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A numerical approach is proposed for solving multidimensional parabolic diffusion and hyperbolic wave equations subject to
the appropriate initial and boundary conditions. The considered numerical solutions of the these equations are considered as
linear combinations of the shifted Bernoulli polynomials with unknown coefficients. By collocating the main equations together
with the initial and boundary conditions at some special points (i.e., CGL collocation points), equations will be transformed into
the associated systems of linear algebraic equations which can be solved by robust Krylov subspace iterative methods such as
GMRES. Operational matrices of differentiation are implemented for speeding up the operations. In both of the one-dimensional
and two-dimensional diffusion andwave equations, the geometrical distributions of the collocation points are depicted for clarity of
presentation. Several numerical examples are provided to show the efficiency and spectral (exponential) accuracy of the proposed
method.

1. Introduction

Many of the physical models and chemical reactions can
be formulated in terms of parabolic and hyperbolic partial
differential equations (PDEs) [1, 2]. Since analyzing these
models and reactions has considerable importance in applied
science and engineering, we should investigate the solutions
of the associated governed PDEs by modern tools [3, 4].
Analytical approaches for solving PDEs have received the
researchers attention for solving a large number of PDEs, but
numerical methods are more favorable with respect to these
approaches. One of the basic advantages of the numerical
methods, which made them more popular with respect to
the analytical approaches, is based on the implementation of
the operational matrices of differentiation and high accurate
Gauss quadrature rules instead of direct differentiation and
integration. By using these operational matrices and quadra-
tures, computations time in numerical algorithms may be

decreased significantly. Therefore, in most of the numerical
methods, one of the above-mentioned tools may be applied
for speeding up the operations in solving PDEs [5].

In a numerical point of view, the methods that are based
on the operational matrices of differentiation may be divided
into the collocation and Tau matrix methods. In Tau matrix
methods, all the known and unknown functions should be
approximated in terms of a specific complete basis (such as
orthogonal polynomials or trigonometric functions). Since
the mentioned basis is complete, one can factorize this
basis and simplify the considered PDEs into the associated
system of algebraic equations. On the other hand, in every
considered PDE one may have some boundary conditions
and we should impose these conditions in the procedure
of the Tau matrix method. Our numerical implementation
experiences show that if the boundary conditions are first
imposed to themain equations [5] (via transforming the basic
PDEs into the associated integro-PDEs), then we may have
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more stable numerical solutions. However, in some research
works (e.g., Taylormatrixmethod [6, 7], Eulermatrixmethod
[8], and Chebyshev Tau method [9]) boundary conditions
are imposed after discretizing the main equations. Such ideas
may have similar numerical results with [5] but producemore
algebraic equations and this may take more computations
time and therefore make these methods deficient. Another
disadvantage of Tau matrix method is that these methods
apply the operational matrices of product for solving PDEs
with variable coefficients [10]. Such idea again reduces the
accuracy of the Tau matrix method. Moreover, Tau matrix
schemes in general have difficulties in the treatment of
nonlinear multidimensional PDEs, since no straightforward
algebraic system of equations can be efficiently achieved for
such problems [11]. However, the collocation schemes for
PDEs are rarely ready to implement and they can overcome
the aforementioned challenges.

In recent years, some research works have been focused
on the application of collocation methods for solving lin-
ear one-dimensional parabolic and hyperbolic (specially
Telegraph equations) PDEs such as Chebyshev collocation
method [12] and Bessel collocationmethod [13, 14]. But appli-
cation of this scheme for solving multidimensional PDEs
has had few results. This partially motivates us to propose
a new collocation scheme, which is based on the Bernoulli
polynomials, for solving linear multidimensional diffusion
and wave PDEs. It should be noted that the proposed
collocation method can be generalized for solving other
linear multidimensional parabolic and hyperbolic PDEs. In
this paper we consider the following linear one-dimensional
diffusion equation

𝜕𝜓
𝜕𝜏 =

𝜕2𝜓
𝜕𝜂2 + 𝜔 (𝜂, 𝜏) , (𝜂, 𝜏) ∈ [𝑎𝜂, 𝑏𝜂] × [𝑎𝜏, 𝑏𝜏] , (1)

with the initial condition

𝜓 (𝜂, 𝑎𝜏) = 𝑓 (𝜂) , 𝜂 ∈ [𝑎𝜂, 𝑏𝜂] , (2)

together with the Dirichlet boundary conditions

𝜓 (𝑎𝜂, 𝜏) = 𝑔1 (𝜏) ,
𝜓 (𝑏𝜂, 𝜏) = 𝑔2 (𝜏) ,

𝜏 ∈ [𝑎𝜏, 𝑏𝜏] .
(3)

Also, we will consider the following linear one-dimensional
wave equation

𝜕2𝜓
𝜕𝜏2 =

𝜕2𝜓
𝜕𝜂2 + 𝜔 (𝜂, 𝜏) , (𝜂, 𝜏) ∈ [𝑎𝜂, 𝑏𝜂] × [𝑎𝜏, 𝑏𝜏] , (4)

with the initial conditions

𝜓 (𝜂, 𝑎𝜏) = 𝑓 (𝜂) ,
𝜕𝜓
𝜕𝜏 (𝜂, 𝑎𝜏) = 𝑘 (𝜂) ,

𝜂 ∈ [𝑎𝜂, 𝑏𝜂] ,
(5)

together with the Dirichlet boundary conditions

𝜓 (𝑎𝜂, 𝜏) = 𝑔1 (𝜏) ,
𝜓 (𝑏𝜂, 𝜏) = 𝑔2 (𝜏) ,

𝜏 ∈ [𝑎𝜏, 𝑏𝜏] .
(6)

It should be noted that all the known functions in above-
mentioned PDEs such as 𝑓(𝜂), 𝑘(𝜂), 𝑔1(𝜏), 𝑔2(𝜏), and 𝜔(𝜂, 𝜏)
are some smooth functions. Numerical solutions of the
above-mentioned equations are considered in the literature
through some classical and modern techniques such as
finite difference methods (FDMs) [15–18], finite element
methods (FEMs) [19], finite volume methods (FVMs) [20],
dual reciprocity boundary integral equation method [21],
interpolating scaling functionmethod [22], andHaar wavelet
scheme [23]. In this paper, we treat the above equations
(together with their 2D generalization forms) by a numerical
method which is based on Bernoulli polynomials as the
basis and the well-known Chebyshev Gauss Lobatto (CGL)
collocation points. In this regard, the considered equations
are collocated and then transformed into the associated
systems of linear algebraic equations which can be solved
through some iterative methods such as GMRES.

The structure of the remainder of this paper is as follows.
In the next section, we will review some preliminaries regard-
ing the shifted Bernoulli polynomials and shifted operational
matrices which play important roles throughout the paper.
In Section 3, implementation of the Bernoulli collocation
method (BCM) for solving both of the 1D equations (1)–(3)
and (4)–(6) will be provided and in Section 4, generalization
of BCM for solving 2D diffusion and wave equations will
be implemented. In Section 5, several numerical examples
are given to illustrate the spectral accuracy of the proposed
method. Finally, some conclusions regarding the suggested
BCM are conveyed in Section 6.

