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In this paper, wewill focus on the dynamical behavior of a rigid body suspended on an elastic spring as a pendulummodel with three
degrees of freedom. It is assumed that the body moves in a rotating vertical plane uniformly with an arbitrary angular velocity. The
relative periodic motions of this model are considered.The governing equations of motion are obtained using Lagrange’s equations
and represent a nonlinear system of second-order differential equations that can be solved in terms of generalized coordinates.
The numerical solutions are investigated using the fourth-order Runge-Kutta algorithms throughMatlab packages.These solutions
are represented graphically in order to describe and discuss the behavior of the body at any instant for different values of the
physical parameters of the body.Theobtained results have been discussed and comparedwith someprevious publishedworks. Some
concluding remarks have been presented at the end of this work. The importance of this work is due to its numerous applications
in life such as the vibrations that occur in buildings and structures.

1. Introduction

The pendulum models have provided the researchers with a
fertile source of examples in nonlinear dynamics and lately in
nonlinear control. The most famous rigid pendulum consists
of a mass particle that is attached to one end of a massless
rigid arm and the other end of the arm is fixed to a pivot
point that provides a rotational joint for the arm and mass
particle. If the arm andmass particle are constrained to move
within a fixed plane, the system is referred to as a planar
one-dimension pendulum. If the arm and mass particle are
unconstrained, the system is referred to as a spherical two-
dimension pendulum. The three-dimensional motion of the
swinging spring is studied in [1].The resonance phenomenon
that occurs during the motion is also investigated. Nonlinear
normal vibration modes of the spring pendulum and the
system containing a pendulumabsorber are considered in [2].

The published articles on such models are very large. Few
researches view the pendulum as a rigid body. Slandered
pendulum models are defined by a single rotational degree
of freedom, referred to as a planar rigid rotational degree of
freedom, or two rotational degrees of freedom, referred to as
spherical rigid pendulum. Control problems for planar and

spherical pendulum models have been studied by outstand-
ing researchers; see [3–6].

In [7], the motion of a variable length pendulum was
studied to determine the characteristics of motion. In [8],
the process analysis method is presented as the analytical
method to obtain a second-order approximate solution for
a simple pendulum. This method does not depend on small
parameter and therefore can overcome the disadvantages and
limitations of the perturbation expansion method. In [9], the
authors studied a simple pendulum with a hinge exhibiting
bilinear hysteretic moment-rotation characteristics subjected
to periodic base motions. They have shown that the bilinear
hysteretic nature of the system becomes an effective way to
limit the growth of the response during parametric reso-
nance. Various perturbation techniques [10] were employed
to obtain the analytical solutions formany physical problems.
In [11], the authors studied the motion of the supported
point of a pendulum on an ellipse and the method of small
parameter [10] was used to obtain the periodic solution of
the equation of motion. The relative periodic motion of a
pendulum with an elastic string was studied in [12] and
generalized in [13] when the motion of the supported point
of a rigid body pendulum with an elastic string moves on an
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elliptical path. The equations of motion were deduced using
Lagrange’s equations and solved through the small parameter
method to obtain their solutions up to the second order of
approximation.

In [14] Amer and Bek studied the chaotic responses of
a harmonically excited spring pendulum which moves in a
circular path under some conditions. The obtained equa-
tions of motion represent a nonautonomous system of two
nonlinear differential equations of two degrees of freedom.
The approximate solution was obtained up to the third order
using themultiple scalesmethod [10].The parametric control
of oscillations and rotations of a compound pendulum was
studied in [15]. An approximate asymptotic approach of this
problem, based on a combination of the averaging method
[10] and the maximum principle, is proposed and applied.
The limiting cases of small oscillations and rapid rotation of
a pendulum are studied in [16].

In [17], the authors studied the vibration and stability of
the nonlinear spring pendulum to describe the motion of a
ship. The effects of the longitudinal absorber on the system
are described through the obtained results. This model is
modified in [18] by connecting the spring pendulum to the
transverse absorber. So, the motion has three degrees of
freedomundermultiparametric excitations.The approximate
solution is obtained using the multiple scales method up to
the second-order approximations.

The nonlinear two-degree-of-freedom system has been
examined in [19]. The analytical approximate solution up to
the third order is obtained using the same previous method.
All the possible resonances of this solution are examined.

The aim of this work is to investigate the motion of
a rigid body suspended on an elastic massless spring. The
equations of motion are derived using Lagrange’s equation
and are considered as a nonlinear system of second-order
differential equations. Each equation of this system depends
on all the body variables with their derivatives. So, it is
not easy to separate these equations as explicit second-order
differential equations of one variable in one side. In order to
overcome this quandary, the Mathematica program is used.
Consequently, the numerical solutions are achieved using
the fourth-order Runge-Kutta procedure of ode45 solver
[20] with the aid of more recent computer package, for
example, Matlab program. Computer codes are carried out to
obtain the graphical representations of the attained numerical
solutions for the different parameters of the body. The
stability of the solutions is checked during the time interval
of motion. Discussion of the results is presented through the
comparison between the different plots for different variables.
The importance of this problem is due to its wide applications
in many fields such as physics and engineering applications
like swaying buildings.

2. Formulation of the Problem

This section is devoted to introduce the motion of a rigid
body suspended on an elastic massless spring as a pendulum
model. So, we consider𝑂𝑋𝑌 as a coordinates system, rotating
with angular velocity 𝜔 with respect to the downward axis
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Figure 1: The rigid body pendulum.

