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Interior Internado Palmira S/N, Col. Palmira, 62490 Cuernavaca, MOR, Mexico
2Departamento de Ingenieŕıa Electrica, DICIS, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago,
Km. 3.5 + 1.8 Km., Comunidad de Palo Blanco, Salamanca, GTO, Mexico
3Centro Nacional de Investigación y Desarrollo Tecnológico, Tecnológico Nacional de México, Interior Internado Palmira S/N,
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A subclass of dynamical systems with a time rate of change of acceleration are called Newtonian jerky dynamics. Some mechanical
and acoustic systems can be interpreted as jerky dynamics. In this paper we show that the jerk dynamics are naturally obtained
for electrical circuits using the fractional calculus approach with order 𝛾. We consider fractional LC and RL electrical circuits with1 ⩽ 𝛾 < 2 for different source terms.The LC circuit has a frequency 𝜔 dependent on the order of the fractional differential equation𝛾, since it is defined as 𝜔(𝛾) = 𝜔𝛾0𝛾1−𝛾, where 𝜔0 is the fundamental frequency. For 𝛾 = 3/2, the system is described by a third-order
differential equation with frequency 𝜔 ∼ 𝜔3/20 , and assuming 𝛾 = 2 the dynamics are described by a fourth differential equation for
jerk dynamics with frequency 𝜔 ∼ 𝜔20 .

1. Introduction

Fractional calculus (FC) generalizes integer order derivatives
and integrals; the mathematical formalisms were developed
by Euler, Abel, Fourier, Liouville, Riemann, Grünwald, and
Riesz, among many others [1–4]. The utility of the fractional
derivatives and the fractional integrals resides on their feasi-
bility for describing nonlocal properties because these con-
sider the history and the nonlocal distributed effects of any
physical system [5–8].The classical electrical circuits consist-
ing of resistors, capacitors, and inductors are conventionally
described by integer order models. However, the electrical
components have a nonconservative behavior, since they
involve irreversible dissipative effects such as ohmic friction
or internal friction; additionally, these components entail
thermal memory and nonlinearities due to the effects of the
electric and magnetic fields [9, 10]. The FC is applied to a
variety of electrical circuit problems, such as domino ladders
and tree structures, and to study a number of elements (coils,

memristor, etc.) [11–15].The use of fractional order operators
allows us to generalize the propagation of electrical signals in
devices, circuits, and networks [16–21].

With a basis on the fractional calculus concepts and previ-
ous works developed by the authors [22–27], this paper aims
to describe fractional higher order power dissipation in resis-
tive elements. This higher noninteger dynamics are known
as the Newtonian jerky dynamics.These dynamics have been
of interest in certain applications ofmechanics, acoustics, and
electrical circuits [28–37].

Here it is shown that if we have a fractional differential
equation describing somephysical process, then it is relatively
easy to obtain the fractional jerky dynamics due the fractional
order derivative 𝑛 − 1 < 𝛾 < 𝑛. We consider fractional LC
and RL electrical circuits with 1 ⩽ 𝛾 < 2 for different source
terms. In the case of LC circuits the frequency 𝜔 is in general
proportional to the fractional exponent of the fundamental
frequency 𝜔0.
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2. Basic Concepts on Fractional Calculus

The Caputo fractional derivative 𝐶0𝐷𝛾𝑡 for a function 𝑓(𝑡) is
defined as [3]

𝐶

0𝐷𝛾𝑡𝑓 (𝑡) = 1
Γ (𝑛 − 𝛾) ∫𝑡

0

𝑓(𝑛) (𝜂)
(𝑡 − 𝜂)𝛾−𝑛+1 𝑑𝜂

𝑛 − 1 ⩽ 𝛾 < 𝑛,
(1)

where 𝑛 = 1, 2, . . . ∈ N and 𝛾 is the order of the
fractional derivative. From (1), it follows that the derivative of
a constant is zero and the initial conditions of the fractional
order differential equations are the same ones needed by
the ordinary differential equations with a known physical
interpretation [1].

