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The spinor–vector duality was discovered in free fermionic constructions of the heterotic string in four dimensions. It played
a key role in the construction of heterotic–string models with an anomaly-free extra 𝑍󸀠 symmetry that may remain unbroken
down to low energy scales. A generic signature of the low scale string derived 𝑍󸀠 model is via diphoton excess that may be
within reach of the LHC. A fascinating possibility is that the spinor–vector duality symmetry is rooted in the structure of the
heterotic–string compactifications to two dimensions. The two-dimensional heterotic–string theories are in turn related to the
so-called moonshine symmetries that underlie the two-dimensional compactifications. In this paper, we embark on exploration
of this connection by the free fermionic formulation to classify the symmetries of the two-dimensional heterotic–string theories.
We use two complementary approaches in our classification. The first utilises a construction which is akin to the one used in the
spinor–vector duality. Underlying this method is the triality property of 𝑆𝑂(8) representations. In the second approach, we use the
free fermionic tools to classify the twenty-four-dimensional Niemeier lattices.

1. Introduction

The ATLAS and CMS collaborations reported in Decem-
ber 2015 evidence for excess in the diphoton channel [1,
2]. Absence of evidence for any other deviation from the
Standard Model expected signals suggested that the excess
could be interpreted as production and decay of a Standard
Model singlet state by heavy vector-like states [3], in a process
depicted in Figure 1. In [4], it was shown that the spectrum
required to generate the excess naturally arises in the string
derived model of [5], which allows for a light 𝑍󸀠 vector
boson. Anomaly cancellation mandates that the mass scale
of the Standard Model singlet state, which is produced in
resonance in Figure 1, as well as the mass scale of the heavy
vector-like states that are used in the production and decay
of the singlet states, be the𝑍󸀠 symmetry breaking scale.Thus,
assuming that the 𝑍󸀠 remains unbroken down to the multi-
TeV scale naturally gives rise to the characteristics required to
generate diphoton excess. In [6], it was shown that existence
of the light 𝑍󸀠 at the multi-TeV scale is compatible with

gauge coupling unification at the GUT scale, as well as other
phenomenological constraints.

In August 2016, the ATLAS and CMS collaborations
reported that accumulation of further data did not substan-
tiate the observation of the diphoton excess [7, 8], suggesting
that initial observation was a statistical fluctuation. However,
this does not repudiate the diphoton excess as a signal of
the string derived 𝑍󸀠 model, albeit not as the purported
750GeV resonance. Thus, searching for diphoton excesses in
the energy range accessible at the LHC continues to be of
immense interest.

Extra 𝑍󸀠 vector bosons as possible signatures of
heterotic–string vacua have been discussed in the literature
since the mid-eighties [9–11]. The difficulty in constructing
heterotic–string models that allow for an extra 𝑈(1)
symmetry to remain unbroken down to low scales stems
from the fact that the aforementioned symmetries tend
to be anomalous in the heterotic–string derived models.
The reason is that the string models utilise the symmetry
breaking pattern 𝐸6 → 𝑆𝑂(10) × 𝑈(1)𝜁, with anomalous
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Figure 1: Production and diphoton decay of the Standard Model
singlet scalar state.

𝑈(1)𝜁. Suppression of left-handed neutrino masses implies
that the extra 𝑈(1) symmetry, which is embedded in 𝑆𝑂(10),
has to be broken near the GUT scale. This conundrum
motivated the search of extra 𝑈(1) symmetries that do not
admit the 𝐸6 embedding of their charges [12, 13]. However,
these choices result in contradiction between gauge coupling
unification and the gauge coupling parameters at the
electroweak scale, which works well if the extra 𝑈(1) charges
admit the 𝐸6 embedding [6, 14, 15].

It is therefore notable that in [5] a heterotic–string derived
model with an anomaly-free 𝑈(1)𝜁 was constructed. What
is perhaps more remarkable is that the construction of the
model utilises a basic duality symmetry that operates in
the space of 𝑍2 × 𝑍2 heterotic–string vacua which was
dubbed spinor–vector duality. The duality operates under
the exchange of the total number of spinorial 16 ⊕ 16 and
vectorial 10 representations of 𝑆𝑂(10). For every vacuum
with a number of 16 ⊕ 16 representations and a number of10 representations, there exists a dual vacuum in which the
two numbers are interchanged. One can further show that
the duality arises from the breaking of (2, 2) world–sheet
supersymmetry to (2, 0) and that the duality map is induced
by a spectral flow operator that operates in the bosonic
sector of the heterotic–string vacuum. In the vacuawith (2, 2)
world–sheet supersymmetry, the 𝑆𝑂(10) × 𝑈(1)𝜁 symmetry
is enhanced to 𝐸6. The chiral 27 and 27 representations of 𝐸6
decompose under 𝑆𝑂(10) × 𝑈(1)𝜁 as

27 = 16+1/2 + 10−1 + 1+2,27 = 16−1/2 + 10+1 + 1−2. (1)

Thus, the (2, 2) vacua are self-dual under the exchange of the
total number of spinorial 16 ⊕ 16 and vectorial 10 represen-
tations. The spectral flow operator acts as the 𝑈(1) generator
of the 𝑁 = 2 world–sheet supersymmetry and interchanges
between the 𝑆𝑂(10) components in the decomposition of𝐸6 under 𝑆𝑂(10) × 𝑈(1)𝜁. The breaking of 𝐸6 to 𝑆𝑂(10) ×𝑈(1)𝜁 or the breaking of the world–sheet supersymmetry
from (2, 2) to (2, 0) is induced by Wilson lines. One choice
of Wilson line breaking results in a vacuum with #1 of 16 ⊕16 representations and #2 of 10 representations, whereas a
second choice interchanges the two numbers. Furthermore,
the duality map between the dual cases is induced by the
spectral flow operator of the parent (2, 2) vacuum.

A new twist is that the spinor–vector duality was used
to construct the heterotic–string model with anomaly-free𝑈(1)𝜁 that allows for an extra 𝐸6 𝑍󸀠 to remain unbroken

down to low scales. Using the methods developed in [16–
23] for the classification of free fermionic models, a self-
dual model under the spinor–vector duality is fished from
the landscape of vacua. The unbroken gauge symmetry at
the string level is 𝑆𝑂(10) × 𝑈(1)𝜁, but the spectrum is self-
dual under the exchange of the total number of spinorial16 ⊕ 16 and vectorial 10 representations.Thus, the spectrum
still forms complete 𝐸6 multiplets and consequently 𝑈(1)𝜁
is anomaly-free. This is possible in the 𝑍2 × 𝑍2 orbifold if
the different spinorial and vectorial components are obtained
from different fixed points. Conversely, obtaining both the
spinorial and the vectorial representations at the same
fixed point necessarily implies that the gauge symmetry is
enhanced to 𝐸6. In the model of [5], the 𝑆𝑂(10) symmetry
is broken at the string level to 𝑆𝑂(6) × 𝑆𝑂(4). However, the
chiral spectrum of the model still appears in complete 𝐸6
representations, hence maintaining𝑈(1)𝜁 as an anomaly-free
symmetry.

The spinor–vector duality is a fundamental symmetry
in the space of (2, 0) heterotic–string vacua. It played a
central role in the construction of the 𝑍󸀠 model in [5]. If
the additional 𝑈(1) symmetry remains unbroken down to
low scales, it may be detected via diphoton production as in
Figure 1.

Another fascinating direction of investigation is the
possibility that the spinor–vector duality is a mere reflection
of a much larger symmetry structure that underlies this class
of vacua. The much larger symmetry structure is obtained
in compactifications to two dimensions and gives rise to 24-
dimensional lattices. Reference [24] alluded to possible sim-
ilarities with the Massive Spectrum boson–fermion Degen-
eracy Symmetry (MSDS) [25, 26], which arises from a basic
Jacobi-like identity in 24 dimensions. The compactifications
to two dimensions are connected to 24-dimensional lattices
and the symmetries of those are related to the so-called
moonshine symmetries. In two dimensions, the spectral flow
operator that induces the spinor–vector duality and the twist
operators which acts on the internal coordinates can be
seen to share a common structure in that both have four
periodic right-moving fermions. One may further envision
that, under decompactification back to 4 dimensions, the
two spinor–vector dual vacua appear on the boundaries
of the moduli space. This is reminiscent of the case when
space–time supersymmetry is broken to 𝑁 = 0 by a
Scherk–Schwarz mechanism in nine dimensions and the
supersymmetric and nonsupersymmetric vacua appear on
the boundaries of the compactified dimension.

In this paper, we embark on a program to explore the
connection between the moonshine symmetries and the
spinor–vector duality. We foresee that the spinor–vector
duality is a tip of the iceberg and that elucidation of this
connection may reveal a covering space of large space of
string compactifications facilitating a deeper understanding
of their symmetries and connections. In this paper, we make
several modest steps to initiate the enterprise. In Section 2,
we review a specific realisation of the spinor–vector duality,
which is particularly suited for our purpose here. In this
realisation, the untwisted vector bosons corresponding to the
sixteen-dimensional vector bundle of the heterotic string in
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ten dimensions generate an 𝑆𝑂(8)4 gauge symmetry. This is
obtained by including in the construction four basis vectors
with four periodic world–sheet fermions, and enhancement
to larger gauge symmetries is obtained from twisted sectors.
A similar basis vector with four periodic fermions that
acts simultaneously on the gauge degrees of freedom and
the internal coordinates produces the twisted sectors. The
spinor–vector duality can be then seen to arise due to a special
choice of the Generalised GSO (GGSO) phases. In Section 3,
we explore a similar construction in two dimensions and clas-
sify the symmetries that arise on the resulting 24-dimensional
lattices. In Section 4, we derive representations of some of
the Niemeier lattices in 24 dimensions in the free fermionic
formulation. Section 5 concludes our paper.