2. Preliminaries

Bernoulli polynomials form a complete basis in the interval[0, 1]. Since in our considered PDEs we have arbitrary inter-
vals, we should introduce the shifted Bernoulli polynomials,
which keep the property of completeness, and the shifted
operational matrices of differentiation. The shifted Bernoulli
polynomials can be constructed via the relation 𝛽𝑖(𝜂) =𝐵𝑖((𝜂 − 𝑎𝜂)/(𝑏𝜂 − 𝑎𝜂)) for any arbitrary positive integer
index 𝑖 in the interval [𝑎𝜂, 𝑏𝜂]. It should be recalled that the
standard Bernoulli polynomials, in the interval [0, 1], have
the following properties [24]:

𝐵󸀠𝑖 (𝑥) = 𝑖𝐵𝑖−1 (𝑥) , ∀𝑖 ≥ 1,
∫1
0
𝐵𝑖 (𝑥) 𝑑𝑥 = 0, ∀𝑖 ≥ 1,
𝐵0 (𝑥) = 1.

(7)
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Therefore the shifted Bernoulli polynomials have the
following properties in the interval [𝑎𝜂, 𝑏𝜂]:

𝛽󸀠𝑖 (𝜂) = 𝑖𝑏𝜂 − 𝑎𝜂𝛽𝑖−1 (𝜂) , ∀𝑖 ≥ 1,

∫𝑏𝜂
𝑎𝜂

𝛽𝑖 (𝜂) 𝑑𝜂 = 0, ∀𝑖 ≥ 1,
𝛽0 (𝜂) = 1.

(8)

Now we assume that 𝛽(𝜂) =[𝛽0(𝜂) 𝛽1(𝜂) ⋅ ⋅ ⋅ 𝛽𝑁(𝜂)]1×(𝑁+1). The shifted operational
matrix of differentiation associated with the shifted Bernoulli
polynomials can be derived from the first relation in (8):

[[[[[[[[[
[

𝛽0 (𝜂)
𝛽1 (𝜂)...
𝛽𝑁−1 (𝜂)
𝛽𝑁 (𝜂)

]]]]]]]]]
]

󸀠

=

𝑀𝜂⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

1𝑏𝜂 − 𝑎𝜂

[[[[[[[[[
[

0 0 0 ⋅ ⋅ ⋅ 0
1 0 0 ⋅ ⋅ ⋅ 0
0 2 0 ⋅ ⋅ ⋅ 0
... ... d d

...
0 0 ⋅ ⋅ ⋅ 𝑁 0

]]]]]]]]]
]

[[[[[[[[[
[

𝛽0 (𝜂)
𝛽1 (𝜂)...
𝛽𝑁−1 (𝜂)
𝛽𝑁 (𝜂)

]]]]]]]]]
]

,

(9)

where𝑀𝜂 is the shifted operational matrix of differentiation
in the interval [𝑎𝜂, 𝑏𝜂]. Because of the existence of two-
variable functions in (1)–(3) and (4)–(6), we must extend the
mentionedmatrix through the Kronecker multiplication. For
this purpose, assume that

𝛽 (𝜂, 𝜏) = [𝛽0 (𝜂, 𝜏) 𝛽1 (𝜂, 𝜏) ⋅ ⋅ ⋅ 𝛽𝑁 (𝜂, 𝜏)]1×(𝑁+1)2 , (10)

where 𝛽𝑖(𝜂, 𝜏) = [𝛽0(𝜂, 𝜏) 𝛽1(𝜂, 𝜏) ⋅ ⋅ ⋅ 𝛽𝑁(𝜂, 𝜏)] for all𝑖 = 0, 1, . . . , 𝑁 and 𝛽𝑚,𝑛(𝜂, 𝜏) = 𝛽𝑚(𝜂)𝛽𝑛(𝜏) for all 𝑚, 𝑛 =0, 1, . . . , 𝑁. Evidently, 𝛽(𝜂, 𝜏) = 𝛽(𝜂) ⊗ 𝛽(𝜏), where 𝛽(𝜏) =[𝛽0(𝜏) 𝛽1(𝜏) ⋅ ⋅ ⋅ 𝛽𝑁(𝜏)]1×(𝑁+1).
In the following lemma, operational matrices of differ-

entiation associated with the two-variable functions will be
introduced.

Lemma 1. Suppose that 𝑀̂ = 𝐼𝑁+1⊗𝑀𝑇𝜏 and 𝑀̃ = 𝑀𝑇𝜂 ⊗𝐼𝑁+1,
where 𝐼𝑁+1 denotes the identity matrix of dimension (𝑁 + 1)
and𝑀𝜏 = ((𝑏𝜂 − 𝑎𝜂)/(𝑏𝜏 − 𝑎𝜏))𝑀𝜂. One can conclude that

(i)

𝜕𝛽 (𝜂, 𝜏)
𝜕𝜏 = 𝛽𝜏 (𝜂, 𝜏) = 𝛽 (𝜂, 𝜏) 𝑀̂,

𝜕2𝛽 (𝜂, 𝜏)
𝜕𝜏2 = 𝛽𝜏𝜏 (𝜂, 𝜏) = 𝛽 (𝜂, 𝜏) (𝑀̂)2 ,

(11)

(ii)

𝜕𝛽 (𝜂, 𝜏)
𝜕𝜂 = 𝛽𝜂 (𝜂, 𝜏) = 𝛽 (𝜂, 𝜏) 𝑀̃,

𝜕2𝛽 (𝜂, 𝜏)
𝜕𝜂2 = 𝛽𝜂𝜂 (𝜂, 𝜏) = 𝛽 (𝜂, 𝜏) (𝑀̃)2 .

(12)

Proof. See [24].

Since in 2D diffusion and wave equations, which will be
considered in Section 4, we have three-variable functions,
again one can develop the subject of operational matrices via
the Tensor product. For this goal, we should suppose that

𝛽 (𝜂, 𝜉, 𝜏) = (𝛽 (𝜂) ⊗ 𝛽 (𝜉) ⊗ 𝛽 (𝜏))1×(𝑁+1)3 , (13)

where 𝛽(𝜉) = [𝛽0(𝜉) 𝛽1(𝜉) ⋅ ⋅ ⋅ 𝛽𝑁(𝜉)]1×(𝑁+1). Similar to
the previous lemma, operational matrices of differentiation
corresponding to the three-variable functions will be intro-
duced.

Lemma 2. Assume that ̂̂𝑀 = 𝐼(𝑁+1)2 ⊗𝑀𝑇𝜏 , ̃̃𝑀 = 𝑀𝑇𝜂 ⊗𝐼(𝑁+1)2 ,
and ̇𝑀̇ = 𝐼𝑁+1⊗𝑀𝑇𝜉 ⊗𝐼𝑁+1, where𝑀𝜉 = ((𝑏𝜂−𝑎𝜂)/(𝑏𝜉−𝑎𝜉))𝑀𝜂.
The following relations hold.

(i)

𝜕𝛽 (𝜂, 𝜉, 𝜏)
𝜕𝜏 = 𝛽𝜏 (𝜂, 𝜉, 𝜏) = 𝛽 (𝜂, 𝜉, 𝜏) ̂̂𝑀,

𝜕2𝛽 (𝜂, 𝜉, 𝜏)
𝜕𝜏2 = 𝛽𝜏𝜏 (𝜂, 𝜉, 𝜏) = 𝛽 (𝜂, 𝜉, 𝜏) (̂̂𝑀)2 .

(14)

(ii)

𝜕𝛽 (𝜂, 𝜉, 𝜏)
𝜕𝜂 = 𝛽𝜂 (𝜂, 𝜉, 𝜏) = 𝛽 (𝜂, 𝜉, 𝜏) ̃̃𝑀,

𝜕2𝛽 (𝜂, 𝜉, 𝜏)
𝜕𝜂2 = 𝛽𝜂𝜂 (𝜂, 𝜉, 𝜏) = 𝛽 (𝜂, 𝜉, 𝜏) (̃̃𝑀)2 .

