + 2) (𝑛 − 1) (𝜎 − 𝜆)]𝐴 (𝑋) .

(36)

Thus, (35) and (36) yield

(𝑛 − 2) [𝑛𝑑𝛼 (𝑋) + 𝑑𝛽 (𝑋)] − 2 (𝑛 − 1) 𝑑𝜎 (𝑋) = 0. (37)

Hence, we can state the following theorem.

Theorem 6. In a quasi-Einstein (𝑃𝑃𝑆)
𝑛
admitting Einstein’s

field equation, the scalars 𝛼 and 𝛽 and the energy density 𝜎
are connected by relation (37).

Now, from (37), it is clear that 𝜎 will be also constant if 𝑟
is constant; that is, from (36), we have that

𝐴 (𝑄𝑋) =
1

2𝑛
[(𝑛2 − 𝑛 − 4) (𝑛𝛼 + 𝛽)

+ 2 (𝑛 + 2) (𝑛 − 1) (𝜎 − 𝜆)]𝐴 (𝑋)

(38)

which implies

𝑆 (𝑋, 𝜌) =
1

2𝑛
[(𝑛2 − 𝑛 − 4) (𝑛𝛼 + 𝛽)

+ 2 (𝑛 + 2) (𝑛 − 1) (𝜎 − 𝜆)] 𝑔 (𝑋, 𝜌) .

(39)

So, by the above relation and (5), we obtain

𝑇 (𝑋, 𝜌) =
1

4𝑛𝑘
[(𝑛2 − 𝑛 − 9) (𝑛𝛼 + 𝛽)

+ 4 (𝑛 + 2) (𝑛 − 1) 𝜎 − 2 (2𝑛2 + 2𝑛 − 5) 𝜆] 𝑔 (𝑋, 𝜌) .

(40)

Thus, we get the following theorem.

Theorem 7. In a quasi-Einstein (𝑃𝑃𝑆)
𝑛
admitting Einstein’s

field equation, (1/4𝑛𝑘)[(𝑛2 − 𝑛 − 9)(𝑛𝛼 + 𝛽) + 4(𝑛 + 2)(𝑛 −
1)𝜎 − 2(2𝑛2 + 2𝑛 − 5)𝜆] is an eigenvalue of the energy-
momentum tensor𝑇 corresponding to the eigenvector 𝜌 defined
by 𝑔(𝑋, 𝜌) = 𝐴(𝑋) for all𝑋.

Let us consider that 𝜍 is a concurrent vector field; that is,

∇
𝑋
𝜍 = 𝜅𝑋, where 𝜅 is a constant. (41)

Hence, by the Ricci identity, it follows that 𝑅(𝑋, 𝑌, 𝜍, 𝑈) = 0
which yields

𝑆 (𝑋, 𝜍) = 0. (42)

From (31) and (42), we have

𝛼 + 𝛽 = 0 since ‖𝜍‖ = 1. (43)

This leads to the following theorem.

Theorem 8. In a quasi-Einstein (𝑃𝑃𝑆)
𝑛
admitting Einstein’s

field equation, if the vector field 𝜍 is concurrent then the
associated scalars 𝛼 and 𝛽 are connected by relation (43).

5. Locally Decomposable (PPS)
𝑛

A differentiable manifold is said to be a product manifold [6]
if and only if it can be expressed as𝑀𝑝

1
×𝑀𝑛−𝑝
2

, where 2 ≤ 𝑝 ≤
𝑛 − 2. In this case, we say that𝑀 admits both a local product
structure and a separating coordinates system.

Moreover, if𝑀 is a local product Riemannian manifold,
then there exists a Riemannian metric given by

𝑑𝑠2 = 𝑔
𝑖𝑗
𝑑𝑥𝑖𝑑𝑥𝑗 + 𝑔

𝛼𝛽
𝑑𝑦𝛼𝑑𝑦𝛽, (44)

where 𝑥𝑖 and 𝑦𝛼 are local coordinates on 𝑀
1
and 𝑀

2
,

respectively. Here 𝑖 and 𝑗 run over 1, 2, . . . , 𝑝 and 𝛼 and 𝛽 run



Advances in Mathematical Physics 5

over𝑝+1, 𝑝+2, . . . , 𝑛. Equivalently, themanifolds𝑀
1
and𝑀

2

are orthogonal. Further, if 𝑔
𝑖𝑗
’s are functions of 𝑥𝑖’s only and

𝑔
𝛼𝛽
’s are functions of 𝑦𝛼’s only, then such a manifold is called

a locally decomposable Riemannian manifold. For a locally
decomposable Riemannian manifold, we have