The Laplace transformof the Caputo derivative (1) has the
form [3]

L [𝐶0𝐷𝛾𝑡𝑓 (𝑡)] = 𝑠𝛾𝐹 (𝑠) − 𝑛−1∑
𝑘=0

𝑠𝛾−𝑘−1𝑓(𝑘) (0) ,
𝑛 − 1 < 𝛾 ⩽ 𝑛,

(2)

where 𝐹(𝑠) is the Laplace transform of the function 𝑓(𝑡) and𝑛 ∈ N. For different ranges of 𝛾we have the following Laplace
transform, corresponding to the fractional Caputo derivative

L [𝐶0𝐷𝛾𝑡𝑓 (𝑡)] = 𝑠𝛾𝐹 (𝑠) − 𝑠𝛾−1𝑓 (0) 0 < 𝛾 ⩽ 1, (3)

L [𝐶0𝐷𝛾𝑡𝑓 (𝑡)] = 𝑠𝛾𝐹 (𝑠) − 𝑠𝛾−1𝑓 (0) − 𝑠𝛾−2𝑓󸀠 (0)
1 < 𝛾 ⩽ 2.

(4)

The Mittag-Leffler function is defined as a power series [3]

𝐸𝛾 (𝑧) =
∞∑
𝑛=0

𝑧𝑛
Γ (𝛾𝑛 + 1) R (𝛾) > 0, (5)

where R indicates the real part; in general, 𝑧 is a complex
quantity. For 𝛾 = 1, we have 𝑒𝑧; therefore, the Mittag-Leffler
function is a generalization of the exponential function. The
generalization of (5) is given by

𝐸𝛾,𝛽 (𝑧) =
∞∑
𝑛=0

𝑧𝑛
Γ (𝛾𝑛 + 𝛽) R (𝛾) > 0, R (𝛽) > 0, (6)

where Γ(⋅) is the Gamma Euler function. The Laplace trans-
form of the function 𝑡𝛽−1𝐸𝛾,𝛽(𝑎𝑡𝛾) is

∫∞
0

𝑒−𝑠𝑡𝑡𝛽−1𝐸𝛾,𝛽 (±𝑎𝑡𝛾) 𝑑𝑡 = 𝑠𝛾−𝛽
𝑠𝛾 ∓ 𝑎 , (7)

where 𝑎 is a constant. Consequently, the inverse Laplace
transform is given by

L
−1 [ 𝑠𝛾−𝛽

𝑠𝛾 ∓ 𝑎] = 𝑡𝛽−1𝐸𝛾,𝛽 (±𝑎𝑡𝛾) . (8)

From (6) we have some commonMittag-Leffler functions [3]

𝐸1,1 (±𝑧) = 𝑒±𝑧, (9)

𝐸2,1 (−𝑧2) = cos (𝑧) . (10)

3. Electrical Circuits

3.1. LC Electrical Circuit. A systematic way to construct frac-
tional differential equations is given in [22]. In [23] it was
shown that fractional LC circuits with constant source𝑉0 can
be described by the equation

𝐿
𝜎2(1−𝛾)

𝑑2𝛾𝑞 (𝑡)
𝑑𝑡2𝛾 + 𝑞 (𝑡)

𝐶 = 𝑉0, 1 < 𝛾 ⩽ 2. (11)

To be consistent with the dimensionality the parameter𝜎 has dimensions of seconds. The parameter 𝜎 characterizes
the fractional temporal structures giving an intermediate
behavior between a conservative and dissipative system. The
corresponding differential equations are of noninteger order
and are related with a fractal space-time geometry. Therefore
we have a new family of solutions [22]. The derivative
considered is the Caputo type of order 𝛾 given by (1).The case
with 𝑛 = 1 for 0 < 𝛾 ⩽ 1 was reported in [26].