𝑂𝑌, relative to the motion of a rigid body of mass 𝑚. The
elastic spring is suspended to a point 𝑂1, where 𝑂𝑂1 =ℎ sin𝜔𝑡 at any time 𝑡. Let us suppose that the rigid body is
attached with the spring at the point 𝑂2 and has the point 𝐶
as a center ofmass,𝜑1 denotes the deformation angle between
the spring and the vertical axis 𝑂1𝑌1, and 𝜑2 refers to the
angle between the straight line directed through 𝑂2 to 𝐶
and the vertical. Choosing an orthogonal coordinates system𝐶𝜉𝜂𝜁 of the body, in which 𝐶𝜂 directed along 𝑂

2
𝐶, 𝐶𝜉 is

perpendicular to 𝐶𝜂 and lying in the 𝑂𝑋𝑌 plane, while 𝐶𝜁
is perpendicular to the 𝑂𝑋𝑌 plane (see Figure 1). Assume,
without loss of generality, that the axes 𝐶𝜉, 𝐶𝜂, and 𝐶𝜁 are
the principal axes of inertia of the body.

The coordinates of the center of mass of the body 𝑥
𝐶
and𝑦

𝐶
, relative to the system 𝑂𝑋𝑌, can be written as

𝑥
𝐶
= ℎ sin𝜔𝑡 + 𝜌 sin𝜑

1
+ 𝑎 sin𝜑

2
,

𝑦
𝐶
= 𝜌 cos𝜑

1
+ 𝑎 cos𝜑

2
, 𝑎 = 𝑂

2
𝐶, (1)

where 𝜌 is the length of elastic string after time 𝑡.
The kinetic energy 𝑇 and the potential energy 𝑉 of the

system have the form

𝑇 = 1
2𝑚{(ℎ𝜔 cos𝜔𝑡)2 + �̇�2 + (𝜌�̇�

1
)2 + (𝑎�̇�

2
)2

+ 2ℎ𝜔�̇� sin𝜑1 cos𝜔𝑡 + 2ℎ𝜔𝜌�̇�1 cos𝜔𝑡 cos𝜑1
+ 2𝑎ℎ𝜔�̇�

2
cos𝜔𝑡 cos𝜑

2
+ 2𝑎�̇��̇�

2
sin (𝜑

1
− 𝜑
2
)

+ 2𝑎�̇�
1
�̇�
2
cos (𝜑1 − 𝜑2)

+ 𝜔2 (ℎ sin𝜔𝑡 + 𝜌 sin𝜑
1
+ 𝑎 sin𝜑

2
)2 + 𝐽

3𝑚�̇�2
2

+ 𝜔2
𝑚 (𝐽
1
sin2 𝜑

2
+ 𝐽
2
cos2 𝜑

2
)} ,

𝑉 = 1
2𝑘2 (𝜌 − ℓ)

2 − 𝑚𝑔 (𝜌 cos𝜑1 + 𝑎 cos𝜑2) ,

(2)

where 𝐽
1
, 𝐽
2
, and 𝐽

3
are the principal moments of inertia with

respect to the axes 𝐶𝜉, 𝐶𝜂, and 𝐶𝜁, respectively, 𝑘2 is the
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spring’s constant, ℓ represents the unstretched length of the
string, and 𝑔 denotes the gravitational attraction.

According to the above equations, one can obtain the
Lagrangian of the system [21]

𝐿 = 𝑇 − 𝑉. (3)
An inspection of (1)–(3), we can observe that the Lagrangian𝐿 is expressed in terms of three generalized coordinates𝜌, 𝜑
1
, 𝜑
2

and three corresponding generalized velocities�̇�, �̇�
1
, �̇�
2
.

Use the following Lagrange’s equations

𝑑
𝑑𝑡 (

𝜕𝐿
𝜕�̇�
𝑖

) − 𝜕𝐿
𝜕𝑞
𝑖

= 0;
𝑞𝑖 ≡ (𝜌, 𝜑1, 𝜑2) , �̇�𝑖 ≡ (�̇�, �̇�

1
, �̇�
2
)

(4)

to obtain the equations of motion in the form

�̈� + 𝑎�̈�
2
sin (𝜑

1
− 𝜑
2
) − 𝑎�̇�2

2
cos (𝜑

1
− 𝜑
2
) − 𝜌�̇�2

1

− 𝜔2 (2ℎ sin𝜔𝑡 + 𝜌 sin𝜑1 + 𝑎 sin𝜑2) sin𝜑1
− 𝑔 cos𝜑

1
+ 𝐾2 (𝜌 − ℓ) = 0,

𝜌�̈�
1
+ 2�̇��̇�

1
+ 𝑎�̈�
2
cos (𝜑1 − 𝜑2) + 𝑎�̇�22 sin (𝜑1 − 𝜑2)

− 𝜔2 (2ℎ sin𝜔𝑡 + 𝜌 sin𝜑
1
+ 𝑎 sin𝜑

2
) cos𝜑

1

+ 𝑔 sin𝜑
1
= 0,

ℓ
1
�̈�
2
+ (�̈� − 𝜌�̇�2

1
) sin (𝜑

1
− 𝜑
2
)

+ (𝜌�̈�
1
+ 2�̇��̇�

1
) cos (𝜑

1
− 𝜑
2
)

− 𝜔2 (2ℎ sin𝜔𝑡 + 𝜌 sin𝜑1 + 𝑎 sin𝜑2) cos (𝜑1 − 𝜑2)
+ 𝜔2
2𝑚 (𝐽2 − 𝐽1) sin 2𝜑2 + 𝑔 sin𝜑2 = 0,

(5)

where

𝐾2 = 𝑘2
𝑚 ,

ℓ
1
= 1
𝑎 (𝑎2 −

𝐽
3𝑚) .

(6)

Here ℓ1 is the derived length of the body relative to 𝑂
2
.

Equations (5) are the governing equations of motion of our
model that represent a nonlinear system of second-order
differential equations.

