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In consideration of the continuous orbifold partition function and a generating function for all 𝑛-point correlation functions for
the rank two free fermion vertex operator superalgebra on the self-sewing torus, we introduce the twisted version of Frobenius
identity.

1. Torus Intertwining 𝑛-Point Functions
1.1. Torus Intertwining 𝑛-Point Functions for M. In this
sectionwe recall the computation [1] of the torus intertwining𝑛-point functions forM. Here we recall several constructions
from [1]. For the notions of free fermionic VOSA and its
twisted modules see Appendix. Define the square-bracket
vertex operator [2] Y[𝑢 ⊗ 𝑒�훼, 𝑧] = Y(𝑞�퐿(0)�푧 (𝑢 ⊗ 𝑒�훼), 𝑞�푧 −1), for 𝑢 ⊗ 𝑒�훼 ∈ M and where 𝑞�푧 = 𝑒�푧. As in [2] we
find that (𝑉,Y[ , ], 1, �̃�) and (𝑉,Y( , ), 1, 𝜔) are isomorphic
generalized VOAs with �̃� = 𝜔 − (1/24)1, a new conformal
vector with vertex operator 𝑌[�̃�, 𝑧] = ∑�푛∈Z 𝐿[𝑛]𝑧−�푛−2. We let
wt[𝑢 ⊗ 𝑒�훼] = wt[𝑢] + (1/2)𝛼2 denote the weight of an 𝐿[0]
homogeneous vector 𝑢 ⊗ 𝑒�훼. Let𝑀⊗ 𝑒�훼 be an irreducible𝑀-
module for some 𝛼 ∈ C with torus partition function

𝑍(1)�훼 (𝑞) = Tr�푀⊗�푒𝛼𝑞�퐿(0)−1/24 = 𝑞(1/2)�훼
2

𝜂 (𝑞) , (1)

where 𝜂(𝑞) = 𝑞1/24∏�푛≥1(1 − 𝑞�푛) is the Dedekind eta-function
for modular parameter 𝑞. In general, we define the genus one
intertwining 𝑛-point correlation function on 𝑀 ⊗ 𝑒�훼 for 𝑛
vectors 𝑢1 ⊗ 𝑒�훽1 , . . . , V�푛 ⊗ 𝑒�훽𝑛 ∈M by

𝑍(1)�훼 (𝑢1 ⊗ 𝑒�훽1 , 𝑧1; . . . ; 𝑢�푛 ⊗ 𝑒�훽𝑛 , 𝑧�푛; 𝑞)

= Tr�푀⊗�푒𝛼 (Y (𝑞�퐿(0)1 (𝑢1 ⊗ 𝑒�훽1) , 𝑞1)
⋅ ⋅ ⋅Y (𝑞�퐿(0)�푛 (𝑢�푛 ⊗ 𝑒�훽𝑛) , 𝑞�푛) 𝑞�퐿(0)−1/24) ,

(2)

for formal 𝑞�푖 = 𝑒�푧𝑖 with 𝑖 = 1, . . . , 𝑛. Since 𝑒�훽�푞𝑀 ⊗ 𝑒�훼 =𝑀 ⊗ 𝑒�훼+�훽 it follows that the 𝑛-point function vanishes when∑�푖=1 𝛽�푖 ̸= 0.
In [1] we describe a natural generalization of previous

results in [3, 4]. Firstly, consider the 𝑛-point functions for 𝑛
highest weight vectors 1 ⊗ 𝑒�훽𝑖 , which we abbreviate below to𝑒�훽𝑖 , for 𝑖 = 1, . . . , 𝑛.
Proposition 1. For ∑�푛�푖=1 𝛽�푖 = 0 then
𝑍(1)�훼 (𝑒�훽1 , 𝑧1; . . . ; 𝑒�훽𝑛 , 𝑧�푛; 𝑞)
= 𝑞(1/2)�훼

2

𝜂 (𝜏) exp(𝛼 �푛∑
�푖=1

𝛽�푖𝑧�푖) ∏
1≤�푟<�푠≤�푛

𝐾(𝑧�푟�푠, 𝜏)�훽𝑟�훽𝑠 , (3)

where 𝑧�푟�푠 = 𝑧�푟 − 𝑧�푠 and 𝐾(𝑧, 𝜏) is the genus one prime form
(A.6).

It is a natural generalization of results developed in [3, 4].
In [1] generalizing results of [3] we obtain a closed form for
the general 𝑛-point function (2). In particular, due to (B.16),
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wemay apply standard genus one Zhu recursion theory [2] to
reduce (2) to an explicit multiple of (3) to find the following.