Γ𝑖
𝛼𝛽
= 0 = Γ𝑖

𝑗𝛽
,

Γ𝛼
𝑖𝑗
= 0 = Γ𝛼

𝑖𝛽
,

(45)

for all 𝑖 and 𝑗 and 𝛼 and 𝛽. Let (𝑀𝑛, 𝑔) be a locally decom-
posable Riemannian manifold with a separating coordinates
system such that we can express𝑀𝑛 = 𝑀𝑝

1
×𝑀𝑛−𝑝
2

(2 ≤ 𝑝 ≤
𝑛−2).Then, the relations in (45) hold.We further assume that
𝑀 is a (PPS)

𝑛
; that is, there exists a smooth nonzero 1-form

𝐴 such that

(∇
𝑋
𝑃) (𝑌, 𝑍, 𝑈, 𝑉) = 2𝐴 (𝑋) 𝑃 (𝑌, 𝑍, 𝑈, 𝑉)

+ 𝐴 (𝑌) 𝑃 (𝑋, 𝑍,𝑈, 𝑉)

+ 𝐴 (𝑍) 𝑃 (𝑌,𝑋,𝑈, 𝑉)

+ 𝐴 (𝑈) 𝑃 (𝑌, 𝑍,𝑋, 𝑉)

+ 𝐴 (𝑉) 𝑃 (𝑌, 𝑍, 𝑈,𝑋) ,

(46)

for all 𝑋,𝑌, 𝑍,𝑈, 𝑉 ∈ 𝜒(𝑀). Then, we find the following
relations:

(∇
𝑋
𝑃) (𝑌, 𝑍,𝑈, 𝑉) = 2𝐴 (𝑋)𝑃 (𝑌, 𝑍, 𝑈, 𝑉)

+ 𝐴 (𝑌)𝑃 (𝑋,𝑍,𝑈, 𝑉) + 𝐴 (𝑍)𝑃 (𝑌,𝑋,𝑈, 𝑉)

+ 𝐴 (𝑈)𝑃 (𝑌, 𝑍,𝑋, 𝑉) + 𝐴 (𝑉)𝑃 (𝑌, 𝑍,𝑈,𝑋) ,

(47)

𝐴(
∗

𝑋)𝑃 (𝑌, 𝑍, 𝑈, 𝑉) = 0, (48)

𝐴(𝑌)𝑃 (
∗

𝑋,𝑍,𝑉,
∗

𝑈) − 𝐴 (𝑍)𝑃 (
∗

𝑋,𝑌, 𝑉,
∗

𝑈)

+ 𝐴 (𝑉)𝑃 (
∗

𝑋,
∗

𝑈,𝑌, 𝑍) = 0,
(49)

(∇
𝑋
𝑃) (

∗

𝑌,𝑍,𝑈,
∗

𝑉) = 2𝐴 (𝑋)𝑃 (
∗

𝑌,𝑍,𝑈,
∗

𝑉)

+ 𝐴 (𝑍)𝑃 (
∗

𝑌,𝑋,𝑈,
∗

𝑉) + 𝐴 (𝑈)𝑃 (
∗

𝑌,𝑍,𝑋,
∗

𝑉) ,
(50)

(∇∗
𝑋
𝑃) (

∗

𝑌,𝑍,𝑈,
∗

𝑉) = 2𝐴 (
∗

𝑋)𝑃 (
∗

𝑌,𝑍,𝑈,
∗

𝑉)

+ 𝐴 (
∗

𝑌)𝑃 (
∗

𝑋,𝑍,𝑈,
∗

𝑉) + 𝐴 (
∗

𝑉)𝑃 (
∗

𝑌,𝑍,𝑈,
∗

𝑋) ,
(51)

𝐴(
∗

𝑌)𝑃 (
∗

𝑍,𝑋,𝑈,
∗

𝑉) − 𝐴(
∗

𝑍)𝑃 (
∗

𝑌,𝑋,𝑈,
∗

𝑉)