In order to study this problem we consider that the
oscillations of our system are closing to the position of the
relative equilibrium. So, we can assume

𝐽
1
= 𝐽
2
. (7)

Hence, for the relative equilibrium state the angles 𝜑
10

and𝜑
20
are equal, and then we can write

𝜌 = 𝑏 + 𝜉 (𝑡) ,
𝜑
1
= 𝜑
0
+ 𝜑 (𝑡) ,

𝜑
2
= 𝜑
0
+ 𝜓 (𝑡) ,

(8)

where𝜑
0
represents the value of𝜑

10
and𝜑
20
and 𝑏 denotes the

pendulum string’s length in the case of relative equilibrium.
Moreover, the quantities𝜑

0
and 𝑏 can be determined from the

following equations:

𝐾2 (𝑏 − ℓ) = 𝜔2 (𝑎 + 𝑏) sin2 𝜑0 + 𝑔 cos𝜑0,
𝑔 = 𝜔2 (𝑎 + 𝑏) cos𝜑0.

(9)

Substituting from (8) into (5), then using (7) and (9), we
get

�̈� + 𝑎
11𝜉 + 𝑎12𝜑 + 𝑎13𝜓 = 𝑓1,

𝑏�̈� + 𝑎�̈� + 𝑏
11
𝜉 + 𝑏
12
𝜑 + 𝑏
13
𝜓 = 𝑓

2
,

ℓ
1
�̈� + 𝑏�̈� + 𝑐

11
𝜉 + 𝑐
12
𝜑 + 𝑐
13
𝜓 = 𝑓

3
,

(10)

where

𝑎
11 = 𝐾2 − 𝜔2 (sin2 𝜑0 + 2ℎ cos𝜑0 sin𝜔𝑡) ,
𝑎
12
= 𝑏𝑐
11
,

𝑎
13
= 𝑎𝑐
11
,

𝑏
11
= 𝑐
11
,

𝑏
12
= 𝐾2 (𝑏 − ℓ) − 𝜔2𝑏 cos2 𝜑0,

𝑏
13
= −𝜔2𝑎 cos2 𝜑

0
,

𝑐
11
= −𝜔2 sin𝜑

0
cos𝜑
0
,

𝑐
12
= −𝜔2𝑏 cos2 𝜑

0
,

𝑐
13
= 𝐾2 (𝑏 − ℓ) + 𝜔2 (2ℎ sin𝜑0 sin𝜔𝑡 − 𝑎 cos2 𝜑0) ,

(11)

𝑓
1
= (𝜉 + 𝑏) �̇�2 + 𝐴𝜉𝜑 + 𝑎�̈� (𝜓 − 𝜑) + 𝑎�̇�2 + 𝐵𝜑𝜓
+ 𝐶
1,

𝑓
2
= −𝜉�̈� − 2�̇��̇� + (𝜓 − 𝜑) 𝑎�̇� + 𝑐

11 (𝜉 + 𝑏) 𝜑2
+ (𝐷𝜉 + 2𝑎

13
𝜓) 𝜑 + 𝐶

2
,

𝑓3 = �̈� (𝜓 − 𝜑) + (𝑏�̇�2 + 𝜉�̇�2) (𝜑 − 𝜓) − 𝜉�̈� − 2�̇��̇�
+ 2𝜔2ℎ sin𝜔𝑡 cos𝜑

0

− [𝑏 + 𝑎 (1 − 𝜓2) − (𝑏 + 𝜉) 𝜑𝜓] 𝑐11
− 𝑔 sin𝜑

0
+ 𝜔2𝜉 (𝜑 cos2 𝜑

0
− 𝜓 sin2 𝜑

0
) ,

(12)
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𝐴 = −2𝑐
11
,

𝐵 = 𝑎𝜔2 cos2 𝜑
0
,

𝐷 = 𝜔2cos 2 𝜑0,
𝐶
1 = −𝑏 (𝐾2 − 𝜔2sin2𝜑0)

+ 𝜔2 [2ℎ sin𝜑
0
sin𝜔𝑡 + 𝑎 (sin2 𝜔𝑡 + sin2 𝜑

0
)]

+ 𝑔 cos𝜑
0
+ 𝐾2ℓ,

𝐶
2
= 2ℎ𝜔2 sin𝜔𝑡 − (𝑏 + 𝑎) 𝑐11 − 𝑔 sin𝜑0.

(13)

Our principle aim is to obtain the numerical solutions
of system (10) which consists of three nonlinear differential
equations of second-order. In view of the right hand sides of
these equations, we found three functions𝑓

1, 𝑓2, and𝑓3 given
by (12). In fact, it is not easy to obtain the second derivatives
of the generalized coordinates 𝜉, 𝜑, and 𝜓 such that each
equation contains one of these derivatives only.

3. Numerical Solutions

This section is devoted to discuss the numerical solutions for
the considered model in Section 2. Computer programs are
carried out to investigate the graphical representations for
these solutions, to describe the motion, and to illustrate the
behavior of the pendulum at any time.

System (10) consists of three nonlinear differential equa-
tions of second-order in terms of 𝜉, 𝜑, and 𝜓 and is recon-
sidered to obtain the numerical solutions in framework of
the fourth-order Runge-Kutta algorithms through Matlab
packages [22]. Each equation of this system includes all
variables 𝜉, 𝜑, 𝜓 and their derivatives from the first and
second order; see systems of (10), (11), (12), and (13). So,
the mentioned system is more complicated to deal with and
to obtain another corresponding one consisting of second-
order differential equations in terms of �̈�, �̈�, and �̈� explicitly.
Computer codes are utilized in order to overcome these
difficulties and to separate each of �̈�, �̈�, and �̈�. Consequently,
system (10) is transformed into the following system with the
aid of (11), (12), and (13):

�̈� = − 1
𝐻 {−𝑎𝜓 {− (𝑏 + 𝜉) (𝑐11𝜉 + 𝑐12𝜑 + 𝑐13𝜓 − 𝑓

3
)