Proposition 2. For ∑�푛�푖=1 𝜁�푖 = 0 then
𝑍(1)�훼 (𝑢1 ⊗ 𝑒�휁1 , 𝑧1; . . . ; 𝑢�푛 ⊗ 𝑒�휁𝑛 , 𝑧�푛; 𝑞)
= 𝑄�휁1 ,...,�휁𝑛�훼 (𝑢1, 𝑧1; . . . ; 𝑢�푛, 𝑧�푛; 𝑞)
⋅ 𝑍(1)�훼 (𝑒�휁1 , 𝑧1; . . . ; 𝑒�휁𝑛 , 𝑧�푛; 𝑞) ,

(4)

where 𝑄�휁1 ,...,�휁𝑛�훼 (𝑢1, 𝑧1; . . . ; 𝑢�푛, 𝑧�푛; 𝑞) is an explicit sum of elliptic
and quasi-modular forms introduced in [3].

1.2. Torus Intertwined 𝑛-Point Functions for 𝑉Z. Let 𝑔1, ℎ1 be
commuting automorphisms of 𝑉Z defined by

𝜎𝑓1 = 𝑒2�휋�푖�훽1�푎(0),
𝜎𝑔1 = 𝑒−2�휋�푖�훼1�푎(0), (5)

where 𝜎 = 𝑒�휋�푖�푎(0) is the fermion number automorphism. We
assume that 𝛼1, 𝛽1 ∈ R so that 𝜃1 = −𝑒−2�휋�푖�훽1 and 𝜙1 = −𝑒2�휋�푖�훼1
are of unit modulus.

We then consider in [1] torus orbifold intertwining 𝑛 + 2-
point functions for the𝜎𝑔1-twistedmodule𝑉Z+�훼1 = ⊕�푚∈Z𝑀⊗𝑒�푚+�훼1 for 𝑉Z defined by

𝑍(1)�푉Z [𝑓1𝑔1] (𝑢1 ⊗ 𝑒
�푚1 , 𝑧1; . . . , 𝑢�푛 ⊗ 𝑒�푚𝑛 , 𝑧�푛; V1 ⊗ 𝑒�푛1+�휅, 𝑤;

V2 ⊗ 𝑒�푛2−�휅, 0; 𝑞)
= Tr�푉Z+𝛼1 (𝜎𝑓1𝑌 (𝑞�퐿(0)1 (𝑢1 ⊗ 𝑒�푚1) , 𝑞1)
⋅ ⋅ ⋅ 𝑌 (𝑞�퐿(0)�푛 (𝑢�푛 ⊗ 𝑒�푚𝑛) , 𝑞�푛)
⋅Y (𝑞�퐿(0)�푤 (V1 ⊗ 𝑒�푛1+�휅) , 𝑞�푤)Y (V2 ⊗ 𝑒�푛2−�휅, 1)
⋅ 𝑞�퐿(0)−1/24) = ∑

�휇∈Z+�훼1

𝑒2�휋�푖�휇�훽1𝑍(1)�휇 (𝑢1
⊗ 𝑒�푚1 , 𝑧1; . . . ; 𝑢�푛 ⊗ 𝑒�푚𝑛 , 𝑧�푛; V1 ⊗ 𝑒�푛1+�휅, 𝑤; V2
⊗ 𝑒�푛2−�휅, 0; 𝑞) ,

(6)

where𝑚�푖, 𝑛1, and 𝑛2 ∈ Z for 𝜅 ∈ (−1/2, 1/2) and 𝑞�푤 = 𝑒�푤. In
particular, we find

𝑍(1)�푉Z [𝑓1𝑔1] (𝑒
�휅, 𝑤; 𝑒−�휅, 0; 𝑞)

= ∑
�휇∈Z+�훼1

𝑒2�휋�푖�휇�훽1𝑍(1)�휇 (𝑒�휅, 𝑤; 𝑒−�휅, 0; 𝑞)

= 1𝜂 (𝑞)
𝜗 [ �훼1�훽1 ] (𝜅𝑤, 𝜏)𝐾 (𝑤, 𝜏)�휅2 ,

(7)

for genus one theta series (A.1).

More generally, we define in [1] a generating function
for all 𝑛 + 2-point functions (A.1) by the following formal
differential form:

G
(1)
�푛 [𝑓1𝑔1] (𝑥1, 𝑦1, . . . , 𝑥�푛, 𝑦�푛) ≡ 𝑍

(1)
�푉Z
[𝑓1𝑔1] (𝜓

+, 𝑥1; 𝜓−,

𝑦1; . . . ; 𝜓+, 𝑥�푛; 𝜓−, 𝑦�푛; 𝑒�휅, 𝑤; 𝑒−�휅, 0; 𝑞) �푛∏
�푖=1

𝑑𝑥1/2�푖 𝑑𝑦1/2�푖 ,
(8)

for 𝑉Z generators 𝜓± = 𝑒±1 alternatively inserted at 𝑥�푖, 𝑦�푖 for𝑖 = 1, . . . , 𝑛. Recall the notion of the Szegő kernel described
in the Appendix. Then we prove in [1] the following.

