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The objective of this paper is to investigate the effectiveness and performance of optimal homotopy asymptotic method in solving a
system of nonlinear partial differential equations. Sincemathematical modeling of certain chemical reaction-diffusion experiments
leads to Brusselator equations, it is worth demanding a new technique to solve such a system.We construct a new efficient recurrent
relation to solve nonlinear Brusselator systemof equations. It is observed that themethod is easy to implement and quite valuable for
handling nonlinear systemof partial differential equations and yielding excellent results atminimumcomputational cost. Analytical
solutions of Brusselator system are presented to demonstrate the viability and practical usefulness of the method.The results reveal
that the method is explicit, effective, and easy to use.

1. Introduction

The Brusselator model, the nonlinear system of partial dif-
ferential equations, arises in the modeling of certain chem-
ical reaction-diffusion processes. This Brusselator reaction-
diffusion model plays a substantial role in the study of coop-
erative processes of chemical kinetics. This system occurs in
a large number of physical problems. It arises in the creation
of ozone by atomic oxygen through a triple collision, in enzy-
matic reactions, and in plasma and laser physics in numerous
coupling among models [1]. A pair of variables are involved
in dealing with these chemical reactions; intermediates with
input and output chemicals, whose concentrations are likely
to be controlled during the reaction process, are substantial
under quite genuine conditions and are discussed by Nicolis
and Prigogine in [2, 3]. This model has been revealed as the
trimolecular model [4].

The two-dimensional nonlinear reaction-diffusion Brus-
selator system is

𝜕
𝜕𝑡𝑢 (𝑥, 𝑦, 𝑡) = 𝑢2V − (𝐴 + 1) 𝑢 + 𝜇(

𝜕2𝑢
𝜕𝑥2 +

𝜕2𝑢
𝜕𝑦2) + 𝐵,

𝜕
𝜕𝑡V (𝑥, 𝑦, 𝑡) = −𝑢2V + 𝐴𝑢 + 𝜇(

𝜕2V
𝜕𝑥2 +

𝜕2V
𝜕𝑦2) ,

(1)

subject to the initial condition:

𝑢 (𝑥, 𝑦, 0) = ℎ (𝑥, 𝑦) ,
V (𝑥, 𝑦, 0) = 𝑔 (𝑥, 𝑦) , (2)

where 𝑢(𝑥, 𝑦, 𝑡), V(𝑥, 𝑦, 𝑡) are unknown functions represent-
ing the dimensionless concentrations of two reactants, 𝑥, 𝑦,
and 𝑡 denote spatial and temporal independent variables,
respectively, 𝐴 and 𝐵 are constant concentrations of the two
reactants, 𝜇 represent the diffusion coefficient, and ℎ and 𝑘
are known functions. It is evident that, for small values of
diffusion coefficient 𝜇, steady state solution of Brusselator
system converges to the equilibrium point (𝐵, 𝐴/𝐵) if 1 −𝐴+𝐵2 > 0. During the last few years, the researchers have keen
interest in the existence of solution of the Brusselator reaction
model when 1 − 𝐴 + 𝐵2 ̸> 0 [5–7]. In this paper, we have
made a successful attempt to find the solution of such types
of Brusselator system.

Numerical methods need large size of computational
works and generally the consequence of round-off error
causes loss of precision in the results for system of nonlinear
partial differential equations. Analytical methods mostly
used for solving these equations are very restricted and can
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be used in very special cases.Therefore, an optimal technique
is required to resolve such circumstances.

The OHAM was recently introduced by Marinca and
Herişanu [8–11]. In series of papers, authors [12–16] have
applied this method effectively to validate the solutions
of currently important problems. Iqbal et al. [12–15] used
OHAM for linear and nonlinear differential equations and
time dependent partial differential equations. Similarly,
Idrees et al. [16] validated OHAM for nonlinear phenomena
of fluid mechanics.

In this presentation, we have extended OHAM formula-
tion for system of partial differential equations. Particularly,
the extended formulation is demonstrated by illustrative
example of nonlinear Brusselator system partial differential
equations.

2. OHAM Formulation for Brusselator System

The optimal homotopy asymptotic method (OHAM) is given
in [8–16]; we formulate this method for fractional order
partial differential equations in the following steps.