+ 𝐴 (
∗

𝑉)𝑃 (
∗

𝑌,
∗

𝑍,𝑋,𝑈) = 0,
(52)

𝐴(𝑋)𝑃 (
∗

𝑌,
∗

𝑍,
∗

𝑈,
∗

𝑉) = 0, (53)

(∇∗
𝑋
𝑃) (

∗

𝑌,
∗

𝑍,
∗

𝑈,
∗

𝑉) = 2𝐴 (
∗

𝑋)𝑃 (
∗

𝑌,
∗

𝑍,
∗

𝑈,
∗

𝑉)

+ 𝐴 (
∗

𝑌)𝑃 (
∗

𝑋,
∗

𝑍,
∗

𝑈,
∗

𝑉) + 𝐴(
∗

𝑍)𝑃 (
∗

𝑌,
∗

𝑋,
∗

𝑈,
∗

𝑉)

+ 𝐴 (
∗

𝑈)𝑃 (
∗

𝑌,
∗

𝑍,
∗

𝑋,
∗

𝑉) + 𝐴 (
∗

𝑉)𝑃 (
∗

𝑌,
∗

𝑍,
∗

𝑈,
∗

𝑋)

(54)

for 𝑋,𝑌, 𝑍,𝑈, 𝑉 ∈ 𝜒(𝑀
1
) and

∗

𝑋,
∗

𝑌,
∗

𝑍,
∗

𝑈,
∗

𝑉 ∈ 𝜒(𝑀
2
). From

(48), we consider two cases, namely,

(1) 𝐴 = 0 on𝑀
2
;

(2) 𝑃 = 0 in𝑀
1
.

At first, we consider case (1): from (51), it follows that

(∇∗
𝑋
𝑃) (

∗

𝑌,𝑍,𝑈,
∗

𝑉) = 0 (55)

which implies

(∇∗
𝑋
𝑆) (

∗

𝑌,
∗

𝑉) = (
∗

𝑋𝑟 + 2
∗

𝑋𝜎) 𝑔 (
∗

𝑌,
∗

𝑉) . (56)

Also, from (54), we obtain

(∇∗
𝑋
𝑃) (

∗

𝑌,
∗

𝑍,
∗

𝑈,
∗

𝑉) = 0, (57)

that is, (∇∗
𝑋
𝑅) (

∗

𝑌,
∗

𝑍,
∗

𝑈,
∗

𝑉)

+
1

2
{(∇∗
𝑋
𝑆) (

∗

𝑍,
∗

𝑈)𝑔 (
∗

𝑌,
∗

𝑉)

− (∇∗
𝑋
𝑆) (

∗

𝑌,
∗

𝑈)𝑔 (
∗

𝑍,
∗

𝑉) + 𝑔 (
∗

𝑍,
∗

𝑈) (∇∗
𝑋
𝑆) (

∗

𝑌,
∗

𝑉)

− 𝑔 (
∗

𝑌,
∗

𝑈) (∇∗
𝑋
𝑆) (

∗

𝑍,
∗

𝑉)} − (
1

2

∗

𝑋𝑟 +
∗

𝑋𝜎)

⋅ {𝑔 (
∗

𝑍,
∗

𝑈)𝑔 (
∗

𝑌,
∗

𝑉) − 𝑔 (
∗

𝑌,
∗

𝑈)𝑔 (
∗

𝑍,
∗

𝑉)} = 0

(58)

which yields that

(𝑛 − 𝑝) (∇∗
𝑋
𝑆) (

∗

𝑌,
∗

𝑉)

= (𝑛 − 2𝑝 − 1) (
1

2

∗

𝑋
∗

𝑟 +
∗

𝑋
∗

𝜎)𝑔 (
∗

𝑌,
∗

𝑉) ,
(59)

where the scalar curvature and energy density on 𝑀
2
are

denoted by ∗𝑟 and ∗𝜎, respectively. From (56) and (59), it is easy
to see that

∗

𝑋
∗

𝑟 =
∗

𝑋𝑟 and
∗

𝑋
∗

𝜎 =
∗

𝑋𝜎 satisfy

∗

𝑋
∗

𝑟 + 2
∗

𝑋
∗

𝜎 = 0. (60)