Proposition 3. The generating form (8) is given by

G
(1)
�푛 [𝑓1𝑔1] (𝑥1, 𝑦1, . . . , 𝑥�푛, 𝑦�푛)

= 𝑍(1)�푉Z [𝑓1𝑔1] (𝑒
�휅, 𝑤; 𝑒−�휅, 0; 𝑞) det 𝑆�휅,

(9)

where 𝑆�휅 denotes the 𝑛 × 𝑛 matrix with components 𝑆�휅(𝑥�푖, 𝑦�푗)
for 𝑖, 𝑗 = 1, . . . , 𝑛 for Szegő kernel (A.9).

Finally, we obtain in [1] the following generalization of
Proposition 15 of [4] concerning the generating properties of
(8).

Proposition 4. G(1)
�푚 [ �푓1�푔1 ] (𝑥1, 𝑦1, . . . , 𝑥�푚, 𝑦�푚) is a generating

function for all torus orbifold intertwining 𝑛+2-point functions
(A.1). In particular, for a pair of square-bracket mode twisted
Fock vectors (B.10)

Ψ�휅 [k1, l2] = 𝑒�휅�푞𝜓+ [−𝑘11] ⋅ ⋅ ⋅ 𝜓+ [−𝑘1�푠1]
⋅ 𝜓− [−𝑙21] ⋅ ⋅ ⋅ 𝜓− [−𝑙2�푡2] 1,

Ψ−�휅 [k2, l1] = 𝑒−�휅�푞𝜓+ [−𝑘21] ⋅ ⋅ ⋅ 𝜓+ [−𝑘2�푠2]
⋅ 𝜓− [−𝑙11] ⋅ ⋅ ⋅ 𝜓− [−𝑙1�푡1] 1,

(10)

for 𝑝 = 𝑠1 + 𝑠2 = 𝑡1 + 𝑡2 > 0; then
𝑍(1)�푉Z [𝑓1𝑔1] (Ψ�휅 [k1, l2] , 𝑤; Ψ−�휅 [k2, l1] , 0; 𝑞)

= 𝜖𝑍(1)�푉Z [𝑓1𝑔1] (𝑒
�휅, 𝑤; 𝑒−�휅, 0; 𝑞) det𝐶�푎�푏 (k�푎, l�푏) ,

(11)

where 𝜖 = (−1)(�푡1+�푠2)�푡2+⌊(1/2)�푝⌋𝑒�푖�휋�퐵�휅(�푠2−�푡1), for the odd integer 𝐵
fixed in (B.18) and

𝐶�푎�푏 (k�푎, l�푏) = [𝐶11 (k1, l1) 𝐶12 (k1, l2)𝐶21 (k2, l1) 𝐶22 (k2, l2)] (12)

is a 𝑝 × 𝑝 block matrix with components 𝐶�푎�푏(𝑘�푎�푖𝑎 , 𝑙�푏�푗𝑏) for 𝑖�푎 =1, . . . , 𝑠�푎 and 𝑗�푏 = 1, . . . , 𝑡�푏 for 𝑎, 𝑏 = 1, 2 for 𝑆�휅 expansion
coefficients (A.11).
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2. Twisted Frobenius Identity

In this subsection we finally derive the main formula of this
paper, the twisted Frobenius identity. Recall the Frobenius
identity (e.g., [4, 5])

𝜗 [ �훼1�훽1 ] (∑�푛�푚=1 (𝑥�푚 − 𝑦�푚) , 𝜏)𝜗 [ �훼1�훽1 ] (0, 𝜏)
⋅ ∏1≤�푖<�푗≤�푛𝐾(𝑥�푖 − 𝑥�푗, 𝜏)𝐾 (𝑦�푖 − 𝑦�푗, 𝜏)

∏1≤�푖,�푗≤�푛𝐾(𝑥�푖 − 𝑦�푗, 𝜏) = det𝑃1,
(13)

where 𝑃1 denotes the 𝑛 × 𝑛 matrix with twisted Weierstrass
function components 𝑃1 [ �휃1�휙1 ] (𝑥�푖, 𝑦�푗) of (A.8) for 𝑖, 𝑗 =1, . . . , 𝑛.

The trivial form of the twisted Frobenius identity follows
from the consideration of the generating function for all 𝑛+2-
point functions

𝜗 [ �훼1�훽1 ] (∑�푛�푚=1 (𝑥�푚 − 𝑦�푚) + 𝜅𝑤, 𝜏)𝜗 [ �훼1�훽1 ] (𝜅𝑤, 𝜏)
⋅ ∏1≤�푖<�푗≤�푛𝐾(𝑥�푖 − 𝑥�푗, 𝜏)𝐾 (𝑦�푖 − 𝑦�푗, 𝜏)

∏1≤�푖,�푗≤�푛𝐾(𝑥�푖 − 𝑦�푗, 𝜏)
⋅ ∏
1≤�푖,�푗≤�푛

[𝐾 (𝑥�푖 − 𝑤, 𝜏)𝐾 (𝑦�푗, 𝜏)𝐾 (𝑥�푖, 𝜏)𝐾 (𝑦�푗 − 𝑤, 𝜏)]
�휅

𝑑𝑥1/2�푖 𝑑𝑦1/2�푗

= det 𝑆�휅.