+ 𝑏 (𝑏
11
𝜉 + 𝑏
12
𝜑 + 𝑏
13
𝜓 + 𝑔 sin𝜑

0
+ 𝜔2

⋅ {−𝜉𝜑 cos2 𝜑0 − 2ℎ sin𝜔𝑡 cos𝜑0
+ [−𝑏 + (𝑏 + 𝜉) 𝜑𝜓 + 𝑎 (𝜓2 − 1)]
⋅ cos𝜑

0 sin𝜑0 + 𝜉𝜑 sin2 𝜑0}
+ 2�̇��̇� − (𝑏 + 𝜉) (𝜑 − 𝜓) �̇�2)}

+ [𝑎𝑏 − (𝑏 + 𝜉) ℓ1] [𝐶1 − 𝑎11𝜉 − 𝑎12𝜑
−𝑎
13
𝜓 + (𝑏 + 𝜉) �̇�2 + (𝐴𝜉 + 𝐵𝜓 + 𝑎�̇�2) 𝜑]} ,

�̈� = − 1
𝑏𝑓3 − 𝑐11𝜉 − 𝑐12𝜑 − 𝑐13𝜓 + ℓ

1𝑎𝜓
⋅ [𝐶
1 − 𝑎11𝜉 − 𝑎12𝜑 − 𝑎13𝜓 + (𝑏 + 𝜉) �̇�2

+ (𝐴𝜉 + 𝐵𝜓 + 𝑎�̇�2) 𝜑]
+ 1
𝑎𝐻𝜓 {ℓ1 {−𝑎𝜓 {(𝑏 + 𝜉)

⋅ (𝑓
3 − 𝑐11𝜉 − 𝑐12𝜑 − 𝑐13𝜓) + 𝑏

⋅ (𝑏
11
𝜉 + 𝑏
12
𝜑 + 𝑏
13
𝜓 + 𝑔 sin𝜑

0
+ 𝜔2

⋅ {−𝜉𝜑 cos2 𝜑
0
− 2ℎ sin𝜔𝑡 cos𝜑

0

+ [(𝑏 + 𝜉) 𝜑𝜓 + 𝑎 (𝜓2 − 1) − 𝑏] cos𝜑
0
sin𝜑
0

+ 𝜉𝜑 sin2 𝜑0} +2�̇��̇� − (𝑏 + 𝜉) (𝜑 − 𝜓) �̇�2)}
+ [𝑎𝑏 − (𝑏 + 𝜉) ℓ1] {𝐶1 − 𝑎11𝜉 − 𝑎12𝜑 − 𝑎13𝜓
+ (𝑏 + 𝜉) �̇�2 + (𝐴𝜉 + 𝐵𝜓 + 𝑎�̇�2) 𝜑}}} ,

�̈� = − 1
𝐻 {𝑏 (𝜑 − 𝜓) [𝑎

11
𝜉 + 𝑎
12
𝜑 + 𝑎
13
𝜓 − (𝐴𝜉 + 𝐵𝜓) 𝜑]

− 𝑏 (𝑏
11
𝜉 + 𝑏
12
𝜑 + 𝑏
13
𝜓) + (𝑏 + 𝜉) (𝑐11𝜉 + 𝑐12𝜑 + 𝑐13𝜓)

− 𝑏𝐶
1
(𝜑 − 𝜓) + 𝑏𝜔2 cos𝜑

0
(𝜉𝜑 cos𝜑

0
+ 2ℎ sin𝜔𝑡)

− (𝑏 + 𝜉) 𝑓3 − 𝑏𝑔 sin𝜑0 + 𝑏𝜔2
⋅ {𝑎 + 𝑏 − 𝜓 [(𝑏 + 𝜉) 𝜑 + 𝑎𝜓]} cos𝜑0 sin𝜑0
− 𝑏 [2�̇��̇� + 𝜑 (𝜔2𝜉 sin2 𝜑

0
+ 𝑎 (𝜑 − 𝜓) �̇�2)]} ,

(14)

where

𝐻 = [𝑎𝑏 (𝜓2 − 𝜑𝜓 − 1) + (𝑏 + 𝜉) ℓ1] . (15)

It is clear that the left hand sides of the equations of
the previous system are given explicitly in terms of �̈�, �̈�, and�̈�, respectively. On the other hand, the right hand sides are
functions of 𝜉, 𝜑, 𝜓, �̇�, �̇�, and �̇�.

The ode45 solver is used in order to obtain the numerical
solutions of the nonstiff ordinary differential equations of the
previous system (14), in which this solver uses a variable step
of Runge-Kutta technique [20]. So we can rewrite system (14)
as a system of coupled first-order differential equations as
follows.
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A choice of the state variables for this system is

𝑋
1 = 𝜉,

𝑋
2
= 𝜑,

𝑋
3
= 𝜓,

𝑋
4
= �̇�,

𝑋
5 = �̇�,

𝑋
6
= �̇�,

(16)

which results in the following state-equations:

�̇�
1
= 𝑋
4
,

�̇�2 = 𝑋5,
�̇�
3
= 𝑋
6
.