(a) Write the governing partial differential equation sys-
tem as

𝜕
𝜕𝑡𝑢 (𝑥, 𝑦, 𝑡) = 𝑢2V − (𝐴 + 1) 𝑢 + 𝜇(

𝜕2𝑢
𝜕𝑥2 +

𝜕2𝑢
𝜕𝑦2) + 𝐵,

𝜕
𝜕𝑡V (𝑥, 𝑦, 𝑡) = −𝑢2V + 𝐴𝑢 + 𝜇(

𝜕2V
𝜕𝑥2 +

𝜕2V
𝜕𝑦2) ,

(3)

subject to the initial condition:

𝑢 (𝑥, 𝑦, 0) = ℎ (𝑥, 𝑦) ,
V (𝑥, 𝑦, 0) = 𝑔 (𝑥, 𝑦) , (4)

where 𝑢(𝑥, 𝑦, 𝑡), V(𝑥, 𝑦, 𝑡) are unknown functions;𝑥, 𝑦, and 𝑡 denote spatial and temporal independent
variables, respectively.

(b) Construct an optimal homotopy for system of partial
differential equations, 𝜙1(𝑥, 𝑦, 𝑡; 𝑝) : Ω × [0, 1] →𝑅, 𝜙2(𝑥, 𝑦, 𝑡; 𝑝) : 𝜓 × [0, 1] → 𝑅, which satisfies

𝐻(𝜙1 (𝑥, 𝑦, 𝑡; 𝑝) , 𝑝) = (1 − 𝑝) 𝜕𝜕𝑡𝜙1 (𝑥, 𝑦, 𝑡)

− 𝐻1 (𝑥, 𝑦, 𝑡; 𝑝) (𝜕𝜙1𝜕𝑡 − 𝜙21𝜙2 + (𝐴 + 1) 𝜙1

− 𝜇(𝜕2𝜙1𝜕𝑥2 +
𝜕2𝜙1𝜕𝑦2 ) − 𝐵) = 0

(5)

𝐻(𝜙2 (𝑥, 𝑦, 𝑡; 𝑝) , 𝑝) = (1 − 𝑝) 𝜕𝜕𝑡𝜙2 (𝑥, 𝑦, 𝑡)

− 𝐻2 (𝑥, 𝑦, 𝑡; 𝑝) (𝜕𝜙2𝜕𝑡 − 𝜙21𝜙2 − 𝐴𝜙1

− 𝜇(𝜕2𝜙1𝜕𝑥2 +
𝜕2𝜙1𝜕𝑦2 )) = 0,

(6)

where 𝑝 ∈ [0, 1] is an embedding parameter, 𝐻1(𝑥,𝑦, 𝑡; 𝑝) and 𝐻2(𝑥, 𝑦, 𝑡; 𝑝) are nonzero auxiliary func-
tions for𝑝 ̸= 0 and𝐻1(𝑥, 𝑦, 𝑡; 0) = 0,𝐻2(𝑥, 𝑦, 𝑡; 0) =0, and, clearly, we have

𝐻1 (𝑥, 𝑦, 𝑡; 𝑝) = 𝐻2 (𝑥, 𝑦, 𝑡; 𝑝)
= 𝑝𝐾1 (𝑥, 𝑦, 𝑡; 𝑐1) + 𝑝2𝐾2 (𝑥, 𝑦, 𝑡; 𝑐2)
+ ⋅ ⋅ ⋅ + 𝑝𝑚𝐾𝑚 (𝑥, 𝑦, 𝑡; 𝑐𝑚) ,

(7)

where 𝑐1, 𝑐2, 𝑐3, . . . , 𝑐𝑚 are convergence control param-
eters. The selection of functions 𝐾𝑚(𝑥, 𝑦, 𝑡; 𝑐𝑖) might
be different type of polynomial and so on. It is
very important to choose the functions, since the
convergence of the solution very much depends on
these functions. The auxiliary function 𝐻(𝑥, 𝑦, 𝑡; 𝑐)
provides us with a simple way to adjust and control
the convergence. It also increases the accuracy of the
results and effectiveness of the method [17, 18]. The
convergence control parameters adjust and control
the convergence, which provides optimal accuracy
and effectiveness of the method. The presence of𝑐𝑖, 𝑖 = 1, 2, . . . , 𝑚 ensures the fast convergence.