(14)

We obtain the following.

Proposition 5. The twisted two-point Frobenius identity is
given by

∑
�휇∈Z+�훼1

𝑒2�휋�푖�휇�훽1𝑄�휁�휇 (Ψ�휅 [k1, l2] , 𝑤; Ψ−�휅 [k2, l1] , 0; V1

⊗ 𝑒�푛1+�휅, 𝑤; V2 ⊗ 𝑒�푛2−�휅, 0; 𝑞) ⋅ 𝑞(1/2)�휇2 exp(𝜇∑
�푖=1

𝜁�푖𝑧�푖)

⋅ 𝐾 (𝑤, 𝜏)�휅2∏
�푟<�푠

𝐾(𝑧�푟�푠, 𝜏)�휁𝑟�휁𝑠 = 𝜗[𝛼1𝛽1] (𝜅𝑤, 𝜏)
⋅ det𝐶�푎�푏 (k�푎, l�푏) ,

(15)

for 𝜁 = 𝜁(Ψ�휅[k1, l2]; Ψ−�휅[k2, l1]; V1 ⊗ 𝑒�푛1+�휅; V2 ⊗ 𝑒�푛2−�휅) (i.e.,
values of exponents in module elements), and 𝑧 = {𝑤, 0, 𝑤, 0}
correspondingly.

Proof. Consider the expression for the torus orbifold inter-
twining two-point function (11). Using (4) we derive the
following:

𝑍(1)�푉Z [𝑓1𝑔1] (Ψ�휅 [k1, l2] , 𝑤; Ψ−�휅 [k2, l1] , 0; V1
⊗ 𝑒�푛1+�휅, 𝑤; V2 ⊗ 𝑒�푛2−�휅, 0; 𝑞)
= ∑

�휇∈Z+�훼1

𝑒2�휋�푖�휇�훽1𝑍(1)�휇 (Ψ�휅 [k1, l2] , 𝑤; Ψ−�휅 [k2, l1] , 0; V1
⊗ 𝑒�푛1+�휅, 𝑤; V2 ⊗ 𝑒�푛2−�휅, 0; 𝑞)
= ∑

�휇∈Z+�훼1

𝑒2�휋�푖�휇�훽1𝑄�휁�휇 (Ψ�휅 [k1, l2] , 𝑤; Ψ−�휅 [k2, l1] , 0; V1
⊗ 𝑒�푛1+�휅, 𝑤; V2 ⊗ 𝑒�푛2−�휅) 𝑍(1)�휇 (𝑒�휁1 , 𝑧1; . . . ; 𝑒�휁𝑛 , 𝑧�푛; 𝑞)
= ∑

�휇∈Z+�훼1

𝑒2�휋�푖�휇�훽1𝑄�휁�휇 (Ψ�휅 [k1, l2] , 𝑤; Ψ−�휅 [k2, l1] , 0; V1

⊗ 𝑒�푛1+�휅, 𝑤; V2 ⊗ 𝑒�푛2−�휅, 0; 𝑞) ⋅ 𝑞(1/2)�훼
2

𝜂 (𝜏) exp(𝜇∑
�푖=1

𝜁�푖𝑧�푖)
⋅ ∏
1≤�푟<�푠≤�푛

𝐾(𝑧�푟�푠, 𝜏)�훽𝑟�훽𝑠 .

(16)

Thus we obtain the result.

Appendix

A. The Szegy Kernel on a Riemann Surface

Consider a compact connected Riemann surface Σ of genus𝑔 with canonical homology cycle bases 𝑎�푖, 𝑏�푖 for 𝑖 = 1, . . . , 𝑔.
Let ]�푖 be a basis of holomorphic one-formwith normalization∮
�푎𝑖
]�푗 = 2𝜋𝑖𝛿�푖�푗 and period matrix Ω�푖�푗 = (1/2𝜋𝑖)∮�푏𝑖]�푗 ∈ H�푔,

the Siegel upper half plane.Define the theta functionwith real
characteristics [5–7]

𝜗 [𝛼𝛽] (𝑧 | Ω) = ∑�푛∈Z𝑔𝑒
�푖�휋(�푛+�훼)⋅Ω⋅(�푛+�훼)+(�푛+�훼)⋅(�푧+2�휋�푖�훽), (A.1)

for 𝛼 = (𝛼�푗), 𝛽 = (𝛽�푗) ∈ R�푔, and 𝑧 = (𝑧�푗) ∈ C�푔 for 𝑗 =1, . . . , 𝑔. The Szegő kernel is defined for 𝜗 [ �훼�훽 ] (0 | Ω) ̸= 0 by
[5, 8, 9]

