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We propose and apply coupling of the variational iteration method (VIM) and homotopy perturbation method (HPM) to
solve nonlinear mixed Volterra-Fredholm integrodifferential equations (VFIDE). In this approach, we use a new formula called
variational homotopy perturbation method (VHPM) and variational accelerated homotopy perturbation method (VAHPM). This
approach is based on the form of He’s polynomials and on a new form of He’s polynomials. We discuss the convergence of the
technique. Some numerical examples are introduced to verify the efficiency of this technique.

1. Introduction

In recent years, there has been a clear interest in integrod-
ifferential equations which are a combination of differential
and Volterra-Fredholm integral equations. Integrodifferen-
tial equations play an important role in many branches of
linear and nonlinear functional analyses and their applica-
tions.Thementioned integrodifferential equations are usually
difficult to solve analytically, so approximation strategies are
required to obtain the solution of the linear and nonlinear
integrodifferential equations [1].

Many researchers studied and discussed the linearVFIDE
[2]. Al-Jubory [3] introduced some approximation methods
to solve Volterra-Fredholm integral and integrodifferential
equations. Dadkhah et al. in [4] used a numerical solution of
nonlinear VFIDE by using Legendre wavelets. Rabbani and
Kiasoltani [5] studied the solving of a nonlinear system of
VFIDE by using the discrete collocation method. Gherjalar
and Mohammadikia [6] solved integral and integrodifferen-
tial equations by using the B-splines function. In this work,

we used the HPM and VIM to solve the two-dimensional
nonlinear VFIDE as follows:
𝑘∑
𝑗=0

𝑃𝑗 (𝑥1, 𝚥1) 𝑢𝑗 (𝑥1, 𝚥1)
= ̇𝑓 (𝑥1, 𝚥1)

+ ∫𝑥1
𝑎

∫
Ω
𝐹 (𝑥1, 𝚥1, 𝑦, 𝜏) 𝛾 (𝑢𝑙 (𝑦, 𝜏)) 𝑑𝑦 𝑑𝜏,

(𝑥1, 𝚥1) ∈ ́𝐽 = [𝑎, 𝑥1] × Ω,

(1)

with initial conditions

𝑢𝑟 (𝑎, 𝚥1) = 𝑔𝑟, 𝑟 = 0, 1, . . . , 𝑘 − 1, Ω = [𝑎, 𝑏] , (2)

where 𝑢𝑗(𝑥1, 𝚥1) = 𝑑𝑗𝑢/𝑑𝑥𝑗1. The functions ̇𝑓(𝑥1, 𝚥1),𝐹(𝑥1, 𝚥1, 𝑦, 𝜏) and 𝛾(𝑢𝑙(𝑦, 𝜏)), 𝑙 > 0, are analytic functions
on 𝐽󸀠, and functions 𝑃𝑗(𝑥1, 𝚥1), 𝑗 = 0, 1, . . . , 𝑘, 𝑃𝑘(𝑥1, 𝚥1) ̸= 0
are given.
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For VIM and HPM, which were proposed by He in
[7, 8], the solution is considered as the summation of an
infinite series which is assumed to be convergent to the exact
solution. In recent years, HPM has been applied with great
success, so relations and algorithms have been deduced and
continuously improved to obtain an accurate solution for a
large variety of linear and nonlinear problems. For instance,
He in [7] used a strategy to solve some integrodifferential
equations where he chose an initial approximate solution in
the form of an exact solution with unknown constants.

In this paper, a new approach based on VIMwith HPM is
introduced to solve the two-dimensional nonlinear VFIDE.

2. The HPM

In this section, we will present the HPM. We consider a
general integral equation

𝐿𝑢 = 0, (3)

where 𝐿 is an integral operator. Define a convex homotopy𝐻̆(𝜗, ℘) by
𝐻̆ (𝜗, ℘) = (1 − ℘) ϝ (𝜗) + ℘𝐿 (𝜗) = 0, ℘ ∈ [0, 1] , (4)

where ϝ(𝜗) is a functional operator with solution 𝜗0. Then,

𝐻̆ (𝜗, 0) = ϝ (𝜗) = 0,
𝐻̆ (𝜗, 1) = 𝐿 (𝜗) = 0, (5)

and the process of changing ℘ from 0 to 1 is just that of
changing 𝜗 from 𝜗0 to 𝑢. In topology, this is called deforma-
tion, and ϝ(𝜗) and 𝐿(𝜗) are called homotopies.