In view of (59) and (60), we find that (∇∗
𝑋
𝑆)(
∗

𝑌,
∗

𝑉) = 0 for all
∗

𝑋,
∗

𝑌, and
∗

𝑉 in 𝜒(𝑀
2
). By virtue of this relation and (60), (58)

reduces to

(∇∗
𝑋
𝑅) (

∗

𝑌,
∗

𝑍,
∗

𝑈,
∗

𝑉) = 0. (61)
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Secondly, we discuss case (2): from 𝑃 = 0 in𝑀
1
, we find

𝑅 (𝑋, 𝑌, 𝑍, 𝑈) +
1

2
[𝑆 (𝑌, 𝑍) 𝑔 (𝑋,𝑈)

− 𝑆 (𝑋,𝑍) 𝑔 (𝑌,𝑈) + 𝑔 (𝑌, 𝑍) 𝑆 (𝑋,𝑈)

− 𝑔 (𝑋,𝑍) 𝑆 (𝑌,𝑈)] − (
𝑟

2
− 𝜆 + 𝜎)

⋅ {𝑔 (𝑌, 𝑍) 𝑔 (𝑋,𝑈) − 𝑔 (𝑋,𝑍) 𝑔 (𝑌,𝑈)} = 0

(62)

which yields

𝑝𝑆 (𝑌, 𝑍) + {𝑟 − (𝑝 − 1) (𝑟 − 2𝜆 + 2𝜎)} 𝑔 (𝑌, 𝑍) = 0, (63)

where 𝑟 is the scalar curvature on𝑀
1
. Thus, we find

𝑟 = (𝑝 − 1) (
1

2
𝑟 − 𝜆 + 𝜎) . (64)

Using (64) in (63), we obtain

𝑆 (𝑌, 𝑍) =
𝑟

𝑝
𝑔 (𝑌, 𝑍) . (65)

By virtue of the last relation, (62) reduces to

𝑅 (𝑋, 𝑌, 𝑍, 𝑈) =
𝑟

𝑝 (𝑝 − 1)
𝐺 (𝑋, 𝑌, 𝑍, 𝑈) (66)

which shows that the manifold𝑀
1
is of constant curvature.

Hence, we have the following theorem.

Theorem 9. Let (𝑀𝑛, 𝑔) be a locally decomposable Rieman-
nian manifold such that𝑀 = 𝑀𝑝

1
×𝑀𝑛−𝑝
2

(2 ≤ 𝑝 ≤ 𝑛 − 2). If
𝑀 is a (𝑃𝑃𝑆)

𝑛
, then one gets that

(1) 𝑀
2
is a locally symmetric manifold if 𝐴 = 0 on𝑀

2
,

(2) 𝑀
1
is a manifold of constant curvature if 𝑃 = 0 in𝑀

1
.

Similarly, in view of (53), we can state the following
theorem.

Theorem 10. Let (𝑀𝑛, 𝑔) be a locally decomposable Rieman-
nian manifold such that𝑀 = 𝑀𝑝

1
×𝑀𝑛−𝑝
2

(2 ≤ 𝑝 ≤ 𝑛 − 2). If
𝑀 is a (𝑃𝑃𝑆)

𝑛
, then one obtains that

(1) 𝑀
1
is a locally symmetric manifold if 𝐴 = 0 on𝑀

1
,

(2) 𝑀
2
is of constant curvature if 𝑃 = 0 in𝑀

2
.

Now, contracting (49) with respect to
∗

𝑋 and
∗

𝑈, we obtain

𝐴(𝑌) [{
∗

𝑟𝑔 (𝑍,𝑉) + (𝑛 − 𝑝) 𝑆 (𝑍, 𝑉)}

− (𝑛 − 𝑝) (𝑟 − 2𝜆 + 2𝜎) 𝑔 (𝑍,𝑉)] − 𝐴 (𝑍)

⋅ [{
∗

𝑟𝑔 (𝑌, 𝑉) + (𝑛 − 𝑝) 𝑆 (𝑌, 𝑉)}

− (𝑛 − 𝑝) (𝑟 − 2𝜆 + 2𝜎) 𝑔 (𝑌, 𝑉)] = 0

(67)

which yields that

𝐴(𝑄𝑌) =
𝑟
1

𝑛 − 𝑝
𝐴 (𝑌) , (68)

where

𝑟
1
=

1

𝑛 − 1
{(𝑛 − 𝑝) (𝑛 − 2𝑝 − 1) 𝑟

− (𝑝 − 1) (𝑛 − 2𝑝 + 1)
∗

𝑟} .