𝑆 [𝜃𝜙] (𝑥, 𝑦 | Ω) =
𝜗 [ �훼�훽 ] (∫�푥�푦 ] | Ω)
𝜗 [ �훼�훽 ] (0 | Ω) 𝐸 (𝑥, 𝑦) , (A.2)

for 𝑥, 𝑦 ∈ Σ and where 𝜃 = (𝜃�푗), and 𝜙 = (𝜙�푗) ∈ 𝑈(1)�푛 for
𝜃�푗 = −𝑒−2�휋�푖�훽𝑗 ,
𝜙�푗 = −𝑒2�휋�푖�훼𝑗 ,

𝑗 = 1, . . . , 𝑔
(A.3)
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(where the −1 factors are included for later convenience)
and 𝐸(𝑥, 𝑦) is the prime form [5, 6]. We use the convention𝐸(𝑥, 𝑦) ∼ (𝑥 − 𝑦)𝑑𝑥−1/2𝑑𝑦−1/2 for 𝑥 ∼ 𝑦. The Szegő kernel is
periodic in 𝑥 along the 𝑎�푖 and 𝑏�푗 cycles with multipliers −𝜙�푖
and −𝜃�푗, respectively, and is a meromorphic (1/2, 1/2)-form
(and is thus necessarily defined on a double-cover Σ̃ of the
Riemann surface) satisfying

𝑆 [𝜃𝜙] (𝑥, 𝑦) ∼
1𝑥 − 𝑦𝑑𝑥1/2𝑑𝑦1/2 for 𝑥 ∼ 𝑦,

𝑆 [𝜃𝜙] (𝑥, 𝑦) = −𝑆[
𝜃−1
𝜙−1] (𝑦, 𝑥) ,

(A.4)

where 𝜃−1 = (𝜃−1�푖 ) and 𝜙−1 = (𝜙−1�푖 ).
A.1. The Genus Two Szegő Kernel in the 𝜌-Formalism. Now
we recall the construction of the Szegő kernel on a genus
two Riemann surface in the 𝜌-formalism [10]. The genus one
prime form for 𝑥, 𝑦 ∈ C and 𝜏 ∈ H1 is

𝐸 (𝑥, 𝑦) = 𝐾 (𝑥 − 𝑦, 𝜏) 𝑑𝑥−1/2𝑑𝑦−1/2, (A.5)

where

𝐾 (𝑧, 𝜏) = 𝜗1 (𝑧, 𝜏)𝜕�푧𝜗1 (0, 𝜏) , 𝜗1 (𝑧, 𝜏) = 𝜗
[[[
[

1212
]]]
]
(𝑧, 𝜏) . (A.6)

Let (𝜃1, 𝜙1) ∈ 𝑈(1) × 𝑈(1) with (𝜃1, 𝜙1) ̸= (1, 1). The genus
one Szegő kernel is

𝑆(1) [𝜃1𝜙1] (𝑥, 𝑦 | 𝜏) = 𝑃1 [
𝜃1𝜙1] (𝑥 − 𝑦, 𝜏) 𝑑𝑥

1/2𝑑𝑦1/2, (A.7)

where

𝑃1 [𝜃1𝜙1] (𝑧, 𝜏) =
𝜗 [ �훼1�훽1 ] (𝑧, 𝜏)𝜗 [ �훼1�훽1 ] (0, 𝜏)

1𝐾 (𝑧, 𝜏) , (A.8)

where −𝜙1 = exp(2𝜋𝑖𝛼1) and −𝜃1 = exp(−2𝜋𝑖𝛽1) are the
periodicities of 𝑆(1) [ �휃1�휙1 ] (𝑥, 𝑦 | 𝜏) in 𝑥 on the standard 𝑎 and𝑏 cycles, respectively.

It is convenient to define 𝜅 ∈ (1/2, 1/2) by 𝜙2 = −𝑒2�휋�푖�휅
(i.e., 𝜅 = 𝛼(2)2 mod 1) and introduce [1]

𝑆�휅 (𝑥, 𝑦) = (𝜗1 (𝑥 − 𝑤, 𝜏) 𝜗1 (𝑦, 𝜏)𝜗1 (𝑥, 𝜏) 𝜗1 (𝑦 − 𝑤, 𝜏))
�휅

⋅ 𝜗 [
�훼1
�훽1
] (𝑥 − 𝑦 + 𝜅𝑤, 𝜏)

𝜗 [ �훼1�훽1 ] (𝜅𝑤, 𝜏)𝐾 (𝑥 − 𝑦, 𝜏)𝑑𝑥
1/2𝑑𝑦1/2,

(A.9)

for 𝜅 ̸= −1/2 (with a different expression when 𝜅 = −1/2
given in [10]). We will assume 𝜅 ̸= −1/2 throughout this
paper. Note also that 𝑆�휅=0(𝑥, 𝑦) = 𝑆(1) [ �휃1�휙1 ] (𝑥, 𝑦), the genus
one Szegő kernel.