(15)

(iii)

𝜕𝛽 (𝜂, 𝜉, 𝜏)
𝜕𝜉 = 𝛽𝜉 (𝜂, 𝜉, 𝜏) = 𝛽 (𝜂, 𝜉, 𝜏) ̇𝑀̇,

𝜕2𝛽 (𝜂, 𝜉, 𝜏)
𝜕𝜉2 = 𝛽𝜉𝜉 (𝜂, 𝜉, 𝜏) = 𝛽 (𝜂, 𝜉, 𝜏) ( ̇𝑀̇)2 .

(16)

Proof. The proof of this lemma is similar to the previous
lemma.

3. Bernoulli Collocation Method for
1D Equations

This section is devoted to implement BCM for solving 1D
diffusion equations (1)–(3) and also 1D wave equations (4)–
(6). In this regard, we first discretize 1D diffusion equation
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Figure 1: CGL collocation points in the unit square for 𝑁 = 8 for
1D diffusion equation.

and then localize 1D wave equation in two separate sub-
sections via a geometrical point of view. In both cases, we
should assemble the associated algebraic equations to form
a final linear system AU = 𝑏 which can be solved by some

efficient iterative solvers such asGMRESmethod. It should be
noted that BCM has received considerable attentions during
recent years. The interested readers can refer to [25] and the
references therein for application of BCM in solving complex
ODEs, nonlinear two-point BVPs, delay Pantograph ODEs,
and other types of applied mathematics problems.

3.1. 1D Diffusion Equations. In this subsection, the aim is to
reduce (1)–(3) into the associated system of linear algebraic
equations in the form of AU = 𝑏 by implementing the BCM.
This process has three steps.

(1) Collocating the main equation (1).
(2) Collocating the boundary conditions (3).
(3) Collocating the initial condition (2).

At first we assume that

𝜓 (𝜂, 𝜏) ≈ 𝜓𝑁 (𝜂, 𝜏) =
𝑁∑
𝑚=0

𝑁∑
𝑛=0

𝑢𝑚𝑛𝛽𝑚 (𝜂) 𝛽𝑛 (𝜏)
= 𝛽 (𝜂, 𝜏)𝑈,

(17)

where 𝛽(𝜂, 𝜏) is defined in the previous section and

𝑈 = [𝑢00 𝑢01 ⋅ ⋅ ⋅ 𝑢0𝑁 𝑢10 𝑢11 ⋅ ⋅ ⋅ 𝑢1𝑁 ⋅ ⋅ ⋅ 𝑢𝑁0 𝑢𝑁1 ⋅ ⋅ ⋅ 𝑢𝑁𝑁]𝑇(𝑁+1)2×1 . (18)

It should be noted that our aim is to find the unknown
vector 𝑈. From the previous section we have

𝜓𝜏 (𝜂, 𝜏) ≈ 𝜓𝑁,𝜏 (𝜂, 𝜏) = 𝛽 (𝜂, 𝜏) 𝑀̂𝑈,
𝜓𝜂𝜂 (𝜂, 𝜏) ≈ 𝜓𝑁,𝜂𝜂 (𝜂, 𝜏) = 𝛽 (𝜂, 𝜏) (𝑀̃)2𝑈.

(19)

Also, we should define some suitable collocation points.
In this paper, we choose theCGLpoints in the following form:

𝜂𝑖 = 𝑏𝜂 − 𝑎𝜂2 (1 − cos((𝑖 − 1) 𝜋𝑁 )) + 𝑎𝜂,
𝑖 = 1, 2, . . . , 𝑁 + 1,

𝜏𝑗 = 𝑏𝜏 − 𝑎𝜏2 (1 − cos((𝑗 − 1) 𝜋𝑁 )) + 𝑎𝜏,
𝑗 = 1, 2, . . . , 𝑁 + 1.

(20)

Figure 1 plots such collocation points for𝑁 = 8 in the unit
square (i.e., [𝑎𝜂, 𝑏𝜂] × [𝑎𝜏, 𝑏𝜏] = [0, 1]× [0, 1]) for the diffusion
equation. At the first step, we collocate the main equation via
the interior collocation points.

Step 1 (interior collocation points: main equation (1)). In this
part of the paper, we have 2 ≤ 𝑖 ≤ 𝑁 and 2 ≤ 𝑗 ≤ 𝑁 + 1 (see
the purple rhombics in Figure 1). So we should define 𝐴main

with 𝑁(𝑁 − 1) rows and (𝑁 + 1)2 columns. Moreover, we
should define a column vector 𝑏main with𝑁(𝑁− 1) elements.
Therefore, one can refer to the first step of Algorithm 1 for this
purpose.

Step 2 (boundary conditions collocation (3)). In this part of
the paper, we have 𝑖 = 1 for the left boundary condition and𝑖 = 𝑁 + 1 for the right boundary condition. In both cases,
we have 2 ≤ 𝑗 ≤ 𝑁 + 1. Therefore, we should define 𝐴bcl
(left boundary condition: see the red triangles in Figure 1) and𝐴bcr (right boundary condition: see the blue down triangles
in Figure 1) with𝑁 rows and (𝑁+1)2 columns. Moreover, we
should define column vectors 𝑏bcl (left boundary condition)
and 𝑏bcr (right boundary condition) with 𝑁 elements. Thus,
one can refer to the second step of Algorithm 1 for this goal.

Step 3 (initial condition collocation (2)). In this part of the
paper, we have 𝑗 = 1 and also 1 ≤ 𝑖 ≤ 𝑁 + 1 (see the black
squares in Figure 1). In this case we should define 𝐴 in matrix
with (𝑁+1) rows and (𝑁+1)2 columns.Moreover, we should
define 𝑏in column vector with (𝑁+1) elements.Therefore, one
can refer to the third step of Algorithm 1 for this aim.

Step 4 (assembling thematrices and column vectors). Finally,
by assembling the coefficient matrices and right hand side
column vectors, we will reach to the system of linear algebraic
equations in the formofAU = 𝑏, which can be solved by some
appropriate iterative methods such as GMRES algorithm.
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Step 1: Collocating the main equation (1):
for 𝑖 = 2 : 𝑁
for 𝑗 = 2 : 𝑁 + 1𝐴main((𝑖 − 2) ∗ 𝑁 + (𝑗 − 1), :) = 𝛽(𝜂𝑖, 𝜏𝑗) ∗ (𝑀̂ − (𝑀̃)2);𝑏main((𝑖 − 2) ∗ 𝑁 + (𝑗 − 1), 1) = 𝜔(𝜂𝑖, 𝜏𝑗);
end
end
Step 2: Collocating the boundary conditions (3):
for 𝑗 = 2 : 𝑁 + 1𝐴bcl(𝑗 − 1, :) = 𝛽(𝑎𝜂, 𝜏𝑗);𝐴bcr(𝑗 − 1, :) = 𝛽(𝑏𝜂, 𝜏𝑗);𝑏bcl(𝑗 − 1, 1) = 𝑔1(𝜏𝑗);𝑏bcr(𝑗 − 1, 1) = 𝑔2(𝜏𝑗);
end
Step 3: Collocating the initial condition (2):
for 𝑖 = 1 : 𝑁 + 1𝐴 in(𝑖, :) = 𝛽(𝜂𝑖, 𝑎𝜏);𝑏in (𝑖, 1) = 𝑓 (𝜂𝑖)
end
Step 4: Assembling the coefficient matrices and right hand side column vectors:𝐴 = [𝐴main; 𝐴bcl; 𝐴bcr; 𝐴 in];𝑏 = [𝑏main; 𝑏bcl; 𝑏bcr; 𝑏in];
maxit = size(𝐴, 1);
tol = 10−(𝑁−2);𝑈 = gmres (𝐴, 𝑏, [], tol, maxit)

Algorithm 1: Implementation of BCM for solving (1)–(3).