According to the HPM, we can use the embedding
parameter ℘ as a “small parameter” and assume that the
solution of (4) can be written as a power series in ℘:

𝜗 = 𝑢0 + ℘𝑢1 + ℘2𝑢2 + ⋅ ⋅ ⋅ = ∞∑
𝑖=0

℘𝑖𝑢𝑖 = 𝑢. (6)

When℘ → 1, the approximate solution of (3) is obtainedwith

𝑢 = lim
℘→1

𝜗 = 𝑢0 + 𝑢1 + 𝑢2 + ⋅ ⋅ ⋅ = ∞∑
𝑖=0

𝑢𝑖. (7)

Series (7) is convergent for most cases; however, the rate of
convergence depends upon the nonlinear operator 𝐿 [9].

3. The HPM for Solving Nonlinear
Mixed VFIDE

In what follows, we display an outline for utilizing the HPM
for solving the nonlinear VFIDE. Equation (1) can be written
as follows:

𝑢 (𝑥1, 𝚥1)
= 𝐿−1 ( ̇𝑓 (𝑥1, 𝚥1)𝑃𝑘 (𝑥1, 𝚥1)) + 𝑘−1∑

𝑟=0

1(𝑟!) (𝑥1 − 𝚥1)𝑟 𝑔𝑟

+ 𝐿−1(∫𝑥1
𝑎

∫
Ω

𝐹 (𝑥1, 𝚥1, 𝑦, 𝜏) 𝛾 (𝑢𝑙 (𝑦, 𝜏))𝑃𝑘 (𝑥1, 𝚥1) 𝑑𝑦 𝑑𝜏)

− 𝐿−1(𝑘−1∑
𝑗=0

𝑃𝑗 (𝑥1, 𝚥1)𝑃𝑘 (𝑥1, 𝚥1)𝑢𝑗 (𝑥1, 𝚥1)) ,
(8)

where 𝐿−1 is the multiple integration operator given as
follows:

𝐿−1 (⋅) = ∫𝑥1
𝑎

∫𝑥1
𝑎

⋅ ⋅ ⋅ ∫𝑥1
𝑎

(⋅) 𝑑𝑥1𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥1,
(𝑛 times) . (9)

So, (8) takes the form

𝑢 (𝑥1, 𝚥1) = 𝐿−1 ( ̇𝑓 (𝑥1, 𝚥1)𝑃𝑘 (𝑥1, 𝚥1)) + 𝑘−1∑
𝑟=0

1(𝑟!) (𝑥1 − 𝚥1)𝑟 𝑔𝑟
+ ∫𝑥1
𝑎

∫
Ω

(𝑥1 − 𝚥1)𝑘(𝑘)!
𝐹 (𝑥1, 𝚥1, 𝑦, 𝜏) 𝛾 (𝑢𝑙 (𝑦, 𝜏))𝑃𝑘 (𝑥1, 𝚥1) 𝑑𝑦 𝑑𝜏

− 𝑘−1∑
𝑗=0

∫𝑥1
𝑎

(𝑥1 − 𝚥1)𝑘−1(𝑘 − 1)!
𝑃𝑗 (𝑥1, 𝚥1)𝑃𝑘 (𝑥1, 𝚥1)𝑢𝑗 (𝑥1, 𝚥1) 𝑑𝚥1

(10)

since
𝑘−1∑
𝑗=0

𝐿−1 (𝑃𝑗 (𝑥1, 𝚥1)𝑃𝑘 (𝑥1, 𝚥1)) 𝑢𝑗 (𝑥1, 𝚥1)

= 𝑘−1∑
𝑗=0

∫𝑥1
𝑎

(𝑥1 − 𝚥1)𝑘−1(𝑘 − 1)!
𝑃𝑗 (𝑥1, 𝚥1)𝑃𝑘 (𝑥1, 𝚥1)𝑢𝑗 (𝑥1, 𝚥1) 𝑑𝚥1.