𝑆�휅(𝑥, 𝑦) has an expansion in the neighborhood of the
punctures at 0, 𝑤 in terms of local coordinates 𝑥1 = 𝑥 and𝑦1 = 𝑦, and 𝑥1 = 𝑥 − 𝑤 and 𝑦2 = 𝑦 − 𝑤 as follows [11]:

𝑆�휅 (𝑥�푎, 𝑦�푏) = [𝛿�푎,�푏 1𝑥�푏 − 𝑦�푏 (
𝑥�푏𝑦�푏)

�휅(−1)𝑏

+ ∑
�푘,�푙≥1

𝐶�푎�푏 (𝑘, 𝑙) 𝑥�푘𝑎−1�푎 𝑦�푙𝑏−1�푏 ]𝑑𝑥1/2�푎 𝑑𝑦1/2�푏 ,
(A.10)

where 𝐶�푎�푏(𝑘, 𝑙) = 𝐶�푎�푏 [ �휃1�휙1 ] (𝑘, 𝑙 | 𝜏, 𝑤, 𝜅) and 𝑘�푎 = 𝑘 + 𝜅(−1)�푎
for integer 𝑘 ≥ 1 and 𝑎 = 1, 2. We may invert this to obtain
the infinite block moment matrix

𝐶�푎�푏 (𝑘, 𝑙) = 1
(2𝜋𝑖)2 ∮C𝑎(�푥𝑎)∮C𝑏(�푦𝑏) (𝑥�푎)

−�푘𝑎 (𝑦�푏)−�푙𝑏
⋅ 𝑆�휅 (𝑥�푎, 𝑦�푏) 𝑑𝑥1/2�푎 𝑑𝑦1/2�푏 .

(A.11)

B. The Free Fermion VOSA and
Its Twisted Modules

In this Appendix we recall [1] the notion of the free fermionic
VOSA and its twisted modules.

B.1. The Free Fermion VOSA. We consider in this paper the
rank two free fermion vertex operator superalgebra (VOSA)𝑉 = 𝑉(𝐻,Z + 1/2)⊗2 of central charge 1 (e.g., see [4, 12]
for details). The weight 1/2 space is spanned by 𝜓+, 𝜓− with
vertex operator modes which satisfy the anticommutation
relations

[𝜓+ (𝑚) , 𝜓− (𝑛)] = 𝛿�푚,−�푛−1,
[𝜓+ (𝑚) , 𝜓+ (𝑛)] = [𝜓− (𝑚) , 𝜓− (𝑛)] = 0. (B.1)

𝑉 is spanned by Fock vectors of the form

Ψ (k, l)
≡ 𝜓+ (−𝑘1) ⋅ ⋅ ⋅ 𝜓+ (−𝑘�푠) 𝜓− (−𝑙1) ⋅ ⋅ ⋅ 𝜓− (−𝑙�푡) 1, (B.2)

for distinct 0 < 𝑘1 < ⋅ ⋅ ⋅ < 𝑘�푠 and 0 < 𝑙1 < ⋅ ⋅ ⋅ < 𝑙�푡 and of
Virasoro weight

wt (Ψ (k, l)) = �푠∑
�푖=1

(𝑘�푖 − 12) +
�푡∑
�푗=1

(𝑙�푗 − 12) , (B.3)

with Virasoro vector

𝜔 = 12 (𝜓+ (−2) 𝜓− (−1) + 𝜓− (−2) 𝜓+ (−1)) 1. (B.4)

Theweight 1 space is spanned by 𝑎 = 𝜓+(−1)𝜓− whosemodes
obey the Heisenberg commutation relations

[𝑎 (𝑚) , 𝑎 (𝑛)] = 𝑚𝛿�푚,−�푛. (B.5)

As is well known, we may decompose 𝑉 into irreducible𝑀-
modules 𝑀 ⊗ 𝑒�푚 with 𝑎(0) eigenvalue 𝑚 ∈ Z so that 𝑉 =𝑉(𝐻,Z + 1/2)⊗2 ≅ 𝑉Z = ⊕�푚∈Z𝑀 ⊗ 𝑒�푚, the lattice VOSA for
the Z-lattice with trivial cocycle structure.
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B.2. 𝑔-Twisted 𝑉Z-Modules and a Generalized VOA. 𝑎(0)
generates continuous winding 𝑉Z-automorphism 𝑔 =𝑒−2�휋�푖�훼�푎(0) for 𝛼 ∈ C. In particular, the fermion number
involution is 𝜎 = 𝑒�휋�푖�푎(0).We define for all 𝑢 ∈ 𝑀 the following
operators:

𝑌�푔 (𝑢 ⊗ 𝑒�푚, 𝑧) = 𝑌 (Δ (𝛼, 𝑧) (𝑢 ⊗ 𝑒�푚) , 𝑧) ,
Δ (𝛼, 𝑧) = 𝑧�훼�푎(0)𝑌+ (𝛼, −𝑧) ,
𝑌± (𝛼, 𝑧) = exp(∓𝛼∑

�푛>0

𝑎 (±𝑛)𝑛 𝑧∓�푛) .
(B.6)

Then we have [13] the following.