2. A Novel Basis

In this section, we review the spinor–vector duality in the
specific realisation of [27]. Construction of a consistent
four-dimensional heterotic–string theory in the light–cone
gauge requires 20 left-moving and 44 right-moving two-
dimensional real fermions [28, 29] propagating on the
world–sheet torus. The models in this construction are
specified in terms of a set of basis vectors V𝑖, 𝑖 = 1, . . . , 𝑛,

V𝑖 = {𝛼𝑖 (𝑓1) , 𝛼𝑖 (𝑓2) , 𝛼𝑖 (𝑓3) ⋅ ⋅ ⋅} (2)

describing the transformation properties of each fermion

𝑓𝐴 󳨀→ −𝑒𝑖𝜋𝛼𝑖(𝑓𝐴) 𝑓𝐴, 𝐴 = 1, . . . , 44, (3)

when transported along the noncontractible loops of the one-
loop vacuum to vacuum amplitude. The basis vectors span a
spaceΞwhich consists of 2𝑁 sectors that give rise to the string
spectrum. Each sector is given by

𝜉 = ∑𝑁𝑖V𝑖, 𝑁𝑖 = 0, 1. (4)

The spectrum is truncated by a GGSO projection whose
action on a string state |𝑆⟩ is

𝑒𝑖𝜋V𝑖 ⋅𝐹𝑆 | 𝑆⟩ = 𝛿𝑆𝑐 [𝑆
V𝑖
] |𝑆⟩ , (5)

where 𝐹𝑆 is the fermion number operator and 𝛿𝑆 = ±1 is the
space–time spin statistics index. Different sets of projection
coefficients 𝑐 [ 𝑆V𝑖 ] = ±1 consistent with modular invariance
give rise to different models. A model is defined by a set
of basis vectors V𝑖, 𝑖 = 1, . . . , 𝑛, and a set of 2𝑁(𝑁−1)/2
independent projection coefficients 𝑐 [ V𝑖

V𝑗 ] , 𝑖 > 𝑗. The 64
world–sheet fermions in the light–cone gauge are denoted
by 𝜓𝜇, 𝜒𝑖, 𝑦𝑖, 𝜔𝑖, 𝑖 = 1, . . . , 6 (real left-moving fermions)
and 𝑦𝑖, 𝜔𝑖, 𝑖 = 1, . . . , 6 (real right-moving fermions);𝜓𝑗, 𝑗 = 1, . . . , 4; 𝜂𝑘, 𝑘 = 0, 1, 2, 3; 𝜙𝑙, 𝑙 = 1, . . . , 8
(complex right-moving fermions). The division of the right-
moving complex fermions into groups of four is obtained by
introducing four basis vectors 𝑧{0,1,2,3} into the basis. Each of𝑧𝑖 contains four nonoverlapping periodic fermions under the

sets {𝜓1,...,4, 𝜂0,1,2,3, 𝜙1,...,4, 𝜙5,...,8}. We note that our notation
here deviates from the conventional one in the free fermion
literature by renaming 𝜓5 ≡ 𝜂0. To illustrate the structure of
the spinor–vector duality, we use a basis𝑉 of seven boundary
condition basis vectors given by𝑉 = {V1, V2, . . . , V7} , (6)

where

V1 = 1 = {𝜓𝜇, 𝜒1,...,6, 𝑦1,...,6, 𝜔1,...,6 | 𝑦1,...,6, 𝜔1,...,6, 𝜂1,2,3,
𝜓1,...,5, 𝜙1,...,8} ,

V2 = 𝑆 = {𝜓𝜇, 𝜒1,...,6} ,
V3 = 𝑧1 = {𝜙1,...,4} ,
V4 = 𝑧2 = {𝜙5,...,8} ,
V5 = 𝑧3 = {𝜓1,...,4} ,
V6 = 𝑧0 = {𝜂0,1,2,3} ,
V7 = 𝑏1 = {𝜒34, 𝜒56, 𝑦34, 𝑦56 | 𝑦34, 𝑦56, 𝜂0, 𝜂1} .

(7)

The partition function of such models is of the form

𝑍 (𝜏, 𝜏) = 1𝜏2 (𝜂𝜂)2 1𝜂10𝜂22 127 ∑
𝑎,𝑏,𝑠,𝑠󸀠

∑
ℎ1 ,𝑔1

∑
𝐻𝐼,𝐺𝐼

𝐶
⋅ [𝑎, 𝑠, ℎ1, 𝐻𝐼𝑏, 𝑠󸀠, 𝑔1, 𝐺𝐼] 𝜃[𝑎 + 𝑠𝑏 + 𝑠󸀠] 𝜃[𝑎 + 𝑠𝑏 + 𝑠󸀠] 𝜃
⋅ [𝑎 + 𝑠 + ℎ1𝑏 + 𝑠󸀠 + 𝑔1] 𝜃[𝑎 + 𝑠𝑏 + 𝑠󸀠] 𝜃[𝑎𝑏] 𝜃
⋅ [𝑎 + ℎ1𝑏 + 𝑔1] 𝜃 [𝑎 + ℎ1𝑏 + 𝑔1] 𝜃 [𝑎𝑏] 𝜃
⋅ [𝑎 + ℎ1𝑏 + 𝑔1] 𝜃 [𝑎 + ℎ1𝑏 + 𝑔1] 𝜃 [𝑎𝑏] 𝜃
⋅ [𝑎 + ℎ1𝑏 + 𝑔1] 𝜃 [𝑎 + ℎ1𝑏 + 𝑔1] 𝜃 [𝑎𝑏] 𝜃
⋅ [𝑎 + ℎ1𝑏 + 𝑔1] 𝜃 [𝑎 + ℎ1𝑏 + 𝑔1] 𝜃 [𝑎 + 𝐻0𝑏 + 𝐺0] 𝜃
⋅ [𝑎 + 𝐻0𝑏 + 𝐺0] 𝜃 [𝑎 + 𝐻0𝑏 + 𝐺0] 𝜃
⋅ [𝑎 + 𝐻0𝑏 + 𝐺0] 𝜃 [𝑎 + 𝐻3𝑏 + 𝐺3] 𝜃 [𝑎 + 𝐻3𝑏 + 𝐺3] 𝜃
⋅ [𝑎 + 𝐻3𝑏 + 𝐺3] 𝜃 [𝑎 + 𝐻3𝑏 + 𝐺3] 𝜃 [𝑎 + 𝐻1𝑏 + 𝐺1] 𝜃
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⋅ [𝑎 + 𝐻1𝑏 + 𝐺1] 𝜃 [𝑎 + 𝐻1𝑏 + 𝐺1] 𝜃 [𝑎 + 𝐻1𝑏 + 𝐺1] 𝜃
⋅ [𝑎 + 𝐻2𝑏 + 𝐺2] 𝜃 [𝑎 + 𝐻2𝑏 + 𝐺2] 𝜃
⋅ [𝑎 + 𝐻2𝑏 + 𝐺2] 𝜃 [𝑎 + 𝐻2𝑏 + 𝐺2] .

(8)

The phases 𝐶[ 𝑎,𝑠,ℎ1 ,𝐻𝐼
𝑏,𝑠󸀠 ,𝑔1,𝐺𝐼

] can be calculated in terms of the
phases 𝐶 [ V𝑖

V𝑗 ] that define the model: if we define the vectors

𝛼 = 𝑎1 + 𝑠𝑆 + ℎ1𝑏1 + ∑
𝐼

𝐻𝐼𝑧𝐼 = ∑𝑛𝑎V𝑎,
𝛼󸀠 = 𝑏1 + 𝑠󸀠𝑆 + 𝑔1𝑏1 + ∑

𝐼

𝐺𝐼𝑧𝐼 = ∑𝑛󸀠𝑏V𝑏, (9)

then

𝐶[𝑎, 𝑠, ℎ1, 𝐻𝐼𝑏, 𝑠󸀠, 𝑔1, 𝐺𝐼] = 𝐶[𝛼𝛼󸀠]
= (𝛿𝛼)∑𝑎 𝑛󸀠𝑎−1 (𝛿𝛼󸀠)∑𝑎 𝑛𝑎−1 𝑒−𝜋𝑖𝑟(𝛼)⋅𝛼󸀠∏

𝑎,𝑏

𝐶[B𝑎
B𝑏

]𝑛𝑎𝑛󸀠𝑏 , (10)

where 𝛿𝛼 = 𝑒𝑖𝜋𝛼(𝜓𝜇) and 𝑟(𝛼) = (𝛼 − [𝛼])/2 is the reduction
vector which takes 𝛼 to [𝛼]with the latter having all its entries
in the interval (−1, 1].

The models generated by basis (7) preserve 𝑁 = 2
space–time supersymmetry. Models that break 𝑁 = 2 to𝑁 = 1 space–time supersymmetry are easily incorporated
by introducing a second basis vector 𝑏2 [18, 19]. The second
function of the second 𝑍2 basis vector 𝑏2 is to break the
untwisted observable symmetry gauge group from 𝑆𝑂(12) ×𝑆𝑂(4) to 𝑆𝑂(10) × 𝑈(1)3. Here, the spinor–vector duality
is therefore seen in terms of 𝑆𝑂(12), rather than 𝑆𝑂(10),
representations. However, since in the 𝑁 = 1 vacua the
spinor–vector duality operates separately on each of the𝑁 = 2 planes [18, 19], the discussion in terms of 𝑁 = 2
representations is sufficient.