(17)

Use (16) and (17) into system (14) to get

�̇�
4
= − 1

𝐻 {−𝑎𝑋
3
{− (𝑏 + 𝑋

1
)

⋅ (𝑐11𝑋1 + 𝑐12𝑋2 + 𝑐13𝑋3 − 𝑓3)
+ 𝑏 (𝑏

11𝑋1 + 𝑏12𝑋2 + 𝑏13𝑋3 + 𝑔 sin𝜑0 + 𝜔2
⋅ {−𝑋
1
𝑋
2
cos2 𝜑

0
− 2ℎ sin𝜔𝑡 cos𝜑

0

+ [−𝑏 + (𝑏 + 𝑋
1
)𝑋
2
𝑋
3
+ 𝑎 (𝜓2 − 1)] cos𝜑

0
sin𝜑
0

+𝑋1𝑋2 sin2 𝜑0}
+2�̇�1�̇�2 − (𝑏 + 𝑋1) (𝑋2 − 𝑋3) �̇�22)}
+ [𝑎𝑏 − (𝑏 + 𝜉) ℓ1] [𝐶1 − 𝑎11𝑋1 − 𝑎12𝑋2
− 𝑎13𝑋3 + (𝑏 + 𝑋1) �̇�22
+ (𝐴𝑋

1
+ 𝐵𝑋
3
+ 𝑎�̇�
3

2)𝑋
2
]} ,

�̇�
5
= − 1

𝑏𝑓3 − 𝑐11𝑋1 − 𝑐12𝑋2 − 𝑐13𝑋3
+ ℓ1𝑎𝑋
3

[𝐶
1
− 𝑎
11
𝑋
1
− 𝑎
12
𝑋
2
− 𝑎
13
𝑋
3
+ (𝑏 + 𝑋

1
) �̇�
2

2

+ (𝐴𝑋
1
+ 𝐵𝑋
3
+ 𝑎�̇�
3

2)𝑋
2
] + 1

𝑎𝐻𝑋3
⋅ {ℓ
1
{−𝑎𝑋

3
{(𝑏 + 𝑋

1
) (𝑓
3
− 𝑐
11
𝑋
1
− 𝑐
12
𝑋
2
− 𝑐
13
𝑋
3
)

+ 𝑏 (𝑏
11
𝑋
1
+ 𝑏
12
𝑋
2
+ 𝑏
13
𝑋
3
+ 𝑔 sin𝜑

0

+ 𝜔2 {−𝑋
1
𝑋
2
cos2 𝜑

0
− 2ℎ sin𝜔𝑡 cos𝜑

0

+ [(𝑏 + 𝑋1)𝑋2𝑋3 + 𝑎 (𝑋23 − 1) − 𝑏] cos𝜑0 sin𝜑0

+𝑋1𝑋2 sin2 𝜑0}
+2�̇�1�̇�2 − (𝑏 + 𝑋1) (𝑋2 − 𝑋3) �̇�22)}
+ [𝑎𝑏 − (𝑏 + 𝑋

1
) ℓ
1
]

⋅ {𝐶
1
− 𝑎
11
𝜉 − 𝑎
12
𝑋
2
− 𝑎
13
𝑋
3

+ (𝑏 + 𝑋
1
) �̇�
2

2 + (𝐴𝑋
1
+ 𝐵𝑋
3
+ 𝑎�̇�
3

2)𝑋
2
}}} ,

�̇�
6
= − 1

𝐻 {𝑏 (𝑋
2
− 𝑋
3
)

⋅ [𝑎11𝑋1 + 𝑎12𝑋2 + 𝑎13𝑋3 − (𝐴𝑋1 + 𝐵𝑋3)𝑋2]
− 𝑏 (𝑏
11
𝑋
1
+ 𝑏
12
𝑋
2
+ 𝑏
13
𝑋
3
)

+ (𝑏 + 𝑋
1
) (𝑐
11
𝑋
1
+ 𝑐
12
𝑋
2
+ 𝑐
13
𝑋
3
)

− 𝑏𝐶1 (𝑋2 − 𝑋3)
+ 𝑏𝜔2 cos𝜑

0
(𝑋
1
𝑋
2
cos𝜑
0
+ 2ℎ sin𝜔𝑡)

− (𝑏 + 𝑋1) 𝑓3 − 𝑏𝑔 sin𝜑0
+ 𝑏𝜔2 {𝑎 + 𝑏 − 𝑋

3
[(𝑏 + 𝑋

1
)𝑋
2
+ 𝑎𝑋
3
]}

⋅ cos𝜑
0
sin𝜑
0

− 𝑏 [2�̇�
1
�̇�
2
+ 𝑋
2

⋅ (𝜔2𝑋
1
sin2 𝜑

0
+ 𝑎 (𝑋

2
− 𝑋
3
) �̇�
3

2)]} .
(18)

The following initial conditions are required to achieve the
numerical solution of (18), by using the fourth-order Runge-
Kutta method of ode45 solver in framework of Matlab
program,

𝑋1 (0) = 0.001,
𝑋
2 (0) = 0.1,

𝑋
3 (0) = 0.01,

�̇�
4 (0) = 0,

�̇�
5 (0) = 0,

�̇�
6 (0) = 0

(19)

in addition to the following physical parameters of the
considered model:

𝑚 = 50 kg,
𝑔 = 9.8m ⋅ s−2,
𝐽
1
= 8 kg ⋅m2,

ℓ = 0.7m,
𝜔 = 4 rad ⋅ s−1,
𝑎 = 0.5m,
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Figure 2: Variation of the solutions and their derivatives versus time 𝑡 when 𝑏 = 3m, ℎ = 4.5, and 𝑎 = 0.5m: (a, d) show the effect of 𝑡 on the
behavior of 𝜉 and �̇� waves when 𝜑

0
= 0 and 𝜑

0
= 0.4 rad, respectively, (b, e) show the effect of 𝑡 on the behavior of 𝜑 and �̇� waves when 𝜑

0
= 0

and 𝜑
0
= 0.4 rad, respectively, and (c, f) show the effect of 𝑡 on the wave that describes the behavior of 𝜓 and �̇� when 𝜑

0
= 0 and 𝜑

0
= 0.4 rad,

respectively.

𝑏 = (0, 3)m,
𝜑
0
= (0, 0.4) rad

ℎ = (2.5, 4.5) ,
𝑡 = 0 → 1.7min.