(69)

This result leads to the following theorem.

Theorem 11. Let (𝑀𝑛, 𝑔) be a locally decomposable Rieman-
nian manifold such that𝑀 = 𝑀𝑝

1
×𝑀𝑛−𝑝
2

(2 ≤ 𝑝 ≤ 𝑛 − 2). If
𝑀 is a (𝑃𝑃𝑆)

𝑛
, then the relation

𝐴(𝑄𝑋) = −
𝑟
1

𝑛 − 𝑝
𝐴 (𝑋) (70)

holds for any vector field𝑋 on 𝜒(𝑀
1
).

Similarly, from (52), we can state the following theorem.

Theorem 12. Let (𝑀𝑛, 𝑔) be a locally decomposable Rieman-
nian manifold such that𝑀 = 𝑀𝑝

1
×𝑀𝑛−𝑝
2

(2 ≤ 𝑝 ≤ 𝑛 − 2). If
𝑀 is a (𝑃𝑃𝑆)

𝑛
, then the relation

𝐴(𝑄
∗

𝑋) = −
𝑟
2

𝑝
𝐴 (
∗

𝑋) (71)

holds for any vector field
∗

𝑋 on 𝜒(𝑀
2
).

6. Some Examples of (PPS)
𝑛

In this section, the existence of (PPS)
𝑛
is proved by means of

citing some examples.

Example 1. Let us consider the manifold𝑀4 = {(𝑥1, 𝑥2, 𝑥3,
𝑥4) ∈ R4} with the metric

𝑑𝑠2 = 𝑔
𝑖𝑗
𝑑𝑥𝑖𝑑𝑥𝑗

= (𝑑𝑥2)
2

+ 2𝑒𝑥
2

[𝑑𝑥1𝑑𝑥2 + 𝑑𝑥3𝑑𝑥4] .
(72)

Then, the only nonvanishing components of the curvature
tensor, the Ricci tensor, and the scalar curvature are given by

𝑅
2342

= −
1

4
𝑒𝑥
2

;

𝑆
22
= −

1

2
;

𝑟 = 0.

(73)

And, furthermore, considering 𝜎 = 𝜆, we find only nonvan-
ishing component of the space-matter tensor and its covariant
derivative as follows:

𝑃
2342

= −
1

2
𝑒𝑥
2

;

𝑃
2342,2

= −𝑒𝑥
2

,

(74)
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where “,” in between indices denotes covariant differentiation
with respect to the coordinates. Let us consider the 1-form 𝐴
as

𝐴(
𝜕

𝜕𝑥𝑖
) = 𝐴

𝑖
=
{
{
{

1

2
for 𝑖 = 2,

0 otherwise.
(75)

In themanifold under consideration, with the help of (75), (7)
reduces to the following equation:

𝑃
2342,2

= 4𝐴
2
𝑃
2342

+ 𝐴
3
𝑃
2242

+ 𝐴
4
𝑃
2322

. (76)

In the cases other than (76), either the result is trivial or both
sides vanish identically. Now, we check the validity of the
above equation:

right hand side of (76) = 2𝑃2342 = −𝑒
𝑥
2

= lef t hand side of (76) .
(77)

Since the manifold under consideration is a (PPS)
4
, we can

state the following theorem.

Theorem 13. Let (𝑀4, 𝑔) be a Riemannian manifold endowed
with the metric

𝑑𝑠2 = 𝑔
𝑖𝑗
𝑑𝑥𝑖𝑑𝑥𝑗 = (𝑑𝑥2)

2

+ 2𝑒𝑥
2

[𝑑𝑥1𝑑𝑥2 + 𝑑𝑥3𝑑𝑥4]

(𝑖, 𝑗 = 1, 2, 3, 4) .
(78)

Then, (𝑀4, 𝑔) is a (𝑃𝑃𝑆)
4
admitting Einstein’s field equation of

nonvanishing scalar curvature with 𝜎 = 𝜆.