In the models generated by the basis in (7), all the
geometrical degrees of freedom {𝑦𝑖, 𝜔𝑖 | 𝑦𝑖, 𝜔𝑖}, 𝑖 = 1, . . . , 3,
are grouped together. The remaining 8 left-moving and 32
right-moving world–sheet fermions are divided into five
nonoverlapping groups of eight real fermions. In the ten-
dimensional supersymmetric heterotic string, such a division
always produces either 𝑆𝑂(32) or 𝐸8 × 𝐸8 gauge groups
[30]. Although naively one may expect that other gauge
symmetries, such as 𝑆𝑂(8)4, 𝑆𝑂(16)2, or 𝑆𝑂(8)×𝑆𝑂(24), may
be obtained, the modular properties of the partition function
forbid the other possible extensions. In terms of the 𝑆𝑂(8)
characters, this property follows from the equivalence of the8𝑉, 8𝑆, and 8𝐶 𝑆𝑂(8) representations, which enables twisted
constructions of the 𝑆𝑂(32) or 𝐸8 × 𝐸8 gauge groups. These
phenomena appear in the models generated by the basis in

(7) and will be exploited in Section 3. The basis vector 𝑏1
generates a 𝑍2 projection which breaks 𝑁 = 4 to 𝑁 =2 space–time supersymmetry and breaks one of the 𝑆𝑂(8)
groups to 𝑆𝑂(4) × 𝑆𝑂(4) ≡ 𝑆𝑈(2)4.

The sectors contributing to the gauge group are the 0
sector and the 10 antiholomorphic sets:

𝐺
= {{{{{

0,𝑧0, 𝑧1, 𝑧2, 𝑧3,𝑧0 + 𝑧1, 𝑧0 + 𝑧2, 𝑧0 + 𝑧3, 𝑧1 + 𝑧2, 𝑧1 + 𝑧3, 𝑧2 + 𝑧3
}}}}} . (11)

The 0 sector requires two oscillators acting on the vacuum
in the right-moving sector to produce a massless state; the 𝑧𝑗
sectors require one oscillator; and the 𝑧𝑖 + 𝑧𝑗 sectors require
no oscillators. We first discuss the𝑁 = 4 gauge group arising
prior to the inclusion of the basis vector 𝑏1, which reduces𝑁 = 4 to 𝑁 = 2 space–time supersymmetry. The basis
vector 𝑏1 does not produce additional enhancement sectors
and therefore merely breaks the 𝑁 = 4 gauge group to a
subgroup.

The 0 sector gauge bosons produce the gauge symmetry

[𝑆𝑂 (12)] × 𝑆𝑂 (8)4 , (12)

where the 𝑆𝑂(12) group factor arises from the 12 right-
moving world–sheet fermions {𝑦, 𝜔}1,...,6, which correspond
to the internal lattice at the free fermionic 𝑆𝑂(12) enhanced
symmetry point. The 𝑆𝑂(8)3,0,1,2 group factors arise, respec-
tively, from 𝜓1,...,4, 𝜂0,1,2,3, 𝜙1,...,4, and 𝜙5,...,8. The notation
adheres to the conventional notation in the quasi-realistic
heterotic–string models in the free fermionic formulation
[31–39].

The additional sectors in (11) may produce space–time
vector bosons that enhance the untwisted four-dimensional
gauge symmetry. The possible enhancements depend on the
GGSO projection coefficients 𝑐 [ 𝑧𝑖𝑧𝑗 ] with 𝑖 ̸= 𝑗. Excluding
the basis vector 𝑏1, all vacua possess 𝑁 = 4 space–time
supersymmetry, which fixes the 𝑐 [ 𝑆𝑧𝑖 ] phases. Hence, there
may be a priori 26 possibilities for the four-dimensional gauge
group, some of which are repeated. Identical manifestations
of the gauge groups arise from twisted realisation of the group
generators, due to the triality property of the 𝑆𝑂(8) group
representations. This is the four-dimensional manifestation
of the twisted generation of gauge groups already observed in
the ten-dimensional case. A few of the possibilities that may
arise were classified in [27]. The same construction will be
exploited in Section 3 in the analysis of compactifications to
two dimensions.

2.1. A Simple Example of the Spinor–Vector Duality. The
basis vector 𝑏1 reduces 𝑁 = 4 → 𝑁 = 2 space–time
supersymmetry.The𝑁 = 4 vacuumwith [𝑆𝑂(12)]×𝑆𝑂(16)×
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𝑆𝑂(16) gauge group is realised with the GGSO projection
coefficient taken to be

𝑐 [𝑧0𝑧1] = 𝑐 [𝑧0𝑧3] = 𝑐 [𝑧1𝑧2] = −𝑐 [𝑧0𝑧2] = −𝑐 [𝑧1𝑧3]
= −𝑐 [𝑧2𝑧3] = −1. (13)

With this set of GGSO phases, the additional sectors, beyond
the 0 sector, that produce additional space–time vector
bosons are 𝑧2 and 𝑧3, whereas those from all other sectors in
(11) are projected out. The additional projection induced by
the basis vector 𝑏1 breaks the gauge symmetry arising from
the 0 sector to[𝑆𝑂 (8) × 𝑆𝑂 (4)]L × [𝑆𝑂 (8)3 × 𝑆𝑂 (4) × 𝑆𝑂 (4)]𝑂× [𝑆𝑂 (8)1 × 𝑆𝑂 (8)2]𝐻 . (14)

The 𝑆𝑂(12) lattice gauge symmetry in (12) is reduced to[𝑆𝑂(8) × 𝑆𝑂(4)]L. The observable gauge symmetry arising
from the 0 sector is [𝑆𝑂(8)3×𝑆𝑂(4)×𝑆𝑂(4)]𝑂, and [𝑆𝑂(8)1×𝑆𝑂(8)2]𝐻 is the hidden gauge symmetry. Both observable and
hidden sector gauge symmetries are enhanced. The hidden
gauge symmetry is enhanced to [𝑆𝑂(16)]𝐻 by the additional
vector bosons arising from the sector 𝑧2. At the 𝑁 = 4 level,
the additional vector bosons from the sector 𝑧3 enhance the
observable [𝑆𝑂(8)3×𝑆𝑂(8)0]𝑂 gauge symmetry to [𝑆𝑂(16)]𝑂.
At the 𝑁 = 2 level, the 𝑏1 projection reduces [𝑆𝑂(16)]𝑂 →[𝑆𝑂(12) × 𝑆𝑂(4)]𝑂 ≡ [𝑆𝑂(12) × 𝑆𝑈(2)0 × 𝑆𝑈(2)1]𝑂. The𝑁 = 2 spinor–vector duality is realised by the exchange of
the vectorial 12 representation of 𝑆𝑂(12) with the spinorial
32 representation. This duality is illustrated by considering
two different models in which these representations are
interchanged due to the choices of the GGSO projection
coefficients. We remark further that the choice of GGSO
projection coefficients in (13) prevents the enhancement of
the 𝑆𝑂(12)×𝑆𝑈(2) gauge symmetry to𝐸7, which is the𝑁 = 2
analog of the enhancement of 𝑆𝑂(10)×𝑈(1) to𝐸6 at the𝑁 = 1
level.

The first choice of the extra GGSO projection coefficients
that we consider is given by

𝑐 [ 𝑏11, 𝑧0] = −𝑐 [ 𝑏1𝑆, 𝑧1, 𝑧2, 𝑧3] = −1. (15)

This choice defines a model with 2 multiplets in (1, 2𝐿 +2𝑅, 12, 1, 2, 1) and 2 in (8, 2𝐿 + 2𝑅, 1, 2, 1, 1) representations of[𝑆𝑂 (8) × 𝑆𝑂 (4)]L × [𝑆𝑂 (12) × 𝑆𝑈 (2)0 × 𝑆𝑈 (2)1]𝑂× [𝑆𝑂 (16)]𝐻 . (16)

The sectors producing the vectorial 12 representation of𝑆𝑂(12) are the sectors 𝑏1 and 𝑏1 + 𝑧3, where the sector 𝑏1
produces the (1, 2, 2) representation and the sector 𝑏1 + 𝑧3
produces (8𝑆, 1, 1) under the decomposition[𝑆𝑂 (12)]𝑂 󳨀→[𝑆𝑂 (8) × 𝑆𝑂 (4)]𝑂 ≡ [𝑆𝑂 (8) × 𝑆𝑈 (2) × 𝑆𝑈 (2)]𝑂 . (17)

All other states are projected out. In this case, there are eight
multiplets in the vectorial representation of the observable𝑆𝑂(12), which also transform as doublets of the observable𝑆𝑈(2)1.

We next consider the choice of GGSO phases given by

𝑐 [ 𝑏11, 𝑧0, 𝑧1] = −𝑐 [ 𝑏1𝑆, 𝑧2, 𝑧3] = −1. (18)

This case defines a model with 2 multiplets in (1, 2𝐿 +2𝑅, 32, 1, 1, 1) and 2 in (1, 2𝐿+2𝑅, 1, 1, 2, 16) representations of
the gauge group in (16). The sectors producing the spinorial
32 representation of [𝑆𝑂(12)]𝑂 are the sectors 𝑏1 + 𝑧0 and𝑏1 + 𝑧3 + 𝑧0, where the sector 𝑏1 + 𝑧0 produces the (8𝑉, 2, 1)
representation and the sector 𝑏1 + 𝑧3 + 𝑧0 produces (8𝐶, 1, 2)
under the decomposition given in (17).The sectors producing
the vectorial 16 multiplet of the hidden 𝑆𝑂(16) gauge group
are the sectors 𝑏1 and 𝑏1+𝑧2, where the sector 𝑏1 produces the(8𝑉, 1) multiplet and the sector 𝑏1 + 𝑧2 produces the (1, 8𝐶)
multiplet under the decomposition [𝑆𝑂(16)]𝐻 → [𝑆𝑂(8)1 ×𝑆𝑂(8)2]𝐻. The hidden 16 multiplets transform as doublets of
the observable 𝑆𝑈(2)1 group. All other states are projected
out. In this model, there are eight multiplets in the spinorial
32 representation of the observable [𝑆𝑂(12)]𝑂.