(20)

Figure 2 shows the variation of the solutions 𝜉, 𝜑, 𝜓 and their
derivatives �̇�, �̇�, �̇� against time 𝑡 when 𝜑

0
= 0 and 𝜑

0
=0.4 rad. This figure is drawn at 𝑏 = 3m, ℎ = 2.4, and

𝑎 = 0.5m. The variations of 𝜉, 𝜑, and 𝜓 with �̇�, �̇�, and �̇�,
respectively, are illustrated in Figure 3, namely, the phase
plane diagrams that are represented in Figures 3(a), 3(b),
3(c) and 3(d), 3(e), 3(f) when 𝜑0 = 0 and 𝜑0 = 0.4 rad,
respectively, with the same other parameters that are taken
into consideration in Figure 2.

In these figures, our principle aim is to investigate the
effect of increasing time on the motion of pendulum.

According to the calculations depicted in Figure 2(a), we
found that when 𝜑0 = 0, the wave of the elongation 𝜉 grows
up with the increasing of time till 𝑡 = 0.9min. After that
both of the elongation 𝜉 and its derivative �̇� fluctuate between

increasing and decreasing when time reaches 𝑡 = 1.43min.
Thus the wave of the solution 𝜉 is stable; see the phase plane
Figure 3(a). With the passing of time, one can observe that
𝜉 and �̇� are growing quickly, so the motion will be unstable
after 𝑡 = 1.43min. The rage behavior of both 𝜉 and �̇� is due
to the weight of the rigid body and the values of the principal
moments of inertia. Consequently, we expect that behavior
of elongation becomes greater as observed in Figures 2(a) and
2(d).Moreover, the variation of the spring between stretching
and contraction is consistent with the phase plane diagrams
represented in Figures 3(a) and 3(d).

It is worthwhile to notice fromFigure 2(b) that when time𝑡 increases from 𝑡 = 0 to 𝑡 = 0.4min, the behavior of the
angle 𝜑 increases gradually to reach the value 𝜑 ≃ 1 rad ≃ 57∘
and then decreases slowly to reach 𝜑 ≃ 0.8 rad ≃ 46∘ during
the time period 𝑡 ∈ ]0.4, 0.9[min. After 𝑡 = 0.9min, the
decline of the wave becomes quickly to reach 𝜑 ≃ −2.3 rad ≃−132∘ at the end of time period (minus sign indicates opposite
direction). This is not possible because 𝜑 must belong to the
interval ] − 𝜋/2, 𝜋/2]. So, the motion of the wave is unstable
as it is manifest from Figure 3(b). On the other hand, �̇�
increases till 𝑡 ≃ 0.2min and then fluctuates as indicated from
Figure 2(b).
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Figure 3: The phase plane diagram when 𝑏 = 3m, ℎ = 4.5, and 𝑎 = 0.5m: (a, d) represent the variation of the amplitude 𝜉 with its velocity
�̇� at 𝜑

0
= 0 and 𝜑

0
= 0.4 rad, respectively, (b, e) represent the variation of the amplitude 𝜑 with its velocity �̇� at 𝜑

0
= 0 and 𝜑

0
= 0.4 rad,

respectively, and (c, f) represent the variation of the amplitude 𝜓 with its velocity �̇� at 𝜑
0
= 0 and 𝜑

0
= 0.4 rad, respectively.

The graphs displayed in Figures 2(c) and 3(c) describe
the variation of the (𝜓 and �̇�) against time and the phase
plane diagram (�̇� with 𝜓), respectively, when 𝜑0 = 0. It
is clear that when time belongs to the period [0, 0.43]min,
the angle 𝜓 remains stationary, and then its wave oscillates
between decreasing and increasing till 𝑡 = 1.43min. After
that time, the angle 𝜓 increases up to the end of time interval
and consequently the motion will be stable as seen from
Figure 3(c) during the period 0 < 𝑡 ≤ 1.43. It is obvious
from Figure 2(c) that the behavior of �̇� remains stationary to
some extent through the time interval [0, 0.6]min and then
oscillates between increasing and decreasing till 𝑡 = 1.7min.

It should be noticed that when𝜑
0
= 0.4 rad, the stretching

on the string 𝜉 increases gradually till the time 𝑡 becomes
0.9min, and then 𝜉 and �̇� oscillate between increasing and
decreasingwhen the time reaches the end of time interval; see
Figure 2(d). Consequently, the wave of the solution is stable
as seen from the phase plane Figure 3(d).

An inspection of the graphs depicted in Figure 2(e) shows
that the wave describing the behavior of the angle 𝜑 increases
gradually from 𝜑 = 0 at 𝑡 = 0 to its maximum value 𝜑 ≃0.9 rad ≃ 56∘ at 𝑡 = 0.4min and then decreases slowly at𝑡 ≃ 1min to reach its minimum value 𝜑 ≃ −0.19 rad ≃ −11∘
(minus sign indicates opposite direction) at 𝑡 ≃ 1.26min.
With the increasing of time, thewave grows again to reach the
value 𝜑 ≃ 0.85 rad ≃ 49∘ at 𝑡 ≃ 1.39min. Thus, the motion is

stable as it is manifest from Figure 3(e). On the other hand, �̇�
increases and decreases as indicated from Figure 2(e).

Also, it is remarkable from Figure 2(f) that the behavior
of the angle 𝜓 remains steady till 𝑡 = 0.5min; then its wave
oscillates between decreasing and increasing. Consequently
the motion will be stable as seen from Figure 3(f). It is
worthwhile to notice also from Figure 2(f) that the behavior
of �̇� oscillates between increasing and decreasing.