(c) Expand 𝜙1(𝑥, 𝑦, 𝑡; 𝑝, 𝑐) and 𝜙2(𝑥, 𝑦, 𝑡; 𝑝, 𝑐) in Taylor’s
series about 𝑝, to get approximate solutions as

𝜙1 (𝑥, 𝑦, 𝑡; 𝑝, 𝑐𝑖) = 𝑢0 (𝑟, 𝑡) +
𝑚∑
𝑘=1

𝑢𝑘 (𝑟, 𝑡; 𝑐𝑖) 𝑝𝑘

𝑖 = 1, 2, 3, . . . , 𝑚,
(8)

𝜙2 (𝑥, 𝑦, 𝑡; 𝑝, 𝑐𝑖) = V0 (𝑟, 𝑡) +
𝑚∑
𝑘=1

V𝑘 (𝑟, 𝑡; 𝑐𝑖) 𝑝𝑘

𝑖 = 1, 2, 3, . . . , 𝑚.
(9)

(i) It has been observed that the convergence of the
series (8) and (9) depends upon the convergence
control parameters.

(ii) If it converges at 𝑝 = 1, one has

𝑢̃ (𝑟, 𝑡; 𝑐𝑖) = 𝑢0 (𝑟, 𝑡) +
𝑚∑
𝑘=1

𝑢𝑘 (𝑟, 𝑡; 𝑐𝑖)

𝑖 = 1, 2, 3, . . . , 𝑚,
(10)

Ṽ (𝑟, 𝑡; 𝑐𝑖) = V0 (𝑟, 𝑡) +
𝑚∑
𝑘=1

V𝑘 (𝑟, 𝑡; 𝑐𝑖)
𝑖 = 1, 2, 3, . . . , 𝑚.

(11)
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(d) Equate the coefficients of like powers of 𝑝 after
substituting (8) and (9) in (5) and (6), respectively;
one can get zeroth-order system given by (12), first-
order and second-order system given by (13)-(14),
respectively, and the higher order system if needed:

𝑝0: 𝜕
𝜕𝑡𝑢0 (𝑥, 𝑦, 𝑡) = 0
𝜕
𝜕𝑡V0 (𝑥, 𝑦, 𝑡) = 0

(12)

𝑝1: 𝐵𝑐1 − 𝑐1𝑢0 − 𝐴𝑐1𝑢0 + 𝑐1𝑢20V0 + 𝜇𝑐1 𝜕
2𝑢0𝜕𝑦2

+ 𝜇𝑐1 𝜕
2𝑢0𝜕𝑥2 − (1 + 𝑐1)

𝜕𝑢0𝜕𝑡 +
𝜕𝑢1𝜕𝑡 = 0

𝐴𝑐1𝑢0 − 𝑐1𝑢20V0 + 𝜇𝑐1 𝜕
2V0𝜕𝑦2 + 𝜇𝑐1

𝜕2V0𝜕𝑥2

− (1 + 𝑐1) 𝜕V0𝜕𝑡 +
𝜕V1𝜕𝑡 = 0

(13)

𝑝2: 𝐵𝑐2 − 𝑐2𝑢0 − 𝐴𝑐2𝑢0 − 𝑐1𝑢1 − 𝐴𝑐1𝑢1 + 𝑐2𝑢20V0
+ 2𝑐1𝑢0𝑢1V0 + 𝑐1𝑢20V1 + 𝜇𝑐2 𝜕

2𝑢0𝜕𝑦2 + 𝜇𝑐1
𝜕2𝑢1𝜕𝑦2

+ 𝜇𝑐2 𝜕
2𝑢0𝜕𝑥2 + 𝜇𝑐1

𝜕2𝑢1𝜕𝑥2 − 𝑐2
𝜕𝑢0𝜕𝑡 − (1 + 𝑐1)

𝜕𝑢1𝜕𝑡
+ 𝜕𝑢2𝜕𝑡 = 0

𝐴𝑐2𝑢0 + 𝐴𝑐1𝑢1 − 𝑐2𝑢20V0 − 2𝑐1𝑢0𝑢1V0 − 𝑐1𝑢20V1
+ 14𝑐2

𝜕2V0𝜕𝑦2 + 𝜇𝑐1
𝜕2V1𝜕𝑦2 + 𝜇𝑐2

𝜕2V0𝜕𝑥2 + 𝜇𝑐1
𝜕2V1𝜕𝑥2

− 𝑐2 𝜕V0𝜕𝑡 − (1 + 𝑐1)
𝜕V1𝜕𝑡 +

𝜕V2𝜕𝑡 = 0

(14)

and so on.