We note that, in the first model, the vectorial 12 rep-
resentation of the observable [𝑆𝑂(12)]𝑂 is constructed as12 = (8𝑆, 1, 1) ⊕ (1, 2, 2), while in the second model the
spinorials are constructed as 32 = (8𝑉, 2, 1) ⊕ (8𝐶, 1, 2)
under the decomposition 𝑆𝑂(12) → 𝑆𝑂(8) × 𝑆𝑈(2) × 𝑆𝑈(2).
At the core of the construction is the triality of the 𝑆𝑂(8)
representations 8𝑆 ↔ 8𝑉 ↔ 8𝐶. This property of the 𝑆𝑂(8)
representations reproduces the standard decomposition of𝑆𝑂(𝑛 + 𝑚) → 𝑆𝑂(𝑛) × 𝑆𝑂(𝑚) as 𝑉𝑛+𝑚 = (𝑉𝑛, 1) ⊕ (1, 𝑉𝑚),
and 𝑆𝑛+𝑚 = (𝑆𝑛, 𝑆𝑚)⊕(𝐶𝑛, 𝐶𝑚), for the vectorial and spinorial
representations of 𝑆𝑂(𝑛 + 𝑚), respectively. The triality of the𝑆𝑂(8) representations enables the twisted realisations of the
GUT gauge group and representations, which is 𝑆𝑂(12) in
the 𝑁 = 2 models and 𝑆𝑂(10) in 𝑁 = 1 models. This 𝑆𝑂(8)
triality is the main property in the analysis of Section 3.

The transformation between the two models, (15) and
(18), is induced by the discrete GGSO phase change

𝑐 [𝑏1𝑧1] = +1 󳨀→
𝑐[𝑏1𝑧1] = −1. (19)

In the models utilising the basis of (7), the map from sectors
that produce vectorial representations of the observable𝑆𝑂(12) group to sectors that produce spinorial representa-
tions is obtained by adding the basis vector 𝑧0, which is
similar to the 𝑥 map of [18, 19, 40, 41]. The basis vector 𝑧0
therefore acts as the spectral flow operator. It is a generator
of the right-moving 𝑁 = 2 world–sheet supersymmetry in
the models that preserve (2, 2) world–sheet supersymmetry.
It is the mirror image of the basis vector 𝑆, which is the
spectral flow operator on the fermionic side of the heterotic
string. For appropriate choice of the discrete GGSO phases,
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either the vectorial states or the spinorial states are kept
in the spectrum. The discrete phase modification in (19)
induces the spinor–vector duality map in the 𝑁 = 2 model.
The role of the basis vectors 𝑧2 and 𝑧3 in the models of
(15) and (18) is to generate the twisted realisation of the
gauge symmetry enhancement of the 𝑆𝑂(8) gauge groups
arising from the null sector. We may further represent the
spinor–vector duality in an orbifold representation [42] and
translate the duality map in (19) to distinct choices of the
toroidal background fields [24, 43]. Generalisation of the
spectral map transformation between heterotic–string vacua
was extended to Gepner models in [44].

3. 𝐷 = 2 Model Classification

In this section, we extend the classification of the symmetry
groups to the case of compactifications to two dimensions.
We develop the formalism and perform a complete classifi-
cation in the simpler cases and partial classification in the
more complex cases, where complexity here entails increasing
number of basis vectors. The primary property which is
exploited in our classification is the triality of the 𝑆𝑂(8)
representations. In Section 4, we will employ an alternative
method to construct the 24-dimensional Niemeier lattices.
In Section 5, we will comment on the overlap and differences
between our analysis in Sections 3 and 4 and that of Section 2.

We compactify the heterotic string to two dimensions.
The two-dimensional free fermions in the light–cone gauge
(in the usual notation [28, 29, 31–39]) are 𝜒𝑖, 𝑦𝑖, 𝜔𝑖, 𝑖 =1, . . . , 8 (real left-moving fermions) and 𝑦𝑖, 𝜔𝑖, 𝑖 = 1, . . . , 8
(real right-moving fermions), 𝜓𝐴, 𝐴 = 1, . . . , 4, 𝜂𝐵, 𝐵 =0, 1, 2, 3, 𝜙𝛼, 𝛼 = 1, . . . , 8 (complex right-moving fermions).
The left- and right-moving real fermions are combined into
complex fermions as 𝜌𝑖 = 1/√2(𝑦𝑖 + 𝑖𝜔𝑖), 𝑖 = 1, . . . , 8, 𝜌𝑖 =1/√2(𝑦𝑖+𝑖𝜔𝑖), 𝑖 = 1, . . . , 4, 𝜌𝑖 = 1/√2(𝑦𝑖+𝑖𝜔𝑖), 𝑖 = 5, . . . , 8.

The class of models under investigation is generated by a
maximal set 𝑉 of 7 basis vectors𝑉 = {V1, V2, . . . , V7} ,

V1 = 1 = {𝜒1,...,8, 𝑦1,...,8, 𝜔1,...,8 | 𝑦1,...,8, 𝜔1,...,8, 𝜂0,1,2,3,
𝜓1,...,4, 𝜙1,...,8} ,

V2 = 𝐻𝐿 = {𝜒1,...,8, 𝑦1,...,8, 𝜔1,...,8} ,
V3 = 𝑧1 = {𝜙1,...,4} ,
V4 = 𝑧2 = {𝜙5,...,8} ,
V5 = 𝑧3 = {𝜓1,...,4} ,
V6 = 𝑧4 = {𝜂0,1,2,3} ,
V7 = 𝑧5 = {𝑦1,...,4, 𝜔1,...,4} ,

(20)

with the corresponding matrix of one-loop GGSO projection
coefficients

1𝐻𝐿
𝑧1𝑧2𝑧3𝑧4𝑧5

1

(((((((((((
(

−1−1
+1+1+1+1+1

𝐻𝐿−1−1
±1±1±1±1±1

𝑧1+1±1
+1±1±1±1±1

𝑧2+1±1
±1+1±1±1±1

𝑧3+1±1
±1±1+1±1±1

𝑧4+1±1
±1±1±1+1±1

𝑧5+1±1
±1±1±1±1+1

)))))))))))
)

(21)

The analysis of the models is similar to the analysis
in the four-dimensional case, where we define the GGSO
projections in a similar way to (5), with the 𝛿𝑆 index being+1 in sectors in which the left-moving world–sheet fermions
are antiperiodic and −1 in sectors in which they are periodic.
With this definition of the GGSO projection, consistent with
modular invariance, we can proceed to analyse the symmetry
configurations.

3.1. Configurations. We analyse the various configurations
that arise with an increasingly larger number of basis vectors.
The simplest is the set {1, 𝐻𝐿}. With this set, there is only one
possible configuration with 𝑆𝑂(48) symmetry. Climbing the
complexity ladder by adding the 𝑧1 basis vector produces two
possible configurations: 𝑆𝑂(8)×𝑆𝑂(40) and 𝑆𝑂(48).The first
is obtained from the untwisted vector states and the vector
states from the sector 𝑧1 are projected out, whereas the second
is obtained by retaining the states from 𝑧1 in the massless
spectrum. The choice of the phase 𝑐 [ 𝑧1𝐻𝐿 ] = ±1 selects
between the two configurations. The next set is obtained by
adding the basis vector 𝑧2 yielding the set {1, 𝐻𝐿, 𝑧1, 𝑧2}. The
matrix of GGSO phases is given by

1𝐻𝐿
𝑧1𝑧2

1

((
(

−1−1
+1+1

𝐻𝐿−1−1
±1±1

𝑧1+1±1
+1±1

𝑧2+1±1
±1+1

))
)

. (22)

Only the phases above the diagonal are independent, whereas
those on and below the diagonal are fixed by the modular
invariance rules. Thus, in the configurations corresponding
to (22), we have a total of three independent phases or eight
possible configurations. Naturally, there are degeneracies in
the space of configurations due to the permutation symme-
tries among 𝑧𝑖. With the basis corresponding to (22), we find
a total of four independent configurations shown in Table 1.

We note that, with each subsequent basis set, the configu-
rations of the smaller sets are reproduced. This is a recurring
feature of string constructions [18, 19] and results from some
generic 𝜃 function identities and redistribution of the vector
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Table 1: The configuration of the symmetry group with four basis
vectors.𝑐 [ 𝑧1𝐻𝐿 ] 𝑐 [ 𝑧2𝐻𝐿 ] 𝑐 [ 𝑧1𝑧2 ] Gauge group 𝐺
+ + + 𝑆𝑂(16) × 𝑆𝑂(32)
+ − + 𝑆𝑂(8) × 𝑆𝑂(40)− − + 𝑆𝑂(48)− − − 𝐸8 × 𝑆𝑂(32)
states among the different sectors.We next add the additional
basis vector 𝑧3 producing a five-basis set {1, 𝐻𝐿, 𝑧1, 𝑧2, 𝑧3}.
The phases matrix is given by

1𝐻𝐿
𝑧1𝑧2𝑧3

1

(((((
(

−1−1
+1+1+1

𝐻𝐿−1−1
±1±1±1

𝑧1+1±1
+1±1±1

𝑧2+1±1
±1+1±1

𝑧3+1±1
±1±1+1

)))))
)

. (23)

The untwisted symmetry is 𝑆𝑂(8)1 × 𝑆𝑂(8)2 × 𝑆𝑂(8)3 ×𝑆𝑂(24). In this case, there are a total of six independent phases
producing 64 distinct possibilities. Out of those, we obtain
seven distinct configurations shown in Table 2. Four of the
resulting configurations are reproductions of previous cases
and three are new. A complete analysis of all configurations
has been performed in the case with five basis vectors.