Algorithm 1 can describe BCM for solving 1D diffusion
equations (1)–(3).

3.2. 1D Wave Equations. This subsection is similar to the
previous subsection and we have just an extra initial condi-
tion (𝜕𝜓/𝜕𝜏)(𝜂, 𝑎𝜏) = 𝑘(𝜂). Also, the aim is to reduce (4)–(6)
into the associated system of linear equations in the form of
AU = 𝑏 by implementing the BCM. Similar to the previous
subsection, this process has three steps.

(1) Collocating the main equation (4).
(2) Collocating the boundary conditions (6).
(3) Collocating the initial conditions (5).

Again, we assume a similar approximate solution in the
form of (17) and consider the collocation points in the
rectangle [𝑎𝜂, 𝑏𝜂] × [𝑎𝜏, 𝑏𝜏] that was previously introduced in
(20). Similar to the previous subsection, one can write

𝜓𝜏𝜏 (𝜂, 𝜏) ≈ 𝜓𝑁,𝜏𝜏 (𝜂, 𝜏) = 𝛽 (𝜂, 𝜏) (𝑀̂)2𝑈. (21)

It should be noted that Figure 2 plots such collocation
points for 𝑁 = 8 in the unit square for the wave equation.
The readers can see the difference between this figure and
the previous figure in distribution of collocation points. At
the first step, we collocate the main equation via the interior
collocation points.

Step 1 (interior collocation points: main equation (4)). In this
part of the paper, we have 2 ≤ 𝑖 ≤ 𝑁 and 3 ≤ 𝑗 ≤ 𝑁 + 1
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Figure 2: CGL collocation points in the unit square for 𝑁 = 8 for
1D wave equation.

(see the purple rhombics in Figure 2). So we should define𝐴main with (𝑁−1)2 rows and (𝑁+1)2 columns.Moreover, we
should define a column vector 𝑏main with (𝑁 − 1)2 elements.
Therefore, one can refer to the first step of Algorithm 2 for
this purpose.

Step 2 (boundary conditions collocation (6)). In this stage,
we have 𝑖 = 1 for the left boundary condition and 𝑖 = 𝑁 + 1
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Step 1: Collocating the main equation (4):
for 𝑖 = 2 : 𝑁
for 𝑗 = 3 : 𝑁 + 1𝐴main((𝑖 − 2) ∗ 𝑁 + (𝑗 − 2), :) = 𝛽(𝜂𝑖, 𝜏𝑗) ∗ ((𝑀̂)2 − (𝑀̃)2);𝑏main((𝑖 − 2) ∗ 𝑁 + (𝑗 − 2), 1) = 𝜔(𝜂𝑖, 𝜏𝑗);
end
end
Step 2: Collocating the boundary conditions (6):
for 𝑗 = 3 : 𝑁 + 1𝐴bcl(𝑗 − 2, :) = 𝛽(𝑎𝜂, 𝜏𝑗);𝐴bcr(𝑗 − 2, :) = 𝛽(𝑏𝜂, 𝜏𝑗);𝑏bcl(𝑗 − 2, 1) = 𝑔1(𝜏𝑗);𝑏bcr(𝑗 − 2, 1) = 𝑔2(𝜏𝑗);
End
Step 3: Collocating the initial conditions (5):
for 𝑖 = 1 : 𝑁 + 1𝐴 in(𝑖, :) = 𝛽(𝜂𝑖, 𝑎𝜏);𝐴 in1(𝑖, :) = 𝛽(𝜂𝑖, 𝑎𝜏)𝑀̂;𝑏in(𝑖, 1) = 𝑓(𝜂𝑖);𝑏in1(𝑖, 1) = 𝑘(𝜂𝑖);
end
Step 4: Assembling the coefficient matrices and right hand side column vectors:𝐴 = [𝐴main; 𝐴bcl; 𝐴bcr; 𝐴 in; 𝐴 in1];𝑏 = [𝑏main; 𝑏bcl; 𝑏bcr; 𝑏in; 𝑏in1];
maxit = size(𝐴, 1);
tol = 10−(𝑁−2);𝑈 = gmres(𝐴, 𝑏, [], tol, maxit)

Algorithm 2: Implementation of BCM for solving (4)–(6).

for the right boundary condition. In both cases, we have 3 ≤𝑗 ≤ 𝑁 + 1. Therefore, we should define 𝐴bcl (left boundary
condition: see the red triangles in Figure 2) and 𝐴bcr (right
boundary condition: see the blue down triangles in Figure 2)
with (𝑁−1) rows and (𝑁+1)2 columns.Moreover, we should
define column vectors 𝑏bcl (left boundary condition) and 𝑏bcr
(right boundary condition) with (𝑁−1) elements.Therefore,
one can refer to the second step of Algorithm 2 for this goal.

Step 3 (initial conditions collocation (5)). For the initial
condition 𝜓(𝜂, 𝑎𝜏) = 𝑓(𝜂), we have 𝑗 = 1 and also 1 ≤ 𝑖 ≤𝑁 + 1 (see the black squares in Figure 2) and for the initial
condition (𝜕𝜓/𝜕𝜏)(𝜂, 𝑎𝜏) = 𝑘(𝜂) we have 𝑗 = 2 and also1 ≤ 𝑖 ≤ 𝑁 + 1 (see the green circles in Figure 2). In these
cases, we should define 𝐴 in and 𝐴 in1 matrices with (𝑁 + 1)
rows and (𝑁 + 1)2 columns. Moreover, we should define 𝑏in
and 𝑏in1 column vectors with (𝑁+1) elements.Therefore, one
can refer to the third step of Algorithm 2 for this aim.

In this case, assembling the coefficient matrices and
right hand side column vectors is similar to the previous
subsection. Algorithm 2 can describe BCM for solving 1D
wave equations (4)–(6).

4. Bernoulli Collocation Method for
2D Equations

In this section, we generalize the BCM for solving linear
2D diffusion and wave equations. Similar to the previous

section, we depict the collocation points associated with the
initial conditions and boundary conditions in each case of
the diffusion and wave equations for clarity of presentation.
Therefore, we consider the following linear 2D diffusion
equation:

𝜕𝜓
𝜕𝜏 = (

𝜕2𝜓
𝜕𝜂2 +

𝜕2𝜓
𝜕𝜉2 ) + 𝜔 (𝜂, 𝜉, 𝜏) ,
(𝜂, 𝜉, 𝜏) ∈ [𝑎𝜂, 𝑏𝜂] × [𝑎𝜉, 𝑏𝜉] × [𝑎𝜏, 𝑏𝜏] ,

(22)

with the initial condition

𝜓 (𝜂, 𝜉, 𝑎𝜏) = 𝑓 (𝜂, 𝜉) , (𝜂, 𝜉) ∈ [𝑎𝜂, 𝑏𝜂] × [𝑎𝜉, 𝑏𝜉] , (23)

together with the Dirichlet boundary conditions

𝜓 (𝑎𝜂, 𝜉, 𝜏) = 𝑔1 (𝜉, 𝜏) ,
𝜓 (𝑏𝜂, 𝜉, 𝜏) = 𝑔2 (𝜉, 𝜏) ,

(𝜉, 𝜏) ∈ [𝑎𝜉, 𝑏𝜉] × [𝑎𝜏, 𝑏𝜏] ,
𝜓 (𝜂, 𝑎𝜉, 𝜏) = ℎ1 (𝜂, 𝜏) ,
𝜓 (𝜂, 𝑏𝜉, 𝜏) = ℎ2 (𝜂, 𝜏) ,

(𝜂, 𝜏) ∈ [𝑎𝜂, 𝑏𝜂] × [𝑎𝜏, 𝑏𝜏] .