In this work we study the case when 𝑛 = 2 and 1 < 𝛾 ⩽ 2,
using the Caputo derivative for LC and RL electrical circuits.
We can rewrite (11) as

𝑑2𝛾𝑞
𝑑𝑡2𝛾 + 𝜔2𝑞 = 𝐴, 1 < 𝛾 ⩽ 2, (12)

where

𝜔2 (𝛾) = 𝜎2(1−𝛾)
𝐿𝐶 = 𝜔20𝜎2(1−𝛾) (13)

is the fractional angular frequency depending on 𝛾, 𝜔0 =
1/√𝐿𝐶 is the fundamental frequency of the system, and 𝐴 =
(𝜎2(1−𝛾)/𝐿)𝑉0 is defined in terms of a constant source𝑉0. Due
to dimensions of 𝜎 (second), we observe that the relation
between the auxiliary parameter 𝜎 and the fractional order
derivative 𝛾 is given by [23]

𝛾 = 𝜎
√𝐿𝐶, 1 < 𝜎 ⩽ 2√𝐿𝐶. (14)

In this case, (13) may be written only in terms of 𝛾
𝜔 (𝛾) = 𝜔𝛾0𝛾1−𝛾, 1 < 𝛾 ⩽ 2, (15)

if 𝛾 = 1, from (12) and (15) we encounter the conventional
LC circuit with frequency 𝜔 = 𝜔0, and then, for 𝛾 = 3/2 and
also from (12) and (15), the system representation becomes a
third-order differential equation with frequency 𝜔2(3/2) =(2/3)𝜔30 . The third time derivative is called jerk (jerky
dynamic) and, by definition, it is the first time derivative of
the acceleration and has already been used before for assess-
ing the comfort of motion, for example, in designing lifts
and for slowly rotating rolling bearings [29]. If 𝛾 = 2, the
system is described by a fourth-order differential equation
with frequency 𝜔(2) = 𝜔20/2. Higher order derivatives permit
described vibration analysis, control theory, and robotics
applications [30–37].
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Figure 1: Simulation of (16) for (a) 𝛾 = 1 (classical case); (b) 𝛾 = 1.3; (c) 𝛾 = 1.5; and (d) 𝛾 = 2.0.

We suppose the following initial conditions 𝑞(0) = 𝑞0 and𝑞̇(0) = 𝐼0; then applying direct (4) and the inverse Laplace
transforms to (12) we find a particular solution given by

𝑞 (̂𝑡; 𝛾) = 𝐶𝑉0 + (𝑞0 − 𝐶𝑉0) 𝐸2𝛾 (−𝛾2(1−𝛾)𝑡̂2𝛾)
+ 𝐼0𝜔0 𝑡̃𝐸2𝛾,2 (−𝛾

2(1−𝛾)𝑡̂2𝛾) 1 < 𝛾 ⩽ 2, (16)

where 𝑡̂ = 𝜔0𝑡 is a dimensionless parameter. For 𝛾 = 1 we
have

𝑞 (𝑡; 1) = 𝐶𝑉0 + (𝑞0 − 𝐶𝑉0) cos𝜔0𝑡 + 𝐼0𝜔0 sin (𝜔0𝑡) , (17)

which is the well-known result for the conventional case.
Consider the electrical circuit LC with 𝐿 = 10H, 𝐶 = 0.1 F,
and𝑉(0) = 10 volts. Plots for values of 𝛾within 1 < 𝛾 ⩽ 2 are
represented in Figures 1(a), 1(b), 1(c), and 1(d).