The next step is to add an additional basis vector to the
set. The set of basis vectors is then {1, 𝐻𝐿, 𝑧1, 𝑧2, 𝑧3, 𝑧4}. The
untwisted symmetry is 𝑆𝑂(8)1 × 𝑆𝑂(8)2 × 𝑆𝑂(8)3 × 𝑆𝑂(8)4 ×𝑆𝑂(16). The sectors contributing to the symmetry group are
the 0 sector and the 11 purely antiholomorphic sets:𝐺

= {{{{{{{{{{{
0,𝑧1, 𝑧2, 𝑧3, 𝑧4,𝑧1 + 𝑧2, 𝑧1 + 𝑧3, 𝑧1 + 𝑧4, 𝑧2 + 𝑧3, 𝑧2 + 𝑧4, 𝑧3 + 𝑧4,𝑧̃ = 1 + 𝐻𝐿 + 𝑧1 + 𝑧2 + 𝑧3 + 𝑧4

}}}}}}}}}}}
, (24)

where the 0 sector requires two oscillators acting on the
vacuum in the gauge sector; the 𝑧𝑗 sectors require one
oscillator; and 𝑧𝑖 + 𝑧𝑗 and 𝑧̃ require no oscillators.Thematrix
of GGSO phases is given by

1𝐻𝐿
𝑧1𝑧2𝑧3𝑧4

1

((((((((
(

−1−1
+1+1+1+1

𝐻𝐿−1−1
±1±1±1±1

𝑧1+1±1
+1±1±1±1

𝑧2+1±1
±1+1±1±1

𝑧3+1±1
±1±1+1±1

𝑧4+1±1
±1±1±1+1

))))))))
)

. (25)

There are 10 independent phases in (25) rendering a total of
1024 different possibilities with a complete analysis seemingly
prohibitive. For a sample of the choices, we reproduce the
previous seven configurations and obtain six new ones. The
thirteen configurations are displayed in Table 3.

The fifth case in Table 3 is a new feature of the basis set
corresponding to (25) as compared to the earlier cases. In all
the previous cases, the symmetry was enhanced by one or
more of the additional sectors, whereas in the case of the fifth
row in Table 3 all enhancements are projected out. Thus, this
set affords a larger set of projectors that facilitate projection
of all enhancements. This is a recurring feature, which is
frequently used in classification of fermionic string vacua in
four dimensions. The last row in Table 3 corresponds to a
model with 𝐸38 symmetry, which is identified as one of the
Niemeier lattices.

The next and final step is to add an additional basis
vector which corresponds to the set given in (20) and the
GGSO coefficients matrix in (21). The untwisted symmetry
is 𝑆𝑂(8)1 × 𝑆𝑂(8)2 × 𝑆𝑂(8)3 × 𝑆𝑂(8)4 × 𝑆𝑂(8)5 × 𝑆𝑂(8)6,
corresponding to the six sets of right-moving worldsheet
complex fermions

{{𝜌1,2,3,4} ; {𝜌5,6,7,8} ; {𝜓1,2,3,4} ; {𝜂0,1,2,3} ; {𝜙1,2,3,4} ;
{𝜙5,6,7,8}} . (26)

The sectors contributing to the symmetry group are the 0
sector and the 21 purely antiholomorphic sets:

𝐺 =
{{{{{{{{{{{{{{{{{{{{{{{

0,𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝑧6,𝑧1 + 𝑧2, 𝑧1 + 𝑧3, 𝑧1 + 𝑧4, 𝑧1 + 𝑧5, 𝑧1 + 𝑧6,𝑧2 + 𝑧3, 𝑧2 + 𝑧4, 𝑧2 + 𝑧5, 𝑧2 + 𝑧6,𝑧3 + 𝑧4, 𝑧3 + 𝑧5, 𝑧3 + 𝑧6,𝑧4 + 𝑧5, 𝑧4 + 𝑧6, 𝑧5 + 𝑧6

}}}}}}}}}}}}}}}}}}}}}}}
, (27)

where 𝑧6 = 1 + 𝐻𝐿 + 𝑧1 + 𝑧2 + 𝑧3 + 𝑧4 + 𝑧5 ={𝜙5,6,7,8}. Similar to the previous cases, the 0 sector requires
two oscillators acting on the vacuum in the right-moving
sector to produce a massless state; the 𝑧𝑖 sectors require
one oscillator; and 𝑧𝑖 + 𝑧𝑗 with 𝑖 ̸= 𝑗 require no oscil-
lators. All these cases require one oscillator acting on the
vacuum in the left-moving sector. There are 15 independent
phases in (21) rendering a total of 32768 possibilities, which
requires a computerised analysis and is beyond our scope
here.

All the sets that we introduced so far involve nonover-
lapping periodic fermions; that is, the product between any
two nontrivial basis vectors is 0mod 4. We can introduce
additional basis vectors with two overlapping right-moving
periodic fermions; that is, the product between the new basis
vectors and two of those in (20) is 2. For example, a basis
vector with 𝑧7 = {𝜌1,2, 𝜂2,3} ≡ 1 has 𝑧7 ⋅𝑧1 = 𝑧7 ⋅𝑧4 = 2.We can
further envision breaking 𝐻𝐿 into three corresponding basis
vectors 𝑧0, 𝑧8, and 𝑧9 with 𝐻𝐿 = 𝑧0 + 𝑧8 + 𝑧9 and similarly
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Table 2: The configuration of the symmetry group with five basis vectors.𝑐 [ 𝑧1𝐻𝐿 ] 𝑐 [ 𝑧2𝐻𝐿 ] 𝑐 [ 𝑧3𝐻𝐿 ] 𝑐 [ 𝑧1𝑧2 ] 𝑐 [ 𝑧1𝑧3 ] 𝑐 [ 𝑧2𝑧3 ] Gauge group 𝐺
+ + + + + + 𝑆𝑂(24) × 𝑆𝑂(24)
+ + + + + − 𝑆𝑂(8) × 𝑆𝑂(16) × 𝑆𝑂(24)
+ + − + + + 𝑆𝑂(16) × 𝑆𝑂(32)− − + + + + 𝑆𝑂(8) × 𝑆𝑂(40)− − + − + + 𝐸8 × 𝑆𝑂(8) × 𝑆𝑂(24)− − − + + + 𝑆𝑂(48)− − − − + + 𝐸8 × 𝑆𝑂(32)

Table 3: The configuration of the symmetry group with six basis vectors.𝑐 [ 𝑧1𝐻𝐿 ] 𝑐 [ 𝑧2𝐻𝐿 ] 𝑐 [ 𝑧3𝐻𝐿 ] 𝑐 [ 𝑧4𝐻𝐿 ] 𝑐 [ 𝑧1𝑧2 ] 𝑐 [ 𝑧1𝑧3 ] 𝑐 [ 𝑧1𝑧4 ] 𝑐 [ 𝑧2𝑧3 ] 𝑐 [ 𝑧2𝑧4 ] 𝑐 [ 𝑧3𝑧4 ] Gauge group 𝐺
+ + + + + + + + + + 𝐸8 × 𝑆𝑂(32)
+ + + + + + + + + − 𝑆𝑂(16) × 𝑆𝑂(16) × 𝑆𝑂(16)
+ + + + + + + + − − 𝑆𝑂(16) × 𝑆𝑂(8) × 𝑆𝑂(8) × 𝑆𝑂(16)
+ + + + + + + − − − 𝐸8 × 𝑆𝑂(24) × 𝑆𝑂(8)
+ + + + − + + − + − 𝑆𝑂(16) × 𝑆𝑂(8) × 𝑆𝑂(8) × 𝑆𝑂(8) × 𝑆𝑂(8)
+ + + + − − − + + + 𝑆𝑂(24) × 𝑆𝑂(16) × 𝑆𝑂(8)
+ + + + + − − − − + 𝐸8 × 𝑆𝑂(16) × 𝑆𝑂(16)− + + + + + + + + + 𝑆𝑂(24) × 𝑆𝑂(24)
+ + + + − − − − − − 𝑆𝑂(32) × 𝑆𝑂(16)− − + + − + + + + + 𝐸8 × 𝐸8 × 𝑆𝑂(16)− − − − + + + + + + 𝑆𝑂(48)− − − + + + + + + + 𝑆𝑂(40) × 𝑆𝑂(8)− − − − − + + + + − 𝐸8 × 𝐸8 × 𝐸8

introduce basis vectors with overlapping periodic complex
fermions. A single mod 4 left-moving basis vector, with
null assignment for the right-moving fermions, produces a
Jacobi-like factor, 𝑉8 − 𝑆8, in the partition function, which
produces 𝑁 = 4 space–time supersymmetry in the four-
dimensional models. Such nonoverlapping left-moving basis
vectors produce a product of Jacobi-like identities, whereas
basis vectors with overlapping periodic fermions break this
identity in a familiar way from the four-dimensional models.
The action of the basis vectors with overlapping periodic
fermions is reminiscent of the orbifold action in Section 2 and
combining a left-moving action with a right-moving one will
entail precisely that.This will alter the sharp division between
the left and the right movers and reduce the symmetry struc-
tures obtained with the 24-dimensional lattices. This looks
similar to the case of toroidal orbifolds. Detailed analysis of
these cases is beyond our scope here and will be reported in
future work. What may be envisioned is that the symmetry
structures of the four-dimensional models are rooted in the
rich symmetry structures of the 24-dimensional lattices in
two dimensions. In turn, the free fermionic constructionmay
provide a set of simple tools that can be used to explore the
properties of the 24-dimensional lattices. In the next section,
we derive some of the Niemeier lattices by using the free
fermionic tools.