(24)
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Also, we will consider the following linear 2D wave
equation:

𝜕2𝜓
𝜕𝜏2 = (

𝜕2𝜓
𝜕𝜂2 +

𝜕2𝜓
𝜕𝜉2 ) + 𝜔 (𝜂, 𝜉, 𝜏) ,
(𝜂, 𝜉, 𝜏) ∈ [𝑎𝜂, 𝑏𝜂] × [𝑎𝜉, 𝑏𝜉] × [𝑎𝜏, 𝑏𝜏] ,

(25)

with the initial condition

𝜓 (𝜂, 𝜉, 𝑎𝜏) = 𝑓 (𝜂, 𝜉) ,
𝜕𝜓 (𝜂, 𝜉, 𝑎𝜏)𝜕𝜏 = 𝑘 (𝜂, 𝜉) ,

(𝜂, 𝜉) ∈ [𝑎𝜂, 𝑏𝜂] × [𝑎𝜉, 𝑏𝜉] ,
(26)

together with the Dirichlet boundary conditions

𝜓 (𝑎𝜂, 𝜉, 𝜏) = 𝑔1 (𝜉, 𝜏) ,
𝜓 (𝑏𝜂, 𝜉, 𝜏) = 𝑔2 (𝜉, 𝜏) ,

(𝜉, 𝜏) ∈ [𝑎𝜉, 𝑏𝜉] × [𝑎𝜏, 𝑏𝜏] ,

𝜓 (𝜂, 𝑎𝜉, 𝜏) = ℎ1 (𝜂, 𝜏) ,
𝜓 (𝜂, 𝑏𝜉, 𝜏) = ℎ2 (𝜂, 𝜏) ,

(𝜂, 𝜏) ∈ [𝑎𝜂, 𝑏𝜂] × [𝑎𝜏, 𝑏𝜏] .
(27)

In the next subsection, we will extend BCM for solving
2D diffusion equations (22)–(24).

4.1. BCM for Solving 2DDiffusionEquations. Wesuppose that
the approximate solution of (22)–(24) can be written in the
following form of

𝜓 (𝜂, 𝜉, 𝜏) ≈ 𝜓𝑁 (𝜂, 𝜉, 𝜏)
= 𝑁∑
𝑚=0

𝑁∑
𝑛=0

𝑁∑
𝑝=0

𝑢𝑚𝑛𝑝𝛽𝑚 (𝜂) 𝛽𝑛 (𝜉) 𝛽𝑝 (𝜏)
= 𝛽 (𝜂, 𝜉, 𝜏)𝑈,

(28)

where 𝛽(𝜂, 𝜉, 𝜏) = 𝛽(𝜂) ⊗ 𝛽(𝜉) ⊗ 𝛽(𝜏) and 𝑈 =[𝑢𝑇0.. 𝑢𝑇1.. ⋅ ⋅ ⋅ 𝑢𝑇𝑁..]𝑇 in which

𝑢𝑖.. = [𝑢𝑖00 𝑢𝑖01 ⋅ ⋅ ⋅ 𝑢𝑖0𝑁 𝑢𝑖10 𝑢𝑖11 ⋅ ⋅ ⋅ 𝑢𝑖1𝑁 ⋅ ⋅ ⋅ 𝑢𝑖𝑁0 𝑢𝑖𝑁1 ⋅ ⋅ ⋅ 𝑢𝑖𝑁𝑁] . (29)

According to discussions in the second section, one can
deduce that

𝜓𝜏 (𝜂, 𝜉, 𝜏) ≈ 𝜓𝑁,𝜏 (𝜂, 𝜉, 𝜏) = 𝛽 (𝜂, 𝜉, 𝜏) ̂̂𝑀𝑈,
𝜓𝜂𝜂 (𝜂, 𝜉, 𝜏) ≈ 𝜓𝑁,𝜂𝜂 (𝜂, 𝜉, 𝜏) = 𝛽 (𝜂, 𝜉, 𝜏) (̃̃𝑀)2𝑈,
𝜓𝜉𝜉 (𝜂, 𝜉, 𝜏) ≈ 𝜓𝑁,𝜉𝜉 (𝜂, 𝜉, 𝜏) = 𝛽 (𝜂, 𝜉, 𝜏) ( ̇𝑀̇)2𝑈.

(30)

Similar to the 1D cases, one can consider the following
CGL collocation points in 2D equations in the rectangle cube[𝑎𝜂, 𝑏𝜂] × [𝑎𝜉, 𝑏𝜉] × [𝑎𝜏, 𝑏𝜏]:
𝜂𝑖 = 𝑏𝜂 − 𝑎𝜂2 (1 − cos((𝑖 − 1) 𝜋𝑁 )) + 𝑎𝜂,

𝑖 = 1, 2, . . . , 𝑁,
𝜉𝑗 = 𝑏𝜉 − 𝑎𝜉2 (1 − cos((𝑗 − 1) 𝜋𝑁 )) + 𝑎𝜉,

𝑗 = 1, 2, . . . , 𝑁,
𝜏𝑘 = 𝑏𝜏 − 𝑎𝜏2 (1 − cos((𝑘 − 1) 𝜋𝑁 )) + 𝑎𝜏,

𝑘 = 1, 2, . . . , 𝑁.

(31)

Figure 3 shows only the collocation points associatedwith
the initial condition (23) and also the boundary conditions
(24) for 2D diffusion equation for𝑁 = 6. It should be noted
that depicting the collocation points associated with themain
equation (22) may make the readers confused. Moreover, in
this figure 𝑥 stands for the 𝜂 variable, 𝑦 stands for the 𝜉
variable, and 𝑧 stands for the 𝜏 variable.

BCM for solving (22)–(24) has also three steps: main
equation collocation; initial condition collocation; and
boundary conditions collocation. Despite the 1D cases, we
first start with the initial conditions.

Step 1 (initial condition collocation (23)). For the initial
condition 𝜓(𝜂, 𝜉, 𝑎𝜏) = 𝑓(𝜂, 𝜉) we have 𝑘 = 1 and also1 ≤ 𝑖 ≤ 𝑁+1, 1 ≤ 𝑗 ≤ 𝑁+1 (see the black squares in Figure 3).
In this case we should define 𝐴 in matrix with (𝑁 + 1)2 rows
and (𝑁+1)3 columns.Moreover, we should define 𝑏in column
vector with (𝑁+ 1)2 elements. Therefore, one can refer to the
first step of Algorithm 3 for this aim.