From the above observations, we can conclude that the
motion of our model is more stable when 𝜑

0
= 0.4 rad than

when 𝜑
0
= 0. This highlights the importance of the effect of𝜑

0
value on the motion. It is worthwhile to notice that the

comparison between the solutions 𝜉, 𝜑, and 𝜓 included in
Figures 2(a), 2(b), and 2(c) with the corresponding Figures
2(d), 2(e), and 2(f) reveals that the amplitude of the waves
decreases when 𝜑

0
increases from 0 to 0.4 rad. On the other

hand, the comparison between their derivatives shows that
the amplitude of the waves increases when 𝜑

0
increases.

Figure 4 shows the variation of (𝜉, �̇�), (𝜑, �̇�), and (𝜓, �̇�) with
time 𝑡 when 𝜑

0 changes from 0 for Figures 4(a), 4(b), and
4(c) to 0.4 rad for Figures 4(d), 4(e), and 4(f) at the same
values of other parameters 𝑏 = 3m, ℎ = 4.5, and 𝑎 = 0.5m.
According to the calculations depicted in these figures, we can
consider these figures as a rotation of the corresponding parts
of Figure 3 with time to observe the bending and crossing of
the resulting curves.
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Figure 4:The 3D pattern when 𝑏 = 3m, ℎ = 4.5, and 𝑎 = 0.5m: (a, d) indicate the variation of 𝜉 and �̇� versus 𝑡 when 𝜑
0
= 0 and 𝜑

0
= 0.4 rad,

respectively, (b, e) indicate the variation of 𝜑 and �̇� versus 𝑡 when 𝜑
0
= 0 and 𝜑

0
= 0.4 rad, respectively, and (c, f) indicate the variation of 𝜓

and �̇� versus 𝑡 when 𝜑
0
= 0 and 𝜑

0
= 0.4 rad, respectively.
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Figure 5: The 3D diagrams when 𝑏 = 3m, ℎ = 4.5, and 𝑎 = 0.5m: (a, c) elucidate the variation of 𝜉 and 𝜑 versus 𝜓 when 𝜑
0
= 0 and

𝜑
0
= 0.4 rad, respectively, and (b, d) elucidate the variation of �̇� and �̇� versus �̇� when 𝜑

0
= 0 and 𝜑

0
= 0.4 rad, respectively.
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Figure 6: (a), (b), and (c) explain the variation of the solutions 𝜉, 𝜑, and 𝜓 with their derivatives �̇�, �̇�, and �̇� via time 𝑡, respectively, when𝑏 = 0, ℎ = 4.5, 𝑎 = 0.5m, and 𝜑
0
= 0.4 rad.

0 5000 10000 15000 20000

0

2

4

6

8

−2

×104

b = 0

𝜉

̇𝜉

(a)

0 1 2 3

0

10

20

30

40

50
b = 0

−10

−1

�̇�

𝜑

(b)

0 5 10 15

0

200

400
b = 0

𝜓

̇𝜓

−200

−400

−600
−5−10−15

(c)

Figure 7: The phase plane diagrams between amplitudes and their velocities at 𝑏 = 0, ℎ = 4.5, 𝑎 = 0.5m, and 𝜑
0
= 0.4 rad: (a) shows the

influence of 𝜉 on �̇�, (b) shows the effect of 𝜑 on �̇�, and (c) shows the variation of 𝜓 with �̇�.

Figures 5(a), 5(c) and 5(b), 5(d) represent 3D plots that
illustrate the variation of the solutions 𝜉, 𝜑 via 𝜓 and �̇�, �̇�
via �̇�, respectively, for different values of 𝜑

0
when 𝑏 =3m, ℎ = 4.5, and 𝑎 = 0.5m. The graphs displayed in

parts of Figure 6 show the variation of (𝜉, �̇�), (𝜑, �̇�), and(𝜓, �̇�) against time 𝑡 when 𝑏 = 0 with consideration of the
parameters 𝜑0 = 0.4 rad, ℎ = 4.5, and 𝑎 = 0.5m. The
corresponding phase plane between the amplitudes 𝜉, 𝜑, 𝜓
and their derivatives �̇�, �̇�, �̇� is represented in parts of Figure 7.
Inspection of the graph depicted in Figure 6(a) shows that
when time 𝑡 increases from 0 to 0.45min the behavior of the
solution 𝜉 remains stationary and quickly growing during the
time interval 𝑡 ∈ ]0.45, 1.05[min and then oscillates till the
end of time interval. This indicates that the motion is stable
as seen from Figure 7(a). On the other side, the behavior
of the derivative �̇� remains approximately stationary during
the interval 𝑡 ∈ [0, 0.45]min and then fluctuates with the
increasing of time; see Figure 6(a).

By the same way, we can observe that the wave of the
angle 𝜑 increases through a short time to reach its maximum
value 𝜑 ≃ 2.7 rad ≃ 155∘ at 𝑡 ≃ 0.23min, taking into
consideration that −𝜋/2 < 𝜑 < 𝜋/2, and then decreases
slowly to reach its minimum value 𝜑 ≃ −0.9 rad ≃ −52∘
at the end of time interval; see Figure 6(b). This indicates
that the motion is close to be stable as observed from
the phase plane Figure 8(b). As seen from Figure 6(b),�̇� increases and decreases quickly during the period 𝑡 ∈[0, 0.1]min to reach its minimum value at the end of time
interval.

The variation of 𝜓 and �̇� with time is illustrated in
Figure 6(c). In this figure our main goal is to examine the
influence of time on the motion of pendulum. It is clear that
the behavior of 𝜓 and �̇� remains stationary (to some extent)
when 𝑡 ∈ [0, 0.5]min; then their waves fluctuate till the end
of time interval. Consequently the motion is stable as seen
from the phase plane diagram, Figure 7(c). The comparison
between parts of Figure 6 with the corresponding Figures
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Figure 9: (a), (b), and (c) demonstrate the variation of (𝜉 and �̇�), (𝜑 and �̇�), and (𝜓 and �̇�) against time 𝑡, respectively, at 𝑏 = 3m, ℎ = 2.5,𝑎 = 0.5m, and 𝜑
0
= 0.4 rad.