4. The Niemeier Lattices

Some of themodels we have already presented have the prop-
erty that the modular invariant partition function factorises
into a left- and a right-moving part:𝑍 (𝜏, 𝜏) = 𝑍 (𝜏) 𝑍 (𝜏) . (28)

For models based on the set {𝐻𝐿, 𝐻𝑅} = {1, 𝐻𝑅}, which
might also include some 𝑧𝑖’s given in (20), this will happen
if the phases between 𝐻𝐿 and any other vector are chosen
appropriately (𝑐 [ 𝐻𝐿

anything ] = −1).
Within the class of models with factorised partition

functions, there is a subclass of models for which 𝑍(𝜏) and𝑍(𝜏) are modular invariant by themselves. Particular cases
of this type are models for which 𝑍(𝜏) is a constant. These
models display a Massive Spectrum Degeneracy Symmetry
(MSDS) and have been studied in [25, 26]. Here, we would
like to focus more on the right-moving partition function,
which for lattice compactifications is

𝑍 (𝜏) = 𝑍Λ (𝜏)𝜂 (𝜏)24 . (29)

Λ is the lattice on which the right-moving bosons are
compactified.
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Since 𝑍(𝜏) is modular invariant, Λ must be an even, self-
dual, 24-dimensional lattice (assuming a compactification
to two dimensions). There are 24 such lattices classified by
Niemeier [45] and they are presented in Table 4. With the
exception of the Leech lattice that has no vectors of length 2,
the vectors of length 2 of the remaining 23 lattices belong to
the root lattices of simple Lie groups. However, knowing the
components is not enough by itself to fully define a Niemeier
lattice. One must also describe how conjugacy classes among
different components are coupled with each other. This is
given in terms of certain glue vectors. For example, the
Niemeier lattice 𝐷212 needs glue vectors {(𝑠, V), (V, 𝑠)}, where
V and 𝑠 stand for the vector and the spinor conjugacy class
of𝐷12. More details about this construction and a list of glue
vectors for all the Niemeier lattices can be found in [46, 47].

Note that these lattices have been studied extensively
in the past, especially in connection with moonshine. For
example, the lattice𝐴241 carries a natural representation of the
monster group 𝑀24 and the Umbral Moonshine conjecture
associates a finite group and a set of vector valued mock
modular forms with each of these 23 Niemeier lattices (see
[48] and the references therein).

Lattice compactifications have an equivalent fermionic
description [49, 50]. The main result of this section is Table 4
in which we give realisations of the Niemeier lattices in terms
of free fermionic basis vectors. Note that even though many
glue vectors need to be included for a description in the
bosonic language, the free fermionic realisations of many of
these lattices are quite succinct.This is a demonstration of the
power of the free fermionic formalism for certain tasks and an
example where the dictionary between bosons and fermions
described in [49] can be used to provide new insights.

For example, let us look at the𝐷212 Niemeier lattice again.
The straightforward way one might imagine implementing
this in the free fermionic language is through the basis set

{𝑏1, 𝑏2, 𝑏3, 𝑏4}, where (remembering that the normalisation is
twice the usual for weight vectors)

𝑏1 = {112, 012} ,𝑏2 = {012, 112} ,𝑏3 = {112, 2, 011} ,𝑏4 = {2, 011, 112} .
(30)

𝑏1 and 𝑏2 generate the two 𝐷12’s, whereas 𝑏3 and 𝑏4 are what
one would naively write down to implement the glue vectors(𝑠, V) and (V, 𝑠). On the other hand, the inclusion of 𝑏3 and𝑏4 appears to be highly unconventional from a free fermionic
model building perspective because they are not independent
of 𝑏1 and 𝑏2 when considering mod 2. The resolution to this
paradox is to use the formula [49]

𝑐 [ 𝛼 + 𝛿𝛼󸀠 + 𝛿󸀠] = 𝑒(1/2)𝜋𝑖𝛿⋅𝛼󸀠𝑐 [𝛼𝛼󸀠] , (31)

where 𝛿 and 𝛿󸀠 have only even entries and 𝛼, 𝛼󸀠 are arbitrary,
to reduce 𝑏3 and 𝑏4 to 𝑏1 and 𝑏2, respectively. This also
changes the phase 𝑐 [ 𝑏1𝑏2 ] from 1 to −1, hence verifying the
corresponding entry in Table 4.The same idea can be applied
to fill in the rest of the table.

We tried to give realisations of the lattices using a small
number of free fermionic basis vectors. However, for certain
lattices, we were not able to do so and we had to use the
following set of 12 basis vectors {𝑔1, 𝑔2, . . . , 𝑔12}, known as
the Golay generators:

((((((((((((((((((((((
(

1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 10 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 00 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0 10 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 10 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 00 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 10 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 10 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 10 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 00 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 0 00 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 00 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1

))))))))))))))))))))))
)

. (32)

Note that we only show the right-moving components
of the basis vectors here, with the understanding that the

left-moving components are all zero. For a consistent free
fermionicmodel, the vector𝐻𝐿 (at least) should also be added
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Table 4: Free fermionic realizations of all inequivalent Niemeier lattices. Underline means permutations of all blocks separated by a comma.
For example, the three basis vectors needed for 𝐸38 are {18, 08, 08}, {08, 18, 08}, and {08, 08, 18}. Only the 24 right-moving components of the
basis vectors appear explicitly; the left-moving ones are understood to be zero. We also state explicitly which generalized phases in the upper
triangular part of the phase matrix are not 1. For a consistent free fermionic model, the vector𝐻𝐿 (at least) should also be added to the set to
ensure that vector 1 is generated.

Niemeier lattice
based on Free fermionic basis vector realization𝐷24 {124}𝐷16𝐸8 {116, 08}, {016, 18}𝐸38 {18, 08, 08}
𝐴24

{(13)23 , 73},𝑐 [[
𝑏1𝑏1]] = 𝑒4𝜋𝑖/3

𝐷2
12

{112, 012}, {012, 112},
𝑐 [[

𝑏1𝑏2]] = −1
𝐴17𝐸7 {(13)18 , 16}𝐷10𝐸27 {124}, {110, (0)(1)6, 07}𝐴15𝐷9 Golay set

𝐷3
8

{18, 08, 08},
𝑐 [[

𝑏𝑖𝑏𝑗]] = −1, 𝑖 ̸= 𝑗

𝐴212
{18, 016}, {04, 18, 012}, {1, 03, 1, 04, 14, 03, 1, 03, 1, 03}, {1, 03, 1, 03, 1, 04, 14, 03, 1, 03}, {012, 18, 04}, {016, 18},
𝑐 [[

𝑏3𝑏4]] = −1,
𝑐 [[

𝑏5𝑏6]] = −1
𝐴11𝐷7𝐸6 ?
𝐸46 {(0)(1)5, (1)(0)5, (1)(0)5, (1)(0)5},

𝑐 [[
𝑏2𝑏4]] = −1

𝐴29𝐷6 ?
𝐷4
6

{06, 16, 06, 16}, {16, 06, 16, 06}, {012, 112},
𝑐 [[

𝑏𝑖𝑏𝑗]] = −1, 𝑖 ̸= 𝑗
𝐴38 Golay set𝐴27𝐷2

5 Golay set𝐴46 ?𝐴45𝐷4 ?
𝐷6
4

{124}, {18, 04, 04, 04},
𝑐 [[

𝑏2𝑏5]] = −1,
𝑐 [[

𝑏3𝑏4]] = −1
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Table 4: Continued.

Niemeier lattice
based on Free fermionic basis vector realization𝐴64 Golay set𝐴83 ?𝐴122 ?𝐴241 ?
Leech ?
to the set to ensure that vector 1 is generated. The defining
phases 𝑐 [ 𝑔𝑖𝑔𝑗 ] for the models that use this set are as follows:𝐴38: 𝑐

=
((((((((((((((((((
(

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1∗ 1 1 1 −1 −1 1 1 −1 −1 1 1∗ ∗ 1 1 −1 −1 1 1 −1 −1 1 1∗ ∗ ∗ 1 −1 −1 1 1 −1 −1 1 1∗ ∗ ∗ ∗ −1 −1 1 1 −1 −1 1 1∗ ∗ ∗ ∗ ∗ −1 1 1 −1 −1 1 1∗ ∗ ∗ ∗ ∗ ∗ 1 1 −1 −1 1 1∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 −1 −1 1 1∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −1 −1 1 1∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −1 1 1∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 1∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1

))))))))))))))))))
)

,

𝐴27𝐷25: 𝑐

=
((((((((((((((((((
(

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1∗ 1 1 1 −1 −1 −1 −1 1 1 −1 −1∗ ∗ 1 1 −1 −1 −1 −1 1 1 −1 −1∗ ∗ ∗ 1 −1 −1 −1 −1 1 1 −1 −1∗ ∗ ∗ ∗ −1 −1 −1 −1 1 1 −1 −1∗ ∗ ∗ ∗ ∗ −1 −1 −1 1 1 −1 −1∗ ∗ ∗ ∗ ∗ ∗ −1 −1 1 1 −1 −1∗ ∗ ∗ ∗ ∗ ∗ ∗ −1 1 1 −1 −1∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 1 −1 −1∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 −1 −1∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −1 −1∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −1

))))))))))))))))))
)

,

𝐴15𝐷9: 𝑐

=
((((((((((((((((((
(

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1∗ 1 1 1 1 1 1 1 1 1 −1 −1∗ ∗ 1 1 1 1 1 1 1 1 −1 −1∗ ∗ ∗ 1 1 1 1 1 1 1 −1 −1∗ ∗ ∗ ∗ 1 1 1 1 1 1 −1 −1∗ ∗ ∗ ∗ ∗ 1 1 1 1 1 −1 −1∗ ∗ ∗ ∗ ∗ ∗ 1 1 1 1 −1 −1∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 1 1 −1 −1∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 1 −1 −1∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 −1 −1∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −1 −1∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −1

))))))))))))))))))
)

,

𝐴64: 𝑐

=

((((((((((((((((((((((
(

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1∗ 1 1 1 1 1 1 1 1 1 1 1∗ ∗ 1 1 1 1 1 1 1 1 1 1∗ ∗ ∗ −1 −1 −1 −1 −1 −1 −1 −1 −1∗ ∗ ∗ ∗ −1 −1 −1 −1 −1 −1 −1 −1∗ ∗ ∗ ∗ ∗ 1 1 1 1 1 1 1∗ ∗ ∗ ∗ ∗ ∗ 1 1 1 1 1 1∗ ∗ ∗ ∗ ∗ ∗ ∗ −1 −1 −1 −1 −1∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −1 −1 −1 −1∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 1 1∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 1∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1

))))))))))))))))))))))
)

.