(e) The above system of nonlinear equations, that is,
zeroth-order, first-order, and higher order systems
(if needed), can be easily solved. Put these solutions
of different order problems in (10) and (11); one
can obtain the approximate solutions 𝑢̃(𝑟, 𝑡; 𝑐𝑖) and
Ṽ(𝑟, 𝑡; 𝑐𝑖), respectively.

(f) Determine the convergence control parameters,𝑐1, 𝑐2, 𝑐3, . . ., by using one of the methods given in
[8–11]. Using auxiliary constants in (10) and (11),
one can get the approximate solutions 𝑢(𝑥, 𝑦, 𝑡) and
V(𝑥, 𝑦, 𝑡), respectively.

3. Application

Example 1. Let us consider with 𝐴 = 1, 𝜇 = 1/4, 𝐵 = 0,
ℎ(𝑥, 𝑦) = 𝑒(−𝑥−𝑦), and 𝑔(𝑥, 𝑦) = 𝑒(𝑥+𝑦) two-dimensional
Brusselator system (1) can be written in the following form:

𝜕𝑢 (𝑥, 𝑦, 𝑡)
𝜕𝑡 = 𝑢2V − 2𝑢 + 14 (

𝜕2𝑢
𝜕𝑥2 +

𝜕2𝑢
𝜕𝑦2) ,

𝜕V (𝑥, 𝑦, 𝑡)
𝜕𝑡 = 𝑢 − 𝑢2V + 14 (

𝜕2V
𝜕𝑥2 +

𝜕2V
𝜕𝑦2) ,

(15)

subject to the initial conditions:

𝑢 (𝑥, 𝑦, 0) = 𝑒(−𝑥−𝑦),
V (𝑥, 𝑦, 0) = 𝑒(𝑥+𝑦),
(𝑥, 𝑦, 𝑡) ∈ R2 × [0, 2] .

(16)

The exact solutions of (15) is found to be [19]

𝑢 (𝑥, 𝑦, 𝑡) = 𝑒(−𝑥−𝑦−𝑡/2),
V (𝑥, 𝑦, 𝑡) = 𝑒(𝑥+𝑦+𝑡/2). (17)

OHAM formulation presented in Section 2 generates the
series of problems, which can be written as

𝜕
𝜕𝑡𝑢0 (𝑥, 𝑦, 𝑡) = 0,
𝜕
𝜕𝑡V0 (𝑥, 𝑦, 𝑡) = 0,

− 2𝑐1𝑢0 + 𝑐1𝑢20V0 + 14𝑐1
𝜕2𝑢0𝜕𝑦2 +

1
4𝑐1
𝜕2𝑢0𝜕𝑥2

− (1 + 𝑐1) 𝜕𝑢0𝜕𝑡 +
𝜕𝑢1𝜕𝑡 = 0,

− 𝑐1𝑢0 − 𝑐1𝑢20V0 + 14𝑐1
𝜕2V0𝜕𝑦2 +

1
4𝑐1
𝜕2V0𝜕𝑥2 − (1 + 𝑐1)