Step 2 (boundary conditions collocation (24)). Since we have
four boundary conditions, we should discretize them in two
different ways. For the 𝑥 variable, we have 𝑖 = 1 for the left
boundary condition and 𝑖 = 𝑁 + 1 for the right boundary
condition. In both cases, we have 1 ≤ 𝑗 ≤ 𝑁 + 1 and2 ≤ 𝑘 ≤ 𝑁 + 1. Therefore, we should define 𝐴bcl (left
boundary condition: see the red circles in Figure 3) and 𝐴bcr
(right boundary condition: see the green circles in Figure 3)
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Figure 3: CGL collocation points in the unit cube for𝑁 = 6 for 2D
diffusion equation.

with 𝑁(𝑁 + 1) rows and (𝑁 + 1)3 columns. Moreover, we
should define column vectors 𝑏bcl (left boundary condition)
and 𝑏bcr (right boundary condition) with𝑁(𝑁+ 1) elements.
For the 𝑦 variable, we have 𝑗 = 1 for the bottom boundary
condition and 𝑗 = 𝑁 + 1 for the top boundary condition. In
both cases, we have 2 ≤ 𝑖 ≤ 𝑁 and 2 ≤ 𝑘 ≤ 𝑁 + 1. Therefore,
we should define 𝐴bcb (bottom boundary condition: see the
blue circles in Figure 3) and 𝐴bct (top boundary condition:
see the yellow circles in Figure 3) with 𝑁(𝑁 − 1) rows
and (𝑁 + 1)3 columns. Moreover, we should define column
vectors 𝑏bcb (bottom boundary condition) and 𝑏bct (top
boundary condition) with 𝑁(𝑁 − 1) elements. Therefore,
one can refer to the second step of Algorithm 3 for this
goal.

Step 3 (interior collocation points: main equation (22)). In
this part of the paper, we have 2 ≤ 𝑖 ≤ 𝑁, 2 ≤ 𝑗 ≤ 𝑁, and2 ≤ 𝑘 ≤ 𝑁 + 1. So we should define 𝐴main with 𝑁(𝑁 − 1)2
rows and (𝑁 + 1)3 columns. Moreover, we should define a
column vector 𝑏main with𝑁(𝑁−1)2 elements.Therefore, one
can refer to the third step of Algorithm 3 for this purpose.

In this case, assembling the coefficient matrices and
right hand side column vectors is similar to the previous
subsection. Algorithm 3 can describe BCM for solving 2D
diffusion equations (22)–(24).

4.2. BCM for Solving 2D Wave Equations. Similar to the
previous subsection, we should consider an approximate
solution in the form of (28) and also the collocation points in
the rectangle cube [𝑎𝜂, 𝑏𝜂]×[𝑎𝜉, 𝑏𝜉]×[𝑎𝜏, 𝑏𝜏] that is introduced
in (31). Moreover, one can write

𝜓𝜏𝜏 (𝜂, 𝜉, 𝜏) ≈ 𝜓𝑁,𝜏𝜏 (𝜂, 𝜉, 𝜏) = 𝛽 (𝜂, 𝜉, 𝜏) (̂̂𝑀)2𝑈. (32)
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Figure 4: CGL collocation points in the unit cube for𝑁 = 6 for 2D
wave equation.

Distribution of collocation points in 2D wave equations
is similar to 2D diffusion equations and just has a difference
(see the brown squares in Figure 4). Such brown squares are
related to the initial condition 𝜕𝜓(𝜂, 𝜉, 𝑎𝜏)/𝜕𝜏 = 𝑘(𝜂, 𝜉).

For clarity of presentation, we just provide Algorithm 4
for describing BCM for solving (25)–(27). In this algorithm,
we first discretize initial conditions (26) and then localize
boundary conditions (27) and finally collocate the main
equation (25) via the shifted CGL collocation points.

5. Numerical Examples

In this section, we will test our method for solving both
of the considered diffusion and wave equations. In the first
example, we consider a constructed 1D diffusion equation
and in the second example, we provide a 1D wave which is
selected from [6].Moreover, in the third and fourth examples,
we will provide two test problems that are selected from
[5] in the case of 2D diffusion equations. The presented
idea (i.e., BCM) is easy to implement and can be applied
for solving other 2D parabolic and hyperbolic equations
such as 2D Telegraph equations [26]. All of the programs
associated with the implementation of BCM for solving
the considered examples are written in Matlab 2015b in a
Laptop PC with 12GB Ram with Cash of 6. Readers of this
paper can communicate for receiving the associated codes
for each example via email of the corresponding author. It
should be noted that the tolerance for the GMRES solver
is set to be 10−(𝑁−2) and also the iterations associated for
applying this solver is set to be “size (A, 1).” GMRES
algorithm for solving the linear algebraic systems of the
considered problems has a good performance and no pre-
conditioning technique is needed for solving the algebraic
systems.
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Step 1: Collocating the initial condition (23):
for 𝑖 = 1 : 𝑁 + 1
for 𝑗 = 1 : 𝑁 + 1𝐴 in((𝑖 − 1) ∗ (𝑁 + 1) + 𝑗, :) = 𝛽(𝜂𝑖, 𝜉𝑗, 𝑎𝜏);𝑏in((𝑖 − 1) ∗ (𝑁 + 1) + 𝑗, 1) = 𝑓(𝜂𝑖, 𝜉𝑗);
end
end
Step 2: Collocating the boundary conditions (24):→ 𝑥 variable discretization:
for 𝑗 = 1 : 𝑁 + 1
for 𝑘 = 2 : 𝑁 + 1𝐴bcl((𝑗 − 1) ∗ 𝑁 + (𝑘 − 1), :) = 𝛽(𝑎𝜂, 𝜉𝑗, 𝜏𝑘);𝐴bcr((𝑗 − 1) ∗ 𝑁 + (𝑘 − 1), :) = 𝛽(𝑏𝜂, 𝜉𝑗, 𝜏𝑘);𝑏bcl((𝑗 − 1) ∗ 𝑁 + (𝑘 − 1), 1) = 𝑔1(𝜉𝑗, 𝜏𝑘);𝑏bcr((𝑗 − 1) ∗ 𝑁 + (𝑘 − 1), 1) = 𝑔2(𝜉𝑗, 𝜏𝑘);
end→ 𝑦 variable discretization:
for 𝑖 = 2 : 𝑁
for 𝑘 = 2 : 𝑁 + 1𝐴bcb((𝑖 − 2) ∗ 𝑁 + (𝑘 − 1), :) = 𝛽(𝜂𝑖, 𝑎𝜉, 𝜏𝑘);𝐴bct((𝑖 − 2) ∗ 𝑁 + (𝑘 − 1), :) = 𝛽(𝜂𝑖, 𝑏𝜉, 𝜏𝑘);𝑏bcl((𝑖 − 2) ∗ 𝑁 + (𝑘 − 1), 1) = ℎ1(𝜂𝑖, 𝜏𝑘);𝑏bcr((𝑖 − 2) ∗ 𝑁 + (𝑘 − 1), 1) = ℎ2(𝜂𝑖, 𝜏𝑘);
end
Step 3: Collocating the main equation (22):
for 𝑖 = 2 : 𝑁
for 𝑗 = 2 : 𝑁
for 𝑘 = 2 : 𝑁 + 1
𝐴main((𝑖 − 2) ∗ 𝑁 ∗ (𝑁 − 1) + (𝑗 − 2) ∗ 𝑁 + (𝑘 − 1), :) = 𝛽(𝜂𝑖, 𝜉𝑗, 𝜏𝑘) ∗ ((̂̂𝑀) − (̃̃𝑀)2 − ( ̇𝑀̇)2);𝑏main((𝑖 − 2) ∗ 𝑁 ∗ (𝑁 − 1) + (𝑗 − 2) ∗ 𝑁 + (𝑘 − 1), 1) = 𝜔(𝜂𝑖, 𝜉𝑗, 𝜏𝑘);
end
end
end
Step 4: Assembling the coefficient matrices and right hand side column vectors:𝐴 = [𝐴main; 𝐴bcl; 𝐴bcr; 𝐴bcb; 𝐴bct; 𝐴 in];𝑏 = [𝑏main; 𝑏bcl; 𝑏bcr; 𝑏bcb; 𝑏bct; 𝑏in];
maxit = size(𝐴, 1);
tol = 10−(𝑁−2);𝑈 = gmres(𝐴, 𝑏, [], tol, maxit)

Algorithm 3: Implementation of BCM for solving (22)–(24).