(33)

Note that there are some entries in Table 4 for which we
were unable to provide concrete realisations. We conjecture
that these cases can also be given in terms of the Golay basis
vectors for certain phases. However, the fact that there are278 a priori different phases that are allowed by modular
invariance makes it computationally difficult to verify (or
disprove) this claim.

For all the models presented in Table 4, an independent
check of correctness can be performed by calculating the
partition function (restricted to the right-moving sector) of
the proposed free fermionic realisation via the formula

𝑍 (𝜏) = ∑
sectors 𝛼,𝛽

𝑐 [𝛼𝛽] 𝜃 [𝛼𝛽] (34)

and we check that it matches the partition function of the
Niemeier lattices given as [51]𝑍 (𝜏) = 𝐽 (𝜏) + 24 (ℎ + 1) , (35)

where ℎ is the corresponding Coxeter number (given, e.g.,
in [46]) and 𝐽(𝜏) is the unique modular invariant with zero
constant term (i.e., 𝐽(𝜏) = 𝑗(𝜏) − 744). Note in particular
that the partition functions of all these lattices (and those
of the corresponding free fermionic models) only differ in
their constant term.Themassive spectra of all the models are
identical.

The fact that themodular invariant phases in the partition
function can be adjusted to couple conjugacy classes among
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different factors is quite surprising and, to our knowledge,
has not been noticed before. It demonstrates an interesting
interplay between gluing lattices and modularity and allows
for a deeper understanding of the spinor–vector duality: for
lattice compactifications, adjusting the generalised phases
couples different conjugacy classes among different factors
leading to different lattices. In a similar way, for orbifold
compactifications, adjusting certain generalised phases leads
to spinor–vector dual models.

5. Conclusions

The heterotic–string models in the free fermionic formula-
tion are among the most realistic string models constructed
to date [31–39]. They correspond to 𝑍2 ×𝑍2 toroidal orbifold
constructions at special points in the moduli space [49, 52–
57]. Their phenomenological properties raise the possibility
that the true string vacuum shares some of their underlying
properties. It is therefore of immense interest to explore what
those underlying properties are. It is of course also plausible
that the true string vacuum does not belong to this class, and
for that purpose other classes of interesting string vacua (see,
e.g., [58–66]) should be investigated and their underlying
properties explored.

A particular subclass of free fermionic models are those
that allow for a light extra 𝑍󸀠, with its distinct low scale
signature via diphoton excess. The construction of the string
model utilised the spinor–vector duality, which is akin to
mirror symmetry [67, 68]. A realisation of the spinor–vector
duality relies on the triality of the 𝑆𝑂(8) representations. In
particular, this triality enables a large range of possibilities for
the GGSO phases to produce the same symmetry groups.The𝑆𝑂(8) triality property is also at the core of the well known
Jacobi identity and the ensuing space–time supersymmetry.

In this paper, we explored the symmetry structures
of heterotic–string vacua compactified to two dimensions.
Our primary motivation is to seek the origin of the four-
dimensional spinor–vector duality in the symmetry struc-
ture of 24-dimensional lattices that are obtained in the
two-dimensional compactifications. This is analogous to
the MSDS symmetry which is similarly rooted in two-
dimensional compactifications. We discussed in Section 2
how the spinor–vector duality is rooted in the triality
property of 𝑆𝑂(8) representations and we used this triality
property in Section 3 to classify some of the symmetries of the
two-dimensional compactifications. Self-duality under the
spinor–vector duality played a key role in the construction of
the𝑍󸀠model of [5], with its distinctive signature via diphoton
excess [4, 6]. Thus, a basic property underlying the string
vacua is tied to a phenomenological model with its distinct
experimental signature. In Section 4, we derived a represen-
tation of some of the Niemeier lattices in the free fermionic
formulation. The properties of 24-dimensional lattices and
their moonshine symmetries are of growing interest in the
literature [69–76]. In this context, it is not implausible that
the free fermionicmethods can add to the set of tools that can
be used to explore the underlying mathematical structures.
How, and whether, these mathematical phenomena manifest

themselves in physical observable is the arena we will explore
in future publications.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

Alon E. Faraggi would like to thank the Simons Center for
Geometry and Physics and the Oxford ParticleTheory Group
for their hospitality. This work is supported in part by STFC
Consolidated Grant ST/L000431/1.

References

[1] ATLAS Collaboration, G. Aad et al., ATLAS–CONF–2015–081.
[2] CMS Collaboration, S. Chatrchyan et al., CMS PAS EXO–

15–004.
[3] A. Strumia, “Interpreting the 750GeV digamma excess: a

review,” Tech. Rep. CERN-TH-2016-131, 2016, https://arxiv
.org/abs/1605.09401.

[4] A. E. Faraggi and J. Rizos, “The 750GeV di-photon LHC excess
and extra 𝑍󸀠 s in heterotic-string derived models,” European
Physical Journal C, vol. 76, p. 170, 2016.

[5] A. E. Faraggi and J. Rizos, “A light 𝑍󸀠 heterotic-string derived
model,” Nuclear Physics B, vol. 895, pp. 233–247, 2015.

[6] J. Ashfaque, L. Delle Rose, A. E. Faraggi, and C. Marzo, “The
LHC di-photon excess and gauge coupling unification in extra𝑍󸀠 heterotic-string derived models,” European Physical Journal
C, vol. 76, no. 10, article 570, 26 pages, 2016.

[7] ATLAS Collaboration, G. Aad et al, ATLAS-CONF-2016-059.
[8] CMS Collaboration, S. Chatrchyan et al, CMS-PAS-EXO-16-

027.
[9] P. Langacker, “The physics of heavy 𝑍󸀠 gauge bosons,” Reviews

of Modern Physics, vol. 81, p. 1199, 2009.
[10] A. Leike, “The phenomenology of extra neutral gauge bosons,”

Physics Reports, vol. 317, pp. 143–250, 1999.
[11] J. L. Hewett and T. G. Rizzo, “Low-energy phenomenology of

superstring-inspired E6 models,” Physics Reports, vol. 183, no.
5-6, pp. 193–381, 1989.

[12] A. E. Faraggi, “Proton stability and superstring 𝑍󸀠 ,” Physics
Letters, Section B: Nuclear, Elementary Particle and High-
Energy Physics, vol. 499, no. 1-2, pp. 147–157, 2001.

[13] A. E. Faraggi and V. M. Mehta, “Proton stability and light𝑍󸀠 inspired by string derived models,” Physical Review D -
Particles, Fields, Gravitation and Cosmology, vol. 84, no. 8,
Article ID 086006, 2011.

[14] A. E. Faraggi and V.M.Mehta, “Proton stability, gauge coupling
unification, and a light 𝑍󸀠 in heterotic-string models,” Physical
Review D - Particles, Fields, Gravitation and Cosmology, vol.
88, no. 2, Article ID 025006, 2013.

[15] P. Athanasopoulos, A. E. Faraggi, and V. M. Mehta, “Light 𝑍󸀠
in heterotic string standardlike models,” Physical Review D -
Particles, Fields, Gravitation and Cosmology, vol. 89, no. 10,
Article ID 105023, 2014.

https://arxiv.org/abs/1605.09401
https://arxiv.org/abs/1605.09401


Advances in Mathematical Physics 13

[16] A. Gregori, C. Kounnas, and J. Rizos, “Classification of the𝑁 = 2, 𝑍2 × 𝑍2-symmetric type II orbifolds and their type II
asymmetric duals,” Nuclear Physics B, vol. 549, no. 1-2, pp. 16–
62, 1999.

[17] A. E. Faraggi, C. Kounnas, S. E. M. Nooij, and J. Rizos,
“Classification of the chiral 𝑍2 × 𝑍2 fermionic models in the
heterotic superstring,” Nuclear Physics B, vol. 695, no. 1-2, pp.
41–72, 2004.

[18] A. E. Faraggi, C. Kounnas, and J. Rizos, “Chiral family classifi-
cation of fermionic 𝑍2 × 𝑍2 heterotic orbifold models,” Physics
Letters B, vol. 648, no. 1, pp. 84–89, 2007.

[19] A. E. Faraggi, C. Kounnas, and J. Rizos, “Spinor-vector duality
in fermionic𝑍2×𝑍2 heterotic orbifoldmodels,” Nuclear Physics
B, vol. 774, no. 1-3, pp. 208–231, 2007.

[20] B. Assel, K. Christodoulides, A. E. Faraggi, C. Kounnas, and
J. Rizos, “Exophobic quasi-realistic heterotic string vacua,”
Physics Letters B, vol. 683, no. 4-5, pp. 306–313, 2010.