2(d), 2(e), and 2(f) shows that when 𝑏 changes from 0 to 3m
the amplitude of the waves decreases. Also, the motion will
be more stable when 𝑏 = 3m than when 𝑏 = 0 as seen from
the corresponding phase plane diagrams, that is, Figures 3(d),
3(e), 3(f) and 7(a), 7(b), 7(c), respectively.

On the other hand, parts of Figure 8 show 3D plots that
describe the variation of the solutions and their derivative via
time when 𝑏 = 0, ℎ = 4.5, 𝜑

0
= 0.4 rad, and 𝑎 = 0.5m.

The plots displayed in thementioned parts show bending and
crossing of the resulting curves.

Figures 9(a), 9(b), and 9(c) show the variation of the
solutions 𝜉, 𝜑, 𝜓 and their derivatives �̇�, �̇�, �̇�with time 𝑡whenℎ = 2.5 for the given values of other parameters 𝑏 = 3m,𝜑
0
= 0.4 rad, and 𝑎 = 0.5m. In view of the first part, we can

conclude that when time 𝑡 increases, each of the waves 𝜉 and �̇�
oscillates between increasing and decreasing till 𝑡 = 1.46min
and then increases gradually. So, the motion is stable as seen
from Figure 10(a).

From a closer look on the second part of Figure 9(b) we
can write, with the increasing of time, the behavior of 𝜑 wave

increases to reach its maximum value 𝜑 ≃ 0.9 rad ≃ 52∘ at𝑡 = 0.43min and then decreases slowly through the period 𝑡 ∈]0.43, 1.19]min. After that, its behavior has a sharp decline
in a few seconds (about 2.4 s) and then increases till the end
of time period and consequently the motion is stable; see
Figure 10(b).

According to the calculations depicted in Figure 9(c), we
can observe that thewaves describing𝜓 and �̇�decrease slowly
till 𝑡 = 0.9min and then increase and decline sharp. The
phase plane Figure 10(c) shows that the behavior of 𝜓 is not
stable.

When parts of Figure 9 and their phase plane parts (of
Figure 10) are generally compared with the corresponding
Figures 2(d), 2(e), and 2(f) and their phase plane Figures 3(d),
3(e), and 3(f), we can observe that amplitude of the wave
increases when ℎ = 4.5 compared to when ℎ = 2.5 and the
motion is more stable when ℎ = 4.5. An inspection of parts
of Figure 11 reveals the 3D plots when ℎ = 2.5 with the same
other data considered in Figures 9 and 10. Figure 10 shows the
variation of the solutions 𝜉, 𝜑, 𝜓 and their derivatives �̇�, �̇�, �̇�
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Figure 10: The phase plane diagrams which portray the relation between amplitudes and their velocities at 𝑏 = 3m, ℎ = 2.5, 𝑎 = 0.5m, and
𝜑
0
= 0.4 rad: (a) describes the influence of 𝜉 on �̇�, (b) shows the effect of 𝜑 on �̇�, and (c) illustrates the variation of 𝜓 with �̇�.
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Figure 11: The 3D patterns at 𝑏 = 3m, ℎ = 2.5, 𝑎 = 0.5m, and 𝜑
0
= 0.4 rad: (a) illustrates the variation of 𝜉 and �̇� versus 𝑡, (b) illustrates the

variation of 𝜑 and �̇� versus 𝑡, (c) illustrates the variation of 𝜓 and �̇� versus 𝑡.

with time 𝑡. It is worthwhile to notice that the comparison
between Figures 4(d), 4(e), and 4(f) and Figures 11(a), 11(b),
and 11(c) shows more bending and crossing of the curves
in Figures 4(d), 4(e), and 4(f) when ℎ = 4.5 than the
corresponding ones of Figure 11.

Now, we study the last case when ℎ = 0 with the same
other data 𝑏 = 3m, 𝜑0 = 0.4 rad, and 𝑎 = 0.5m.The obtained
results are represented graphically in Figures 12(a), 12(b), and
12(c), while their phase plane diagrams are given in Figures
12(d), 12(e), and 12(f). At the first glance, we can conclude that
this case is not stable, so it is very important to notice that the
dimensionless parameter ℎmust take any value different from
zero as it is pointed in Figure 2 (ℎ = 4.5) and Figure 9 (ℎ =2.5). This elucidates the importance of ℎ parameter on the
motion.

4. Conclusion

A conclusion that may be made here is that the problem
of the relative motion of a rigid body as a pendulum

model is investigated. The governing deferential equations
are obtained using Lagrange’s equations. Mathematica pack-
age was utilized, in order to overcome the difficulties that
appear in the separation of the second derivatives of the
generalized coordinates 𝜉, 𝜑, and 𝜓 for the nonlinear system
(10). Computer codes are used to obtain the numerical
solutions for system (14). These solutions are represented
graphically using Matlab program, to study the influence
of the different parameters on the motion. The good effect
of the parameters ℎ, 𝑏, and 𝜑

0
on the motion is obvious

from the mentioned plots. The motion of our model is more
stable when the parameters ℎ, 𝑏, and 𝜑

0
take values run

away from zero. This highlights the importance of the effect
of these parameters on the motion. Such results have been
confirmed by many works, such as Ismail [13] and Amer and
Bek [14].
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Figure 12: (a, b, and c) explain the variation of the solutions 𝜉, 𝜑, and𝜓with their derivatives �̇�, �̇�, and �̇� via time 𝑡, respectively, when 𝑏 = 3m,ℎ = 0, 𝑎 = 0.5m, and 𝜑
0
= 0.4 rad; (d, e, and f) illustrate the variation of the solutions against their first derivatives for the same values of the

considered parameters.
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