𝜕V0𝜕𝑡
+ 𝜕V1𝜕𝑡 = 0,
− 2𝑐2𝑢0 − 2𝑐1𝑢1 + 𝑐2𝑢20V0 + 2𝑐1𝑢0𝑢1V0 + 𝑐1𝑢20V1
+ 14𝑐2

𝜕2𝑢0𝜕𝑦2 +
1
4𝑐1
𝜕2𝑢1𝜕𝑥2 − 𝑐2

𝜕𝑢0𝜕𝑡 − (1 + 𝑐1)
𝜕𝑢1𝜕𝑡

+ 𝜕𝑢2𝜕𝑡 = 0,
− 𝑐2𝑢0 + 𝑐1𝑢1 − 𝑐2𝑢20V0 − 2𝑐1𝑢0𝑢1V0 − 𝑐1𝑢20V1
+ 14𝑐2

𝜕2V0𝜕𝑦2 +
1
4𝑐1
𝜕2V1𝜕𝑦2 +

1
4𝑐2
𝜕2V0𝜕𝑥2 +

1
4𝑐1
𝜕2V1𝜕𝑥2

− 𝑐2 𝜕V0𝜕𝑡 − (1 + 𝑐1)
𝜕V1𝜕𝑡 +

𝜕V2𝜕𝑡 = 0,
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− 2𝑐3𝑢0 − 2𝑐2𝑢1 − 2𝑐1𝑢2 + 𝑐3𝑢20V0 + 2𝑐2𝑢0𝑢1V0 + 𝑐1𝑢21V0
+ 2𝑐1𝑢0𝑢2V0 + 𝑐2𝑢20V1 + 2𝑐1𝑢0𝑢1V1 + 𝑐1𝑢20V2
+ 14𝑐3

𝜕2𝑢0𝜕𝑦2 +
1
4𝑐2
𝜕2𝑢1𝜕𝑦2 +

1
4𝑐1
𝜕2𝑢2𝜕𝑦2 +

1
4𝑐3
𝜕2𝑢0𝜕𝑥2

+ 14𝑐2
𝜕2𝑢1𝜕𝑥2 +

1
4𝑐1
𝜕2𝑢2𝜕𝑥2 + 𝑐3

𝜕𝑢0𝜕𝑡 − 𝑐2
𝜕𝑢1𝜕𝑡

− (1 + 𝑐1) 𝜕𝑢2𝜕𝑡 +
𝜕𝑢3𝜕𝑡 = 0,

𝑐3𝑢0 + 𝑐2𝑢1 + 𝑐1𝑢2 − 𝑐3𝑢20V0 − 2𝑐2𝑢0𝑢1V0 − 𝑐1𝑢21V0
− 2𝑐1𝑢0𝑢2V0 − 𝑐2𝑢20V1 − 2𝑐1𝑢0𝑢1V1 − 𝑐1𝑢20V2
+ 14𝑐3

𝜕2V0𝜕𝑦2 +
1
4𝑐2
𝜕2V1𝜕𝑦2 +

1
4𝑐1
𝜕2V2𝜕𝑦2 +

1
4𝑐3
𝜕2V0𝜕𝑥2

+ 14𝑐2
𝜕2V1𝜕𝑥2 +

1
4𝑐1
𝜕2V2𝜕𝑥2 − 𝑐3

𝜕V0𝜕𝑡 − 𝑐2
𝜕V1𝜕𝑡

− (1 + 𝑐1) 𝜕V2𝜕𝑡 +
𝜕V3𝜕𝑡 = 0.

(18)

The above zeroth-order, first-order, second-order, and
third-order problems are given in (18) which can easily be
solved. We get

𝑢0 (𝑥, 𝑦, 𝑡) = 𝑒(−𝑥−𝑦),
V0 (𝑥, 𝑦, 𝑡) = 𝑒(𝑥+𝑦),
𝑢1 (𝑥, 𝑦, 𝑡) = 𝑡2𝑒(−𝑥−𝑦)𝑐1,
V1 (𝑥, 𝑦, 𝑡) = −𝑡2 𝑒(𝑥+𝑦)𝑐1,
𝑢2 (𝑥, 𝑦, 𝑡) = 𝑡8𝑒(−𝑥−𝑦) (4𝑐1 + 4𝑐21 + 𝑡𝑐21 + 4𝑐2) ,
V2 (𝑥, 𝑦, 𝑡) = 𝑡8𝑒(𝑥+𝑦) (−4𝑐1 − 4𝑐21 + 𝑡𝑐21 − 4𝑐2) ,
𝑢3 (𝑥, 𝑦, 𝑡) = 𝑡48𝑒(−𝑥−𝑦) (24𝑐1 + 48𝑐21 + 12𝑡𝑐21 + 24𝑐31
+ 12𝑡𝑐31 + 𝑡2𝑐31 + 24𝑐2 + 48𝑐1𝑐2 + 12𝑡𝑐1𝑐2 + 24𝑐3) ,

V3 (𝑥, 𝑦, 𝑡) = −𝑡48𝑒(𝑥+𝑦) (24𝑐1 + 48𝑐21 − 12𝑡𝑐21 + 24𝑐31
− 12𝑡𝑐31 + 𝑡2𝑐31 + 24𝑐2 + 48𝑐1𝑐2 − 12𝑡𝑐1𝑐2 + 24𝑐3) .