Example 1. As the first example we consider (1)–(3) with the
following assumptions:

𝜔 (𝜂, 𝜏) = 0;
𝑓 (𝜂) = exp (𝜂) ;
𝑔1 (𝜏) = exp (𝜏) ;
𝑔2 (𝜏) = exp (𝜏 + 1) ,

(33)

with the exact solution𝜓(𝜂, 𝜏) = exp(𝜂+𝜏) in the unit square[𝑎𝜂, 𝑏𝜂] × [𝑎𝜏, 𝑏𝜏] = [0, 1] × [0, 1]. We have implemented
the BCM for solving this constructed example by assuming
several values of 𝑁 starting from 4 up to 14. It is observed
that as𝑁 gets greater values, the associated errors decreased.
For this example and the next example, we have defined the
error function 𝑒𝑁(𝜂, 𝜏) = 𝜓(𝜂, 𝜏) − 𝜓𝑁(𝜂, 𝜏), where 𝜓𝑁(𝜂, 𝜏)

is the approximate solution that is computed via applying
BCM for solving the considered problems. Figures 5 and 6
depict the 𝑒𝑁(𝜂, 𝜏) associated with the obtained numerical
solution of the this example for 𝑁 = 7, 9 and 𝑁 = 11, 13,
respectively. From these figures, one can see the robustness
of the proposed method for solving 1D diffusion equations.

Example 2 (see [6]). As the second example we consider (4)–
(6) with the following assumptions:

𝜔 (𝜂, 𝜏) = 0;
𝑓 (𝜂) = sin (𝜂) ;
𝑘 (𝜂) = 0;
𝑔1 (𝜏) = 0;
𝑔2 (𝜏) = 0,

(34)
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Step 1: Collocating the initial condition (26):
for 𝑖 = 1 : 𝑁 + 1
for 𝑗 = 1 : 𝑁 + 1𝐴 in((𝑖 − 1) ∗ (𝑁 + 1) + 𝑗, :) = 𝛽(𝜂𝑖, 𝜉𝑗, 𝑎𝜏);𝐴 in1((𝑖 − 1) ∗ (𝑁 + 1) + 𝑗, :) = 𝛽(𝜂𝑖, 𝜉𝑗, 𝑎𝜏) ∗ ̂̂𝑀;𝑏in((𝑖 − 1) ∗ (𝑁 + 1) + 𝑗, 1) = 𝑓(𝜂𝑖, 𝜉𝑗);𝑏in1((𝑖 − 1) ∗ (𝑁 + 1) + 𝑗, 1) = 𝑘(𝜂𝑖, 𝜉𝑗);
end
end
Step 2: Collocating the boundary conditions (27):→ 𝑥 variable discretization:
for 𝑗 = 1 : 𝑁 + 1
for 𝑘 = 3 : 𝑁 + 1𝐴bcl((𝑗 − 1) ∗ 𝑁 + (𝑘 − 2), :) = 𝛽(𝑎𝜂, 𝜉𝑗, 𝜏𝑘);𝐴bcr((𝑗 − 1) ∗ 𝑁 + (𝑘 − 2), :) = 𝛽(𝑏𝜂, 𝜉𝑗, 𝜏𝑘);𝑏bcl((𝑗 − 1) ∗ 𝑁 + (𝑘 − 2), 1) = 𝑔1(𝜉𝑗, 𝜏𝑘);𝑏bcr((𝑗 − 1) ∗ 𝑁 + (𝑘 − 2), 1) = 𝑔2(𝜉𝑗, 𝜏𝑘);
end→ 𝑦 variable discretization:
for 𝑖 = 2 : 𝑁
for 𝑘 = 3 : 𝑁 + 1𝐴bcb((𝑖 − 2) ∗ 𝑁 + (𝑘 − 2), :) = 𝛽(𝜂𝑖, 𝑎𝜉, 𝜏𝑘);𝐴bct((𝑖 − 2) ∗ 𝑁 + (𝑘 − 2), :) = 𝛽(𝜂𝑖, 𝑏𝜉, 𝜏𝑘);𝑏bcl((𝑖 − 2) ∗ 𝑁 + (𝑘 − 2), 1) = ℎ1(𝜂𝑖, 𝜏𝑘);𝑏bcr((𝑖 − 2) ∗ 𝑁 + (𝑘 − 2), 1) = ℎ2(𝜂𝑖, 𝜏𝑘);
end
Step 3: Collocating the main equation (25):
for 𝑖 = 2 : 𝑁
for 𝑗 = 2 : 𝑁
for 𝑘 = 3 : 𝑁 + 1
𝐴main((𝑖 − 2) ∗ 𝑁 ∗ (𝑁 − 1) + (𝑗 − 2) ∗ 𝑁 + (𝑘 − 2), :) = 𝛽(𝜂𝑖, 𝜉𝑗, 𝜏𝑘) ∗ ((̂̂𝑀)2 − (̃̃𝑀)2 − ( ̇𝑀̇)2);𝑏main((𝑖 − 2) ∗ 𝑁 ∗ (𝑁 − 1) + (𝑗 − 2) ∗ 𝑁 + (𝑘 − 2), 1) = 𝜔(𝜂𝑖, 𝜉𝑗, 𝜏𝑘);
end
end
end
Step 4: Assembling the coefficient matrices and right hand side column vectors:𝐴 = [𝐴main; 𝐴bcl; 𝐴bcr; 𝐴bcb; 𝐴bct; 𝐴 in; 𝐴 in1];𝑏 = [𝑏main; 𝑏bcl; 𝑏bcr; 𝑏bcb; 𝑏bct; 𝑏in; 𝑏in1];
maxit = size(𝐴, 1);
tol = 10−(𝑁−2);𝑈 = gmres(𝐴, 𝑏, [], tol, maxit)

Algorithm 4: Implementation of BCM for solving (25)–(27).

Table 1: Numerical results of the BCM and TMM associated with the error 𝑒𝑁(𝜂, 𝜏) in the second example.

(𝜂, 𝜏) BCM TMM𝑁 = 8 𝑁 = 10 𝑁 = 12 𝑁 = 8 𝑁 = 10 𝑁 = 12(0.6, 0.6) 1.62 × 10−6 6.90 × 10−11 2.51 × 10−11 8.26 × 10−7 7.08 × 10−9 4.63 × 10−11(0.7, 0.7) 1.37 × 10−6 1.56 × 10−9 2.29 × 10−11 3.18 × 10−6 3.69 × 10−8 3.27 × 10−10(0.8, 0.8) 1.12 × 10−6 2.84 × 10−9 2.52 × 10−11 1.01 × 10−5 1.52 × 10−7 1.75 × 10−9(0.9, 0.9) 1.22 × 10−6 2.52 × 10−9 2.22 × 10−11 2.76 × 10−5 5.24 × 10−7 7.61 × 10−9(1, 1) 1.40 × 10−6 1.59 × 10−9 1.81 × 10−11 6.70 × 10−5 1.55 × 10−6 2.76 × 10−9

with the exact solution 𝜓(𝜂, 𝜏) = sin(𝜂) cos(𝜏) in the
rectangle [𝑎𝜂, 𝑏𝜂] × [𝑎𝜏, 𝑏𝜏] = [0, 𝜋] × [0, 1]. Again, we have
implemented the BCM for solving this provided example
by assuming several values of 𝑁 starting from 4 up to 14.
Since this test problem has been selected from [6], we make

some error comparisons with the Taylor matrix method
(TMM) in Table 1 at some special points in the considered
computational domain. From this table one can see that
the errors associated with the BCM are more stable and
accurate than TMM [6]. Since in [6] the authors considered
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Figure 5: Error histories associated with the obtained numerical solution of the first example for𝑁 = 7, 9.
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Figure 6: Error histories associated with the obtained numerical solution of the first example for𝑁 = 11, 13.