Suppose now that we have an alternating source; thus

𝑑2𝛾𝑞
𝑑𝑡2𝛾 + 𝜔2𝑞 = 𝐴 cos𝜔𝑝𝑡 1 < 𝛾 ⩽ 2, (18)

where 𝐴 = (𝜎2(1−𝛾)/𝐿)𝑉0, 𝜔 is given by (15), and 𝜔𝑝 is the
frequency of the source. Applying Laplace transform (4) with
the initial conditions 𝑞(0) = 𝑞0 and 𝑞̇(0) = 𝐼0 we have

𝑄 (𝑠) = 𝑞0 𝑠2𝛾−1
𝑠2𝛾 + 𝜔2 + 𝐼0 𝑠2𝛾−2

𝑠2𝛾 + 𝜔2
+ 𝐴 𝑠

(𝑠2𝛾 + 𝜔2) (𝑠2 + 𝜔2𝑝) ,
(19)

for the third term in (19), we select the highest power of 𝑠 as
a common factor from the denominator, and then we expand
the denominator in an alternating geometric series [38]; as a
result we have

𝑄 (𝑠) = 𝑞0 𝑠2𝛾−1
𝑠2𝛾 + 𝜔2 + 𝐼0 𝑠2𝛾−2

𝑠2𝛾 + 𝜔2
+ 𝐴 ∞∑
𝑚,𝑛=0

(−1)𝑚+𝑛 𝜔2𝑚𝜔2𝑛𝑝
𝑠2𝛾(𝑛+1)+2𝑚+1 .

(20)

Applying the inverse Laplace transform, finally, the solution
is

𝑞 (𝑡; 𝛾) = 𝑞0𝐸2𝛾 [−𝛾2(1−𝛾)𝜔2𝛾0 𝑡2𝛾]
+ 𝐼0𝑡𝐸2𝛾,2 (−𝛾2(1−𝛾)𝜔2𝛾0 𝑡2𝛾)

+ 𝐶𝑉0
∞∑
𝑚,𝑛=0

(−1)𝑚+𝑛 𝜔2𝑚𝑝 𝛾2(1−𝛾)(𝑛+1)𝜔2(𝑛+1)𝛾0

Γ [2𝛾 (𝑛 + 1) + 2𝑚 + 1] 𝑡2𝛾(𝑛+1)+2𝑚.
(21)

For the particular case of 𝛾 = 1 we substitute (10) and𝐸2,2(−𝜔20𝑡2) = (1/𝜔0𝑡) sin𝜔0𝑡 on (21) to obtain

𝑞 (𝑡; 1) = 𝑞0 cos𝜔0𝑡 + 𝐼0𝜔0 sin𝜔0𝑡

+ 𝐶𝑉0
∞∑
𝑚,𝑛=0

(−1)𝑚+𝑛 𝜔2𝑚𝑝 𝜔2(𝑛+1)0

Γ [2 (𝑛 + 1) + 2𝑚 + 1] 𝑡2(𝑛+𝑚+1).
(22)
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Figure 2: Simulation of (21) for (a) 𝛾 = 1 (classical case); (b) 𝛾 = 1.3; (c) 𝛾 = 1.5; and (d) 𝛾 = 2.0.

Table 1: Critical values of 𝜔(𝛾) for different values of 𝛾.
Values of 𝜔(𝛾)

𝛾 Value 𝛾 Value
1 1 1.1 0.990514
1.2 0.964193 1.3 0.924309
1.4 0.874075 1.5 0.816497
1.6 0.754272 1.7 0.689741
1.8 0.624859 1.9 0.561205
1.95 0.530233 2.0 0.50

Taking the same values for 𝐿, 𝐶, and 𝑉0 as before, plots
for different values of 𝛾 within 1 < 𝛾 ⩽ 2 are represented in
Figures 2(a), 2(b), 2(c), and 2(d).