(19)

Substituting (19) in (10) and (11), respectively, we obtain

𝑢 (𝑥, 𝑦, 𝑡) = 𝑒−𝑥−𝑦48 (18𝑡 (4 + 𝑡) 𝑐21
+ 𝑡𝑐31 (24 + 12𝑡 + 𝑡2) + 12𝑡𝑐1 (6 + (4 + 𝑡) 𝑐2)
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Figure 1: Convergence of first-order solution of 𝑢(𝑥, 𝑦, 𝑡) at 𝑡 = 𝑦 =1.

+ 24 (2 + 2𝑡𝑐2 + 𝑡𝑐3)) ,
V (𝑥, 𝑦, 𝑡) = −𝑒𝑥𝑦48 (−18𝑡 (−4 + 𝑡) 𝑐21
+ 𝑡𝑐31 (24 − 12𝑡 + 𝑡2) − 12𝑡𝑐1 (−6 + (−4 + 𝑡) 𝑐2)
+ 24 (−2 + 2𝑡𝑐2 + 𝑡𝑐3)) .

(20)

Auxiliary constants shown in (20) can be found by using step
(f) in Section 2.

4. Results and Discussions

The formulation of OHAM for two-dimensional nonlinear
Brusselator system with 𝐴 = 1, 𝐵 = 0, and 𝜇 = 0.25 is pre-
sented in Section 2 and the demonstration of the formulation
is presented in Example 1.

The third-order approximate solutions of 𝑢(𝑥, 𝑦, 𝑡),
V(𝑥, 𝑦, 𝑡) are given in (19). These solutions depend upon the
optimal convergence control parameters which are given in
Table 1. The simplicity and accuracy of the presented method
are illustrated by computing |𝑢Exact−𝑢OHAM|, |VExact−VOHAM|.
Tables 2 and 3 at different gird points show the comparisons
of absolute error of 𝑢(𝑥, 𝑦, 𝑡) and V(𝑥, 𝑦, 𝑡) between OHAM
and the exact solutions, respectively. In this study, only
up to third-order solutions are considered. From Tables 2
and 3, it is clear that OHAM achieves accurate solutions at
only third-order term of approximation without any spatial
discretization.Thus the third-order approximate solutions of
Brusselator reaction-diffusion system converge.

Figures 1, 2, and 3 show the convergence of first-
order, second-order, and third-order approximate solutions
of 𝑢(𝑥, 𝑦, 𝑡) obtained by OHAM, respectively. Figures 4, 5,



Advances in Mathematical Physics 5

0 0.2 0.4 0.6 0.8 1
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

x

u(
x)

Second-order solution
Exact solution

Figure 2: Convergence of second-order solution of 𝑢(𝑥, 𝑦, 𝑡) at 𝑡 =𝑦 = 1.
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Figure 3: Convergence of third-order solution of 𝑢(𝑥, 𝑦, 𝑡) at 𝑡 =𝑦 = 1.

Table 1: Convergence control parameters of example for 𝑢(𝑥, 𝑦, 𝑡)
and V(𝑥, 𝑦, 𝑡).

𝑐1 𝑐2 𝑐3𝑢(𝑥, 𝑦, 𝑡) −0.945983141 0.0083062488 0.0004400396
V(𝑥, 𝑦, 𝑡) −1.0838346562 0.0032355216 −0.0012528760

and 6 show the convergence of first-order, second-order, and
third-order approximate solutions of V(𝑥, 𝑦, 𝑡) obtained by
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Figure 4: Convergence of first-order solution of V(𝑥, 𝑦, 𝑡) at 𝑡 = 𝑦 =1.
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Figure 5: Convergence of second-order solution of V(𝑥, 𝑦, 𝑡) at 𝑡 =𝑦 = 1.