(11)

To illustrate the HPM, for nonlinear mixed VFIDE, let us
consider (8):

𝐻̆ (𝜗, ℘) = 𝜗 (𝑥1, 𝚥1) − 𝐿−1 ( ̇𝑓 (𝑥1, 𝚥1)𝑃𝑘 (𝑥1, 𝚥1)) − 𝑘−1∑
𝑟=0

1(𝑟!) (𝑥1
− 𝚥1)𝑟 𝑔𝑟
− ℘[

[𝐿
−1(∫𝑥1
𝑎

∫
Ω

𝐹 (𝑥1, 𝚥1, 𝑦, 𝜏) 𝛾 (𝜗𝑙 (𝑦, 𝜏))𝑃𝑘 (𝑥1, 𝚥1) 𝑑𝑦 𝑑𝜏)

− 𝐿−1(𝑘−1∑
𝑗=0

𝑃𝑗 (𝑥1, 𝚥1)𝑃𝑘 (𝑥1, 𝚥1)𝜗𝑗 (𝑥1, 𝚥1))]
] = 0.

(12)

By the HPM, we can expand 𝜗(𝑥1, 𝚥1) into the form
𝜗 (𝑥1, 𝚥1) = 𝑢0 (𝑥1, 𝚥1) + ℘𝑢1 (𝑥1, 𝚥1) + ℘2𝑢2 (𝑥1, 𝚥1)

+ ⋅ ⋅ ⋅ = ∞∑
𝑖=0

℘𝑖𝑢𝑖 (𝑥1, 𝚥1) = 𝑢 (𝑥1, 𝚥1) . (13)

When ℘ → 1, the approximate solution is obtained with

𝑢 (𝑥1, 𝚥1) = lim
℘→1

𝜗 (𝑥1, 𝚥1)
= 𝑢0 (𝑥1, 𝚥1) + 𝑢1 (𝑥1, 𝚥1) + 𝑢2 (𝑥1, 𝚥1) + ⋅ ⋅ ⋅ (14)
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and in sum, according to [10], He’s HPM considers the
nonlinear term 𝛾(𝑢) as

𝛾 (𝑢) = ∞∑
𝑖=0

℘𝑖𝐻̆𝑖 = 𝐻̆0 + ℘𝐻̆1 + ℘2𝐻̆2 + ⋅ ⋅ ⋅ , (15)

where𝐻𝑛’s are the so-called He’s polynomials [10], which can
be calculated by using the formula

𝐻̆𝑛 = 1𝑛 𝜕𝑛𝜕℘𝑛 [𝛾(
∞∑
𝑖=0

℘𝑖𝑢𝑖)]
℘=0

, 𝑛 = 0, 1, 2, . . . . (16)

Substituting (13) and (15) into (12) and equating the terms
with identical powers of ℘, we have

℘0: 𝑢0 (𝑥1, 𝚥1)
= 𝐿−1 ( ̇𝑓 (𝑥1, 𝚥1)𝑃𝑘 (𝑥1, 𝚥1)) + 𝑘−1∑

𝑟=0

1(𝑟!) (𝑥1 − 𝚥1)𝑟 𝑔𝑟,
℘𝑖+1: 𝑢𝑖+1 (𝑥1, 𝚥1)

= 𝐿−1 (∫𝑥1
𝑎

∫
Ω

𝐹 (𝑥1, 𝚥1, 𝑦, 𝜏)𝑃𝑘 (𝑥1, 𝚥1) 𝐻̆𝑖𝑑𝑦𝑑𝜏)
− 𝐿−1(𝑘−1∑

𝑗=0

𝑃𝑗 (𝑥1, 𝚥1)𝑃𝑘 (𝑥1, 𝚥1)𝐿 𝑖𝑗) , 𝑖 ≥ 0.

(17)

Thenonlinear terms 𝛾(𝑢𝑙(𝑥1, 𝚥1)) and𝐷𝑗(𝑢(𝑥1, 𝚥1)) (𝐷𝑗 =𝜕𝑗𝑢(𝑥1, 𝚥1)/𝜕𝑥𝑗1 is a derivative operator) are usually repre-
sented by an infinite series of the so-called He’s polynomials
as follows:

𝛾 (𝑢𝑙 (𝑥1, 𝚥1)) = ∞∑
𝑖=0

𝐻̆,
𝐷𝑗 (𝑢 (𝑥1, 𝚥1)) = ∞∑

𝑖=0

𝐿 𝑖𝑗 .
(18)

The components 𝑢𝑖(𝑥1, 𝚥1), 𝑖 ≥ 0, can be computed by
using the recursive relations (17).