Example 2. Let 𝑀4 = {(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ R4} be an open
subset of R4 endowed with the metric

𝑑𝑠2 = 𝑔
𝑖𝑗
𝑑𝑥𝑖𝑑𝑥𝑗

= 𝑒−𝑥
1

[(𝑑𝑥1)
2

− (𝑑𝑥2)
2

+ 2𝑑𝑥3𝑑𝑥4] ,
(79)

where 𝑖 and 𝑗 run from 1 to 4. Then, the only nonvanishing
components of the curvature tensor, the Ricci tensor, and the
scalar curvature are given by

𝑅
2342

= −
1

4
𝑒𝑥
1

= 𝑅
3434

;

𝑆
22
= −

1

2
,

𝑆
34
=
1

2
;

𝑟 =
3

2
𝑒𝑥
1

.

(80)

We will now verify that𝑀4 is a (QE)
4
. To verify this, let us

consider that the 1-form 𝐿 and associated scalars 𝛼 and 𝛽 are
as follows:

𝐿(
𝜕

𝜕𝑥𝑖
) = 𝐿

𝑖
=
{
{
{

𝑒−𝑥
1

/2 for 𝑖 = 1,

0 otherwise,

𝛼 =
1

2
𝑒𝑥
1

;

𝛽 = −
1

2
𝑒𝑥
1

.

(81)

According to the definition of𝑀4, (31) reduces to

𝑆
𝑖𝑖
= 𝛼𝑔
𝑖𝑖
+ 𝛽𝐿
𝑖
𝐿
𝑖
, for 𝑖 = 1, 2, 3, 4, (82)

since the components of (31) vanish identically and relation
(31) holds trivially for the cases other than (82). By virtue of
(79), (80), and (81), it follows that

right hand side of (82) = 1
2
𝑒𝑥
1

𝑔
11
−
1

2
𝑒𝑥
1

𝐿
1
𝐿
1
= 0

= lef t hand side of (82)
(83)

for 𝑖 = 1. By a similar argument, it can be easily shown that
relation (82) also holds for 𝑖 = 2, 3, 4. Therefore, (𝑀4, 𝑔) is a
(QE)
4
.

Now, considering the energy density function 𝜎 as a
function of 𝑥1 only and taking its value equal to 𝜆 − (1/2)𝑒𝑥

1

,
we calculate only nonvanishing components of the space-
matter tensor and its covariant derivatives in the form of

𝑃
2342

= −
1

2
𝑒−𝑥
1

= 𝑃
3434

;

𝑃
2342,1

= −
1

2
𝑒𝑥
1

= 𝑃
3434,1

,

(84)

where “,” denotes the covariant differentiation with respect to
the coordinates. Let us take the 1-form 𝐴 as follows:

𝐴(
𝜕

𝜕𝑥𝑖
) = 𝐴

𝑖
=
{
{
{

1

2
for 𝑖 = 1,

0 otherwise.
(85)

In the manifold under consideration, (7) reduces to the
following equations by (85):

𝑃
2342,1

= 2𝐴
1
𝑃
2342

+ 𝐴
2
𝑃
1342

+ 𝐴
3
𝑃
2142

+ 𝐴
4
𝑃
2312

+ 𝐴
1
𝑃
2341

,

𝑃
3434,1

= 2𝐴
1
𝑃
3434

+ 𝐴
3
𝑃
1434

+ 𝐴
4
𝑃
3134

+ 𝐴
3
𝑃
3414

+ 𝐴
4
𝑃
3431

.

(86)

In the cases other than (86), either the result is trivial or both
sides vanish identically. With the help of (84) and (85), one
can easily check the validity of the above relations.Therefore,
the manifold under consideration is a (PPS)

4
. Hence, we can

state the following theorem.
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Theorem 14. Let (𝑀4, 𝑔) be a Riemannian manifold endowed
with the metric

𝑑𝑠2 = 𝑔
𝑖𝑗
𝑑𝑥𝑖𝑑𝑥𝑗

= 𝑒−𝑥
1

[(𝑑𝑥1)
2

− (𝑑𝑥2)
2

+ 2𝑑𝑥3𝑑𝑥4]

(𝑖, 𝑗 = 1, 2, 3, 4) .

(87)

Then, (𝑀4, 𝑔) is a (𝑃𝑃𝑆)
4
admitting Einstein’s field equation of

nonvanishing scalar curvature with 𝜎 = 𝜆 − (1/2)𝑒𝑥
1

.
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