Table 1 shows the critical values of𝜔(𝛾) for different values
of 𝛾.
3.2. RL Electrical Circuit. The fractional differential equation
corresponding to a RL circuit with constant source𝑉0 is given
by [23]

𝐿
𝜎2(1−𝛾)

𝑑2𝛾𝑞 (𝑡)
𝑑𝑡2𝛾 + 𝑅

𝜎1−𝛾
𝑑𝛾𝑞 (𝑡)
𝑑𝑡𝛾 = 𝑉0 1 < 𝛾 ⩽ 2, (23)

and we can rewrite it as

𝑑2𝛾𝑞 (𝑡)
𝑑𝑡2𝛾 + 𝐴𝑑𝛾𝑞 (𝑡)

𝑑𝑡𝛾 = 𝐵, (24)

where𝐴 = (𝑅/𝐿)𝜎1−𝛾 and𝐵 = (𝑉0/𝐿)𝜎2(1−𝛾). Using the initial
conditions 𝑞(0) = 𝑞0 and 𝑞̇(0) = 𝐼0 and applying the direct
Laplace transform, we have

𝑠2𝛾𝑄 (𝑠) − 𝑞0𝑠2𝛾−1 − 𝐼0𝑠2𝛾−2 + 𝐴𝑠𝛾𝑄 (𝑠) − 𝐴𝑞0𝑠𝛾−1
− 𝐴𝐼0𝑠𝛾−2 = 𝐵

𝑠 .
(25)

Solving for 𝑄(𝑠), we have
𝑄 (𝑠) = 𝑞0𝑠 + 𝐼0𝑠2 +

𝐵
𝑠𝛾+1 (𝑠𝛾 + 𝐴) . (26)

For the last terms in (26) we take the highest power of 𝑠 as a
common factor from the denominator and then we expand
in an alternating geometric series [38]; given that

𝛾 = 𝑅
𝐿𝜎, (27)

then 𝐴 = (𝑅/𝐿)𝛾𝛾1−𝛾 and 𝐵 = (𝑉0𝐿/𝑅2)(𝑅/𝐿)2𝛾𝛾2(1−𝛾). Sub-
stituting these expressions in the inverse Laplace transform,
the solution is

𝑞 (̃𝑡; 𝛾) = 𝑞0 + 𝐼0 𝑡̃𝑡 + 𝑉0𝐿𝑅2
∞∑
𝑛=0

(−1)𝑛 𝛾(𝑛+2)(1−𝛾)
Γ [𝛾 (𝑛 + 2) 𝛾 + 1] 𝑡̃

(𝑛+2)𝛾. (28)

Consider the electrical circuit RL with 𝑅 = 100Ω, 𝐿 =10H, and𝑉0 = 10 volts. Plots for values of 𝛾 within 1 < 𝛾 ⩽ 2
are represented in Figures 3(a), 3(b), 3(c), and 3(d).
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Figure 3: Simulation of (28) for (a) 𝛾 = 1 (classical case); (b) 𝛾 = 1.3; (c) 𝛾 = 1.5; and (d) 𝛾 = 2.0.

Considering an alternating source we have

𝐿
𝜎2(1−𝛾)

𝑑2𝛾𝑞 (𝑡)
𝑑𝑡2𝛾 + 𝑅

𝜎1−𝛾
𝑑𝛾𝑞 (𝑡)
𝑑𝑡𝛾 = 𝑉0 cos (𝜔𝑡)

1 < 𝛾 ⩽ 2,
(29)

rewriting

𝑑2𝛾𝑞 (𝑡)
𝑑𝑡2𝛾 + 𝐴𝑑𝛾𝑞 (𝑡)

𝑑𝑡𝛾 = 𝐵 cos (𝜔𝑡) , (30)

where 𝐴 and 𝐵 are the same defined for the RL circuit with
constant source. Using the initial conditions 𝑞(0) = 𝑞0 and𝑞̇(0) = 𝐼0 and applying the direct Laplace transform, we have

𝑄 (𝑠) = 𝑞0𝑠 + 𝐼0𝑠2 + 𝐵 𝑠
(𝑠2𝛾 + 𝐴𝑠𝛾) (𝑠2 + 𝜔2) . (31)