4. A New Formula to He’s Polynomials

He’s polynomials are not unique; another formula of He’s
polynomials (𝐻̆𝑛), called accelerated He’s polynomials, is
represented by (𝐻𝑛); in [11], the author proved that

𝛾 (𝑢) = ∞∑
𝑛=0

𝐻̆𝑛 = ∞∑
𝑛=0

𝐻𝑛 (19)

in which 𝐻̆𝑛 can be written in the new mathematical form

𝐻𝑛 = 𝛾 (𝛿𝑛) − 𝑛−1∑
𝑖=0

𝐻𝑖, (20)

where the partial sum 𝛿𝑛 = ∑𝑛𝑖=0 𝑢𝑖(𝑥1, 𝚥1) and 𝐻0 =𝛾(𝑢0). Substituting (13) and 𝛾(𝑢) = ∑∞𝑛=0 ℘𝑛𝐻𝑛 into (12) and
equating the terms with identical powers of ℘, we obtain the
following accelerated recursive formula:

℘0: 𝑢0 (𝑥1, 𝚥1)
= 𝐿−1 ( ̇𝑓 (𝑥1, 𝚥1)𝑃𝑘 (𝑥1, 𝚥1)) + 𝑘−1∑

𝑟=0

1(𝑟!) (𝑥1 − 𝚥1)𝑟 𝑔𝑟,
℘𝑖+1: 𝑢𝑖+1 (𝑥1, 𝚥1)

= 𝐿−1 (∫𝑥1
𝑎

∫
Ω

𝐹 (𝑥1, 𝚥1, 𝑦, 𝜏)𝑃𝑘 (𝑥1, 𝚥1) 𝐻𝑖𝑑𝑦𝑑𝜏)
− 𝐿−1(𝑘−1∑

𝑗=0

𝑃𝑗 (𝑥1, 𝚥1)𝑃𝑘 (𝑥1, 𝚥1)𝐿 𝑖𝑗) , 𝑖 ≥ 0.

(21)

For example, if 𝛾(𝑢) = 𝑢3, the first four polynomials using
formulas (16) and (20) are computed to be as follows.

Using formula (16),

𝐻̆0 = 𝑢30.
𝐻̆1 = 3𝑢20𝑢1.
𝐻̆2 = 3𝑢0𝑢21 + 3𝑢20𝑢2.
𝐻̆3 = 𝑢31 + 6𝑢0𝑢1𝑢2 + 3𝑢20𝑢3.
𝐻̆4 = 3𝑢21𝑢2 + 3𝑢0𝑢22 + 6𝑢0𝑢1𝑢3 + 3𝑢20𝑢4.

(22)

Using formula (20),

𝐻0 = 𝑢30.
𝐻1 = 3𝑢20𝑢1 + 3𝑢0𝑢21 + 𝑢31.
𝐻2 = 3𝑢20𝑢2 + 3𝑢0𝑢22 + 3𝑢21𝑢2 + 3𝑢1𝑢22 + 6𝑢0𝑢1𝑢2

+ 𝑢32.
𝐻3 = 3𝑢20𝑢3 + 3𝑢0𝑢23 + 3𝑢21𝑢3 + 3𝑢1𝑢23 + 3𝑢22𝑢3

+ 3𝑢2𝑢23 + 6𝑢0𝑢1𝑢3 + 6𝑢0𝑢2𝑢3 + 6𝑢1𝑢2𝑢3
+ 𝑢33.

𝐻4 = 3𝑢20𝑢4 + 3𝑢0𝑢24 + 3𝑢21𝑢4 + 3𝑢1𝑢24 + 3𝑢22𝑢4
+ 3𝑢2𝑢24 + 3𝑢23𝑢4 + 3𝑢3𝑢24 + 6𝑢0𝑢1𝑢4
+ 6𝑢0𝑢2𝑢4 + 6𝑢0𝑢3𝑢4 + 6𝑢1𝑢2𝑢4 + 6𝑢1𝑢3𝑢4
+ 6𝑢2𝑢3𝑢4 + 𝑢34.