[21] B. Assel, K. Christodoulides, A. E. Faraggi, C. Kounnas, and J.
Rizos, “Classification of heterotic Pati-Salam models,” Nuclear
Physics B, vol. 844, no. 3, pp. 365–396, 2011.

[22] A. E. Faraggi, J. Rizos, and H. Sonmez, “Classification of flipped𝑆𝑈(5) heterotic-string vacua,” Nuclear Physics B, vol. 886, pp.
202–242, 2014.

[23] H. Sonmez, “Flipped 𝑆𝑈(5) breaking basis vector,” Physical
Review D, vol. 93, no. 12, 125002, 11 pages, 2016.

[24] A. E. Faraggi, I. Florakis, T. Mohaupt, and M. Tsulaia, “Con-
formal aspects of spinor-vector duality,” Nuclear Physics B, vol.
848, no. 2, pp. 332–371, 2011.

[25] C. Kounnas, “Massive boson-fermion degeneracy and the early
structure of the universe,” Fortschritte der Physik. Progress of
Physics, vol. 56, no. 11-12, pp. 1143–1156, 2008.

[26] I. Florakis and C. Kounnas, “Orbifold symmetry reductions
of massive boson-fermion degeneracy,” Nuclear Physics B, vol.
820, no. 1-2, pp. 237–268, 2009.

[27] A. E. Faraggi, C. Kounnas, and J. Rizos, “Spinor-vector duality
in𝑁 = 2 heterotic string vacua,” Nuclear Physics B, vol. 799, no.
1-2, pp. 19–33, 2008.

[28] I. Antoniadis, C. P. Bachas, and C. Kounnas, “Four-dimensional
superstrings,” Nuclear Physics. B. Theoretical, Phenomenolog-
ical, and Experimental High Energy Physics. Quantum Field
Theory and Statistical Systems, vol. 289, no. 1, pp. 87–108, 1987.

[29] H. Kawai, D. C. Lewellen, and S. H. Tye, “Construction of
fermionic string models in four dimensions,” Nuclear Physics.
B. Theoretical, Phenomenological, and Experimental High
Energy Physics. Quantum FieldTheory and Statistical Systems,
vol. 288, no. 1, pp. 1–76, 1987.

[30] H. Kawai, D. C. Lewellen, and S.-H. H. Tye, “Classification of
closed-fermionic-stringmodels,” Physical ReviewD, vol. 34, no.
12, pp. 3794–3804, 1986.

[31] I. Antoniadis, J. Ellis, J. S. Hagelin, and D. V. Nanopoulos, “The
flipped SU(5) ×U(1) string model revamped,” Physics Letters B,
vol. 231, no. 1-2, pp. 65–74, 1989.

[32] A. E. Faraggi, D. V. Nanopoulos, and K. Yuan, “A standard-like
model in the four-dimensional free fermionic string formula-
tion,” Nuclear Physics, Section B, vol. 335, no. 2, pp. 347–362,
1990.

[33] I. Antoniadis, G. K. Leontaris, and J. Rizos, “A three-generation
SU(4)×O(4) string model,” Physics Letters B, vol. 245, no. 2, pp.
161–168, 1990.

[34] A. E. Faraggi, “A new standard-like model in the four dimen-
sional free fermionic string formulation,” Physics Letters B, vol.
278, no. 1-2, pp. 131–139, 1992.

[35] A. E. Faraggi, “Construction of realistic standard-likemodels in
the free fermionic superstring formulation,” Nuclear Physics. B.
Theoretical, Phenomenological, and ExperimentalHigh Energy
Physics. QuantumFieldTheory and Statistical Systems, vol. 387,
no. 2, pp. 239–262, 1992.

[36] G. B. Cleaver, A. E. Faraggi, and D. V. Nanopoulos, “String
derived MSSM and M-theory unification,” Physics Letters. B.
Particle Physics, Nuclear Physics and Cosmology, vol. 455, no.
1-4, pp. 135–146, 1999.

[37] G. K. Leontaris and J. Rizos, “𝑁 = 2 supersymmetric 𝑆𝑈(4) ×𝑆𝑈(2)𝐿 × 𝑆𝑈(2)𝑅 effective theory from the weakly coupled
heterotic superstring,” Nuclear Physics B, vol. 554, no. 1-2, pp.
3–49, 1999.

[38] G. B. Cleaver, A. E. Faraggi, and C. Savage, “Left-right symmet-
ric heterotic-string derived models,” Physical Review. D. Third
Series, vol. 63, no. 6, Article ID 066001, 2001.

[39] A. E. Faraggi, E. Manno, and C. Timirgaziu, “Minimal standard
heterotic string models,” European Physical Journal C, vol. 50,
no. 3, pp. 701–710, 2007.

[40] A. E. Faraggi, “Generation mass hierarchy in superstring
derived models,” Nuclear Physics, Section B, vol. 407, no. 1, pp.
57–72, 1993.

[41] A. E. Faraggi, “Partition functions of NAHE-based free
fermionic string models,” Physics Letters, Section B: Nuclear,
Elementary Particle and High-Energy Physics, vol. 544, no. 1-2,
pp. 207–214, 2002.

[42] C. Angelantonj, A. E. Faraggi, and M. Tsulaia, “Spinor-vector
duality in heterotic string orbifolds,” Journal of High Energy
Physics, vol. 1007, no. 7, article no. 4, 2010.

[43] T. Catelin-Jullien, A. E. Faraggi, C. Kounnas, and J. Rizos,
“Spinor-vector duality in heterotic SUSY vacua,” Nuclear
Physics. B. Theoretical, Phenomenological, and Experimental
High Energy Physics. Quantum Field Theory and Statistical
Systems, vol. 812, no. 1-2, pp. 103–127, 2009.

[44] P. Athanasopoulos, A. E. Faraggi, and D. Gepner, “Spectral flow
as a map between 𝑁 = (2, 0)-models,” Physics Letters B, vol.
735, pp. 357–363, 2014.

[45] H.-V. Niemeier, “Definite quadratische formen der dimension
24 und diskriminante 1,” Journal of Number Theory, vol. 5, pp.
142–178, 1973.

[46] J. H. Conway and N. J. A. Sloane, Sphere Packing, Lattices and
Groups, Springer, New York, NY, USA, 1998.

[47] W. Ebeling, “Lattices and Codes: A Course Partially Based on
Lectures by Friedrich Hirzebruch,” in Advanced Lectures in
Mathematics, Springer, New York, NY, USA, 2012.

[48] M. C. N. Cheng, J. F. R. Duncan, and J. A. Harvey, “Umbral
moonshine and the niemeier lattices,” Research in the Mathe-
matical Sciences, vol. 1, no. 3, 2014.

[49] P. Athanasopoulos, A. E. Faraggi, S. G. Nibbelink, and V.
M. Mehta, “Heterotic free fermionic and symmetric toroidal
orbifold models,” Journal of High Energy Physics, vol. 2016, no.
4, article no. 38, 2016.

[50] P. Athanasopoulos, Relations in the space of (2, 0) heterotic
stringmodels [Ph.D. thesis], University of Liverpool, Liverpool,
England, 2016.

[51] L. Dixon, P. Ginsparg, and J. Harvey, “Beauty and the beast:
superconformal symmetry in aMonstermodule,” Communica-
tions in Mathematical Physics, vol. 119, no. 2, pp. 221–241, 1988.

[52] A. E. Faraggi, “𝑍2×𝑍2 orbifold compactification as the origin of
realistic free fermionic models,” Physics Letters B, vol. 326, no.
1-2, pp. 62–68, 1994.



14 Advances in Mathematical Physics

[53] E. Kiritsis and C. Kounnas, “Perturbative and non-perturbative
partial supersymmetry breaking: 𝑁 = 4 → 𝑁 = 2 → 𝑁 = 1,”
Nuclear Physics B, vol. 503, no. 1-2, pp. 117–156, 1997.

[54] P. Berglund, J. Ellis, A. E. Faraggi, D. V. Nanopoulos, and Z. Qiu,
“Toward the 𝑀(𝐹)-theory embedding of realistic free-fermion
models,” Physics Letters B, vol. 433, no. 3-4, pp. 269–278, 1998.

[55] P. Berglund, J. Ellis, A. E. Faraggi, D. V. Nanopoulos, and Z.
Qiu, “On elevating free-fermion 𝑧2 × 𝑧2 orbifolds models to
compactifications of𝐹 theory,” International Journal ofModern
Physics A, vol. 15, no. 9, p. 1345, 2000.

[56] R. Donagi and A. E. Faraggi, “On the number of chiral
generations in 𝑍2 × 𝑍2 orbifolds,” Nuclear Physics B, vol. 694,
no. 1-2, pp. 187–205, 2004.

[57] A. E. Faraggi, S. Förste, and C. Timirgaziu, “z2× z2 heterotic
orbifold models of non factorisable six dimensional toroidal
manifolds,” Journal of High Energy Physics, vol. 608, no. 8,
article no. 057, 2006.

[58] L. Ibanez, J. E. Kim, H. P. Nilles, and F. Quevedo, “Orbifold
compactifications with three families of Su(3) × Su(2) ×U(1)𝑛,”
Physics Letters B, vol. 191, no. 3, pp. 282–286, 1987.

[59] K. R. Dienes, “New string partition functions with vanishing
cosmological constant,” Physical Review Letters, vol. 65, no. 16,
pp. 1979–1982, 1990.

[60] K. R. Dienes, “Statistics on the heterotic landscape: gauge
groups and cosmological constants of four-dimensional het-
erotic strings,” Physical Review. D. Third Series, vol. 73, no. 10,
106010, 33 pages, 2006.

[61] R. Blumenhagen, F. Gmeiner, G. Honecker, D. Lüst, and T.
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