the Maclaurin approximation for the computational interval[𝑎𝜂, 𝑏𝜂] = [0, 𝜋], this assumption may decrease the accuracy
of the TMM. Figures 7 and 8 illustrate 𝑒𝑁(𝜂, 𝜏) associated
with the obtained numerical solution of this example via
BCM for 𝑁 = 6, 8 and 𝑁 = 10, 12, respectively. From
these figures, one can conclude that the proposed BCM is an
efficient numerical approach for solving 1D wave equations.
For instance, in Figure 8, the error function values 𝑒12(𝜂, 𝜏)
are around 10−11 approximately, while the associated error
function values 𝑒12(𝜂, 𝜏) of the TMM [6] are around 10−7 (see
the fourth figure of [6] for this aim).

Example 3 (see [5]). As the third example we consider (22)–
(24) with the following assumptions:

𝜔 (𝜂, 𝜉, 𝜏) = 0;
𝑓 (𝜂, 𝜉) = exp (𝜂 + 𝜉) ;
𝑔1 (𝜉, 𝜏) = exp (𝜉 + 2𝑡) ;
𝑔2 (𝜉, 𝜏) = exp (𝜉 + 2𝑡 + 1) ;
ℎ1 (𝜂, 𝜏) = exp (𝜂 + 2𝑡) ;
ℎ2 (𝜂, 𝜏) = exp (𝜂 + 2𝑡 + 1) ,

(35)
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Figure 7: Error histories associated with the obtained numerical solution of the second example for𝑁 = 6, 8.
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Figure 8: Error histories associated with the obtained numerical solution of the second example for𝑁 = 10, 12.

with the exact solution 𝜓(𝜂, 𝜉, 𝜏) = exp(𝜂 + 𝜉 + 𝜏) in the
unit cube [𝑎𝜂, 𝑏𝜂] × [𝑎𝜉, 𝑏𝜉] × [𝑎𝜏, 𝑏𝜏] = [0, 1] × [0, 1] ×[0, 1]. The numerical results of this example are provided
with the numerical results of the next example in Table 2.
Moreover, numerical solution 𝜓7(1, 𝜉, 𝜏), which is obtained
via the proposed BCM, together with the exact solution𝜓(1, 𝜉, 𝜏) is depicted in Figure 9.

Example 4 (see [5]). As the fourth example we consider (22)–
(24) with the following assumptions:

𝜔 (𝜂, 𝜉, 𝜏) = 0;
𝑓 (𝜂, 𝜉) = cos (𝜋𝜂) sin (𝜋𝜉) ;

𝑔1 (𝜉, 𝜏) = sin (𝜋𝜉) exp (−2𝜋2𝜏) ;
𝑔2 (𝜉, 𝜏) = − sin (𝜋𝜉) exp (−2𝜋2𝜏) ;
ℎ1 (𝜂, 𝜏) = 0;
ℎ2 (𝜂, 𝜏) = 0,

(36)

with the exact solution 𝜓(𝜂, 𝜉, 𝜏) =
cos(𝜋𝜂) sin(𝜋𝜉)exp(−2𝜋2𝜏) in the unit cube [𝑎𝜂, 𝑏𝜂] ×[𝑎𝜉, 𝑏𝜉] × [𝑎𝜏, 𝑏𝜏] = [0, 1] × [0, 1] × [0, 1]. For solving this
example and the previous example, we applied several
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Table 2: Comparisons of the BCM and BMM associated with the errors 𝐸𝑁 in the third and fourth example.

𝑁 Third example Fourth example
BCM BMM BCM BMM

4 3.2 × 10−2 3.5 × 10−2 7.3 × 10−3 2.8 × 10−2
6 1.6 × 10−3 2.2 × 10−3 2.9 × 10−3 6.1 × 10−3
8 8.2 × 10−5 1.7 × 10−4 2.7 × 10−4 1.4 × 10−3
10 3.4 × 10−7 1.4 × 10−5 4.2 × 10−5 3.7 × 10−4
12 1.8 × 10−9 1.1 × 10−6 7.9 × 10−6 9.1 × 10−5
14 5.4 × 10−11 9.2 × 10−8 1.2 × 10−6 2.3 × 10−5
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Figure 9: Numerical solution 𝜓7(1, 𝜉, 𝜏) and exact solution 𝜓(1, 𝜉, 𝜏) of the third example.

values of 𝑁 such as 4, 6, 8, 10, 12, and 14 and achieve the
numerical solution 𝜓𝑁(𝜂, 𝜉, 𝜏) by the suggested BCM. For
these numerical solutions, we have defined the discrete error
function

𝐸𝑁 = max
1≤𝑖≤𝑁+1,1≤𝑗≤𝑁+1

󵄨󵄨󵄨󵄨󵄨𝜓 (𝜂𝑖, 𝜉𝑗, 1) − 𝜓𝑁 (𝜂𝑖, 𝜉𝑗, 1)󵄨󵄨󵄨󵄨󵄨 (37)

for both of the third and fourth examples and make a
comparison with the Bernoulli matrix method (BMM) [5] in
Table 2. From this table, one can conclude that the proposed
BCM is more accurate with respect to the numerical solu-
tions achieved via BMM [5]. Moreover, numerical solution𝜓9(1, 𝜉, 𝜏), which is obtained via the proposed BCM, together
with the exact solution 𝜓(1, 𝜉, 𝜏) is depicted in Figure 10.

6. Conclusions

Applying analytical methods for solving multidimensional
parabolic and hyperbolic PDEs usually is not efficient,
because symbolic computations (such as direct differen-
tiation and integration) in higher dimensions are time
consuming. Therefore, numerical methods which are based

on the operational matrices of differentiation (instead of
direct differentiation) and high accurate Gauss quadrature
rules (instead of direct integration) are more favorable for
solving PDEs. In this paper, we apply a numerical approach,
which is based on the Bernoulli polynomials and their
operational matrices of differentiation and also the CGL
collocation points for solving multidimensional diffusion
and wave equations. In this regard, the above-mentioned
equations will be reduced to the associated systems of linear
algebraic equations which can be solved by robust iterative
solvers such as GMRES algorithm. Moreover, geometrical
distribution of collocation points for the considered PDEs is
depicted for clarity of presentation. To show the robustness
of the proposed method, some test problems are provided.
In all of the considered numerical examples, as 𝑁 gets
greater, more accurate solutions will be achieved. Also, more
accurate results (even in larger computational domain) in
the second example are obtained with respect to the Taylor
matrix method (TMM) [6] which confirm high accuracy
of the BCM. The presented method is easy to implement
in any software such as Matlab and Maple and can be
generalized for solving three-dimensional PDEs. In this case,
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Figure 10: Numerical solution 𝜓9(1, 𝜉, 𝜏) and exact solution 𝜓(1, 𝜉, 𝜏) of the fourth example.

BCM for collocating the space variables (𝑥, 𝑦, 𝑧) should be
combined with method of lines (MOL) [26, 27] to reduce
three-dimensional PDEs into the associated systems of ODEs
that can be integrated by some efficient ODEs solvers.

Competing Interests

The authors declare that they do not have any conflict of
interests in their submitted paper.

References
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