(23)

Clearly, the first four polynomials computed using the
suggested formula (20) include the first four polynomials
computed using formula (16) in addition to other terms that
should appear in 𝐻̆5, 𝐻̆6, 𝐻̆7, . . . using formula (16). Thus,
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the solution that was obtained using formula (20) enforces
many terms to the calculation processes earlier, yielding faster
convergence.

5. The VIM

Consider the differential equation

𝚤𝑢 + ℵ𝑢 = ̇𝑓 (𝑥1) , (24)

where 𝚤 is a linear operator, ℵ is a nonlinear operator, anḋ𝑓(𝑥1) is a given continuous function. The VIM presents a
correction functional for (24) in the form

𝑢𝑖+1 (𝑥1) = 𝑢𝑖 (𝑥1)
+ ∫𝑥1
0

𝜆 (𝜍) (𝚤𝑢𝑖 (𝜍) + ℵ𝑢̃𝑖 (𝜍) − ̇𝑓 (𝜍)) 𝑑𝜍, (25)

where 𝜆 is a Lagrangemultiplier [8, 9] which can be identified
optimally via variational theory, 𝑢𝑖 is the 𝑛th approximate
solution, and 𝑢̃𝑖 denotes a restricted variation (i.e., 󰜚𝑢𝑖 = 0).
6. Adapting VIM with HPM for Solving
(1) and (2)

This modified version of VHPM is obtained by the coupling
of VIM with HPM. First, by using formula (16), we obtain

∞∑
𝑖=0

℘𝑖𝑢𝑖+1 (𝑥1, 𝚥1) = 𝑢𝑖 (𝑥1, 𝚥1) + ℘∫𝚥1
0

𝜆 (𝜍)

⋅ [[
∞∑
𝑖=0

℘𝑖𝑢𝑘𝑖 (𝑥1, 𝜍) − ̇𝑓 (𝑥1, 𝜍)𝑃𝑘 (𝑥1, 𝜍)
− ∫𝑥1
𝑎

∫
Ω

𝐹 (𝑥1, 𝜍, 𝑦, 𝜏)𝑃𝑘 (𝑥1, 𝜍)
∞∑
𝑖=0

℘𝑖𝐻̆𝑖𝑑𝑦𝑑𝜏

+ 𝑘−1∑
𝑗=0

𝑃𝑗 (𝑥1, 𝜍)𝑃𝑘 (𝑥1, 𝜍) (
∞∑
𝑖=0

℘𝑖𝑢𝑗𝑖 (𝑥1, 𝜍))]]𝑑𝜍

(26)

which is called VHPM.
Second, by using formula (20),

∞∑
𝑖=0

℘𝑖𝑢𝑖+1 (𝑥1, 𝚥1) = 𝑢𝑖 (𝑥1, 𝚥1) + ℘∫𝚥1
0

𝜆 (𝜍)

⋅ [[
∞∑
𝑖=0

℘𝑖𝑢𝑘𝑖 (𝑥1, 𝜍) − ̇𝑓 (𝑥1, 𝜍)𝑃𝑘 (𝑥1, 𝜍)
− ∫𝑥1
𝑎

∫
Ω

𝐹 (𝑥1, 𝜍, 𝑦, 𝜏)𝑃𝑘 (𝑥1, 𝜍)
∞∑
𝑖=0

℘𝑖𝐻𝑖𝑑𝑦𝑑𝜏

+ 𝑘−1∑
𝑗=0

𝑃𝑗 (𝑥1, 𝜍)𝑃𝑘 (𝑥1, 𝜍) (
∞∑
𝑖=0

℘𝑖𝑢𝑗𝑖 (𝑥1, 𝜍))]]𝑑𝜍

(27)

which is called VAHPM.