Proposition B.1. (𝑉Z, 𝑌�푔) is a 𝑔-twisted 𝑉Z-module.

In Section 5 of [11] an isomorphic construction is
described whereby the 𝑔-twisted module is determined by
the action of the original vertex operators on a twisted vector
space 𝑉Z+�훼 = 𝑒�훼�푞𝑉Z = ⊕�푚∈Z𝑀⊗ 𝑒�푚+�훼, where

𝑌�푔 (𝑢 ⊗ 𝑒�푚, 𝑧) = 𝑒−�훼�푞𝑌 (𝑢 ⊗ 𝑒�푚, 𝑧) 𝑒�훼�푞, (B.7)

where 𝑞 is defined by

[𝑎 (𝑛) , 𝑞] = 𝛿�푛,0. (B.8)

In particular 𝑌�푔(𝜔, 𝑧) determines the 𝑔-twisted grading
operator

𝐿�푔 (0) = 𝐿 (0) + 𝛼𝑎 (0) + 12𝛼2. (B.9)

Hence Ψ(k, l) ∈ 𝑀 ⊗ 𝑒�푠−�푡 of (B.2) has 𝑔-twisted Virasoro
weight wt(Ψ(k, l)) + 𝛼(𝑠 − 𝑡) + (1/2)𝛼2 which is equal to the𝐿(0) weight of the 𝑉Z+�훼 twisted Fock vector

Ψ�훼 (k, l) ≡ 𝑒�훼�푞Ψ (k, l) ∈ 𝑀 ⊗ 𝑒�푠−�푡+�훼. (B.10)

In [11] we describe a generalized VOA with vector space

M =⨁
�훼∈C

𝑀⊗ 𝑒�훼, (B.11)

formed as a direct sum of the Heisenberg VOA with all of its
irreducible modules. M is spanned by Ψ�훼(k, l) for all 𝛼 ∈ C.
The generalized vertex operators are

Y (𝑢 ⊗ 𝑒�훼, 𝑧) = 𝑒�훼�푞𝑌− (𝛼, 𝑧) 𝑌 (𝑢, 𝑧) 𝑌+ (𝛼, 𝑧) 𝑧�훼�푎(0). (B.12)

Equation (B.12) reduces to the usual bosonized form of the
vertex operators for 𝑉Z for 𝛼 ∈ Z. A similar construction
also appears in [14].

The generalized VOA leads to more general notions of
locality, skew-symmetry, associativity, and commutivity than
those for a VOSA as follows [1].

PropositionB.2. For 𝑢⊗𝑒�훼, V⊗𝑒�훽,𝑤⊗𝑒�훾 ∈M, and for integer𝑁 ≫ 0
(𝑧1 − 𝑧2)�푁 (𝑧1 − 𝑧2)−�훼�훽Y (𝑢 ⊗ 𝑒�훼, 𝑧1)Y (V ⊗ 𝑒�훽, 𝑧2)
= (𝑧1 − 𝑧2)�푁 (𝑧2 − 𝑧1)−�훼�훽Y (V ⊗ 𝑒�훽, 𝑧2)
⋅Y (𝑢 ⊗ 𝑒�훼, 𝑧1) ,

(B.13)

𝑧−�훼�훽Y (𝑢 ⊗ 𝑒�훼, 𝑧) V ⊗ 𝑒�훽 = (−𝑧)−�훼�훽
⋅ 𝑒�푧�퐿(−1)Y (V ⊗ 𝑒�훽, −𝑧) 𝑢 ⊗ 𝑒�훼, (B.14)

(𝑧0 + 𝑧2)�푁−�훼�훾Y (𝑢 ⊗ 𝑒�훼, 𝑧0 + 𝑧2)Y (V ⊗ 𝑒�훽, 𝑧2)𝑤
⊗ 𝑒�훾 = (𝑧2 + 𝑧0)�푁−�훼�훾
⋅Y (Y (𝑢 ⊗ 𝑒�훼, 𝑧0) (V ⊗ 𝑒�훽) , 𝑧2)𝑤 ⊗ 𝑒�훾,

(B.15)

[𝑢 (𝑘) ,Y (V ⊗ 𝑒�훽, 𝑧)]
= ∑

�푗≥0

(𝑘𝑗)Y (𝑢 (𝑗) V ⊗ 𝑒�훽, 𝑧) 𝑧�푘−�푗, 𝑢 ∈ 𝑀.
(B.16)