OHAM, respectively. Figure 7 shows the error convergence
with the order of approximation of 𝑢(𝑥, 𝑦, 𝑡) and V(𝑥, 𝑦, 𝑡). It
is clear from the figures that the behaviour of approximate
solutions is highly same as exact solution. It can also be
clear from Figures 3 and 6 that third-order approximate
solution converges and there is no need to compute extra
terms when OHAM is used. It is observed that as we move
along the domain we get consistent accuracy. It can also be
observed that approximate solutions by formulation are in
excellent agreement with the exact solutions. Thus the series
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Table 2: Comparison of absolute errors of 𝑢(𝑥, 𝑦, 𝑡) at different orders of approximation.

𝑡 𝑥 𝑦 OHAM Exact Absolute error = |𝑢exact − 𝑢OHAM|
1st-order error 2nd-order error 3rd-order error

0.25 0.25 0.25 0.535285 0.535261 0.000451741 0.000544293 2.31736 × 10−5
0.5 0.41688 0.416862 0.000351816 0.000423896 1.80476 × 10−5
0.75 0.324667 0.324652 0.000273995 0.000330131 1.40555 × 10−5

0.5 0.5 0.25 0.367815 0.367879 0.00722559 0.000930733 6.44165 × 10−5
0.5 0.286455 0.286505 0.00562729 0.000724856 5.01676 × 10−5
0.75 0.223091 0.22313 0.00438254 0.000564518 3.90706 × 10−5

0.75 0.75 0.25 0.367815 0.367879 0.00722559 0.000930733 6.44165 × 10−5
0.5 0.286455 0.286505 0.00562729 0.000724856 5.01676 × 10−5
0.75 0.223091 0.22313 0.00438254 0.000564518 3.90706 × 10−5

Table 3: Comparison of absolute errors of V(𝑥, 𝑦, 𝑡) at different orders of approximation.

𝑡 𝑥 𝑦 OHAM Exact Absolute error = 󵄨󵄨󵄨󵄨Vexact − VOHAM󵄨󵄨󵄨󵄨
1st-order error 2nd-order error 3rd-order error

0.01 0.2 0.25 1.57619 1.57617 0.000637758 0.0000770919 1.81338 × 10−5
0.5 2.02387 2.02385 0.000818897 0.000098988 2.32843 × 10−5
0.75 2.5987 2.59867 0.00105149 0.000127103 2.98976 × 10−5

0.02 0.4 0.25 1.93484 1.93479 0.00150979 0.000180195 4.29601 × 10−5
0.5 2.48438 2.48432 0.00193861 0.000231375 5.51618 × 10−5
0.75 3.19 3.18993 0.00248922 0.000297091 7.08292 × 10−5

0.03 0.8 0.25 2.90093 2.90084 0.00327045 0.000385405 9.32357 × 10−5
0.5 3.72487 3.72475 0.00419935 0.00049487 1.19717 × 10−4
0.75 4.78283 4.78267 0.00539207 0.000635425 1.5372 × 10−4
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Figure 6: Convergence of third-order solution of V(𝑥, 𝑦, 𝑡) at 𝑡 =𝑦 = 1.

solutions for fractional equations converge. Results indicate
the performance of the method nonlinear system of partial

differential equations in precisely approximating the solution
at less computational cost.

5. Conclusion

In this work, we employed a new powerful semianalytic
technique, optimal homotopy asymptotic method to solve
Brusselator reaction-diffusion system. The objective of this
work is to illustrate the usefulness of the technique. This
technique is simple in applicability, as it does not need dis-
cretization like numerical methods. Furthermore, this tech-
nique delivers an appropriate way to control the convergence
by optimally shaping the convergence control parameters.
Additionally, this method converges rapidly at lower order
of approximations. Therefore, OHAM exhibits its concealed
supremacy and is latent for the solution of nonlinear prob-
lems in real life applications. One substantial objective of this
effort is the investigation of convergence and practicality of
the method. By using this method, we acquire a new effective
recurrent relation to solve nonlinear Brusselator system.
The results demonstrate that the method is a prevailing
mathematical tool for solving systems of nonlinear partial
differential equations having extensive applications in science
and engineering.
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