For the last term in (31) we take the highest power of 𝑠 as a
common factor from the denominator and thenwe expand in
an alternating geometric series [38]; thenwe apply the inverse
Laplace transform

𝑞 (𝑡; 𝛾) = 𝑞0 + 𝐼0𝑡 + 𝑉0𝐿𝑅2
⋅ ∞∑
𝑚,𝑛=0

(−1)𝑚+𝑛 (𝑅/𝐿)(𝑚+2)𝛾 𝛾(𝑚+2)(1−𝛾)𝜔2𝑛
Γ [(𝑚 + 2) 𝛾 + 2𝑛 + 1] 𝑡(𝑚+2)𝛾+2𝑛;

(32)

here, we used relation (27) and the aforementioned expres-
sions defining 𝐴 and 𝐵.

Taking the same values for 𝑅, 𝐿, and 𝑉0, plots for values
of 𝛾 within 1 < 𝛾 ⩽ 2 are represented in Figures 4(a), 4(b),
4(c), and 4(d).

For both simulations, the numerical solutions show a
change in the amplitude of the charge and variations in the
phase exhibits fractality in time to different scales and shows
the existence of heterogeneities in the electrical components
(resistance, inductance). These behaviors depend on the
fractional derivative order and modified the constant time
of the electrical circuits. The numerical solution exhibits
temporal fractality at different scales as well as the existence
of material heterogeneities in the electrical components.

Table 2 shows different values of the constant time 𝜏 =(𝐿/𝑅)𝛾𝛾1−𝛾 for arbitrary values of 𝛾.
4. Conclusions

In this paper, we studied the behavior of third- and fourth-
order differential equations modeling LC and RL electrical
circuits. These high order equations are naturally obtained
using fractional calculus for derivative orders chosen in the
interval [1, 2). Results show that the LC electrical circuit
behavior is strongly dependent on the fractional order, which
was varied within the interval [1, 2) and determines the
frequency according to (15). The fractional time constant
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Figure 4: Simulation of (32) for (a) 𝛾 = 1 (classical case); (b) 𝛾 = 1.3; (c) 𝛾 = 1.5; and (d) 𝛾 = 2.0.

Table 2: Values of the constant time 𝜏 = (𝐿/𝑅)𝛾𝛾1−𝛾 for arbitrary
values of 𝛾.

Values of constant time 𝜏
𝛾 Value 𝛾 Value
1 0.1 1.1 0.0786793
1.2 0.0608364 1.3 0.0463252
1.4 0.0347976 1.5 0.0258199
1.6 0.0189465 1.7 0.0137621
1.8 0.00990335 1.9 0.00706516
1.95 0.00594931 2.0 0.005

𝜏 = (𝐿/𝑅)𝛾𝛾1−𝛾 is modified in the RL electrical circuit with
the order 𝛾 of the fractional derivative. This constant time
tends to move forward in time as the exponent 𝛾 changes
the dynamics and the relaxation times of the system (they
are faster). For all figures, in the range (1 ; 2) the charge
exhibits fractional jerky dynamics; furthermore, when the
order of the derivative is equal to 2 the charge exhibits Jounce
dynamics.Our results indicate that the fractional order has an
important influence on the charge and the general solution
of the fractional circuit depends on the parameter 𝛾. These
solutions represent a new family of solutions for the charge. In
the range 𝛾 ∈ (1, 2) the charge is unstable, the charge exhibits

an increment of the amplitude, and the behavior becomes
anomalously dispersive (the charge increases with increasing
order of 𝛾).The electrical circuits studied and their respective
analogue mechanical system can be used to analyze the
vibration levels of machinery, serial mechanisms, robotics,
oscillating circuits modeling, and instability of electrical and
mechanical circuits, to evaluate reconfigurable machines or
tomakemobility analysis or algebraic formulations ofmotion
equations.
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