It is convenient to define for formal parameter 𝑧 and 𝜒 ∈
C

(−𝑧)�휒 = 𝑒�푖�휋�퐵�휒𝑧�휒, (B.17)

where we choose, once and for all, an odd integer 𝐵
parametrizing the formal branch cut. Note some notational
changes from [11]. Then generalized locality and skew-
symmetry can be rewritten as

(𝑧1 − 𝑧2)�푁−�훼�훽Y (𝑢 ⊗ 𝑒�훼, 𝑧1)Y (V ⊗ 𝑒�훽, 𝑧2)
= 𝑒−�푖�휋�퐵�훼�훽 (𝑧1 − 𝑧2)�푁−�훼�훽Y (V ⊗ 𝑒�훽, 𝑧2)
⋅Y (𝑢 ⊗ 𝑒�훼, 𝑧1) ,

(B.18)

Y (𝑢 ⊗ 𝑒�훼, 𝑧) V ⊗ 𝑒�훽 = 𝑒−�푖�휋�퐵�훼�훽𝑒�푧�퐿(−1)Y (V ⊗ 𝑒�훽, −𝑧)
⋅ 𝑢 ⊗ 𝑒�훼. (B.19)

B.3. An Invariant Form on M. In [11] we introduced an
invariant bilinear form ⟨⋅, ⋅⟩ onM associatedwith theMöbius
map [8, 15, 16]

( 0 𝜆
−𝑒�푖�휋�퐵𝜆−1 0) : 𝑧 → −

𝜆2𝑒�푖�휋�퐵𝑧 , (B.20)

for 𝜆 ̸= 0. We will later choose

𝜆 = 𝑒(1/2)�푖�휋�퐵𝜌1/2, (B.21)

for the odd integer 𝐵 of (B.17). Thus we reformulate the
sewing relationship as 𝑧1 = −𝜆2/𝑧2 so that we get 𝑑𝑧1/21 =𝜉𝜌1/2/𝑧2𝑑𝑧1/22 for 𝜉 = 𝑒(1/2)�푖�휋�퐵.
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Define the adjoint vertex operator

Y
† (𝑢 ⊗ 𝑒�훼, 𝑧)
= Y(𝑒−�푧�휆−2�퐿(1) ( 𝜆𝑒�푖�휋�퐵𝑧)

2�퐿(0) (𝑢 ⊗ 𝑒�훼) , 𝜆2𝑒�푖�휋�퐵𝑧) .
(B.22)

A bilinear form ⟨⋅, ⋅⟩�휆 on M is said to be invariant if for all𝑢 ⊗ 𝑒�훼, V ⊗ 𝑒�훽, and 𝑤 ⊗ 𝑒�훾 ∈M we have

⟨Y (𝑢 ⊗ 𝑒�훼, 𝑧) (V ⊗ 𝑒�훽) , 𝑤 ⊗ 𝑒�훾⟩
�휆

= 𝑒−�푖�휋�퐵�훼�훽 ⟨V ⊗ 𝑒�훽,Y† (𝑢 ⊗ 𝑒�훼, 𝑧) 𝑤 ⊗ 𝑒�훾⟩
�휆
. (B.23)

Equation (B.22) reduces to the usual definition for a VOSA
when 𝛼, 𝛽, 𝛾 ∈ Z [8, 16]. Choosing the normalization ⟨1, 1⟩ =1 then ⟨⋅, ⋅⟩�휆 onM is symmetric, unique, and invertible with
[11]

⟨𝑢 ⊗ 𝑒�훼, V ⊗ 𝑒�훽⟩
�휆
= 𝜆−�훼2𝛿�훼,−�훽 ⟨𝑢 ⊗ 𝑒0, V ⊗ 𝑒0⟩�휆 . (B.24)

The dual of the Fock vectorΨ = Ψ(k, l) with respect to ⟨⋅, ⋅⟩�휆,
which we refer to as the 𝜆-dual, is

Ψ (k, l) = (−1)�푠�푡+⌊wt(Ψ)⌋ 𝜆2wt(Ψ)Ψ (l, k) , (B.25)

where ⌊𝑥⌋ denotes the integer part of 𝑥 [16]. Applying (B.21)
and (B.24) it follows that Ψ�훼 = Ψ�훼(k, l) of (B.10) has 𝜆-dual
Ψ�훼 (k, l) = (−1)�푠�푡+⌊wt(Ψ)⌋ 𝜆2wt(Ψ𝛼)Ψ−�훼 (l, k)

= (−1)�푠�푡+⌊wt(Ψ)⌋ 𝑒�푖�휋�퐵wt(Ψ𝛼)𝜌wt(Ψ𝛼)Ψ−�훼 (l, k) . (B.26)
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