The following is the algorithm for calculating 𝑢0, 𝑢1,𝑢2, . . . , 𝑢𝑛−1, 𝑢𝑛:
Step 1: input nonlinear term 𝛾(𝑢𝑙) and 𝑛 that is
the order of He’s polynomials, endpoint 𝑎, 𝑏, initial
conditions𝑔1, 𝑔2, . . . , 𝑔𝑟, free term, and𝐹(𝑥1, 𝚥1, 𝑦, 𝜏).
Step 2: set 𝑢 = 𝑢0 + ℘𝑢1 + ℘2𝑢2 + ⋅ ⋅ ⋅ + ℘𝑛𝑢𝑛.
Step 3: let∑𝑛𝑘=0 ℘𝑘𝐻̆𝑘 = 𝛾(𝑢0+℘𝑢1+℘2𝑢2+⋅ ⋅ ⋅+℘𝑛𝑢𝑛).
Step 4: For 𝑖 = 0, 1, . . . , 𝑛, do
(a) 𝑖th-order derivative of both sides of the equality
with respect to ℘:

𝜕𝑖 (∑𝑛𝑘=0 ℘𝑘𝐻̆𝑘)𝜕℘𝑖
= 𝜕𝛾 (𝑢0 + ℘𝑢1 + ℘2𝑢2 + ⋅ ⋅ ⋅ + ℘𝑛𝑢𝑛)𝜕℘𝑖 ;

(28)

(b) let ℘ = 0 of the above equality and determine 𝐻̆𝑖
by solving the equation with respect to 𝐻̆𝑖.
End do.

Step 5: put 𝑢0 = initial conditions.

Step 6: for 𝑖 = 1, . . . , 𝑛, do
Step 7: calculate 𝑢𝑖 by applying (26),
end do.

Step 8: set 𝑢 = lim𝑖→∞𝑢𝑖 as the approximate of the
exact solution.

7. Convergence Analysis

In this section, the sufficient condition that guarantees the
existence of a unique solution is introduced in Theorem 1,
convergence of the methods is proved in Theorems 2 and
3, and finally the maximum absolute error of the truncated
series (𝑢𝑖(𝑥1, 𝚥1) = ∑∞𝑖=0 𝑢𝑖(𝑥1, 𝚥1)) is estimated inTheorem 4.

Considering (10), we set

𝐿−1 ( ̇𝑓 (𝑥1, 𝚥1)𝑃𝑘 (𝑥1, 𝚥1)) + 𝑘−1∑
𝑟=0

1(𝑟!) (𝑥1 − 𝚥1)𝑟 𝑔𝑟
= 𝑓1 (𝑥1, 𝚥1) ,

𝑘1 (𝑥1, 𝚥1) = ∫
Ω

(𝑥1 − 𝚥1)𝑘(𝑘)! 𝐹 (𝑥1, 𝚥1, 𝑦, 𝜏)𝑃𝑘 (𝑥1, 𝚥1) 𝑑𝑦
𝑘2 (𝑥1, 𝚥1) = (𝑥1 − 𝚥1)𝑘−1(𝑘 − 1)!

𝑃𝑗 (𝑥1, 𝚥1)𝑃𝑘 (𝑥1, 𝚥1) .

(29)
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We can write (10) as

𝑢 (𝑥1, 𝚥1) = 𝑓1 (𝑥1, 𝚥1)
+ ∫𝑥1
𝑎

𝑘1 (𝑥1, 𝚥1) 𝛾 (𝑢𝑙 (𝑦, 𝜏)) 𝑑𝜏−
⋅ 𝑘−1∑
𝑗=0

∫𝑥1
𝑎

𝑘2 (𝑥1, 𝚥1) 𝑢𝑗 (𝑥1, 𝚥1) 𝑑𝚥1.
(30)

We assume 𝑓1(𝑥1, 𝚥1) is bounded for all 𝑥1, 𝚥1 in ́𝐽 and
󵄨󵄨󵄨󵄨𝑘1 (𝑥1, 𝚥1)󵄨󵄨󵄨󵄨 ≤ 𝑁1󵄨󵄨󵄨󵄨𝑘2 (𝑥1, 𝚥1)󵄨󵄨󵄨󵄨 ≤ 𝑁1𝑗 , 𝑗 = 0, 1, . . . , 𝑘 − 1, ∀𝑥1, 𝚥1 ∈ ́𝐽. (31)

Also, we suppose the nonlinear terms 𝛾(𝑢𝑙(𝑥1, 𝚥1)) and𝐷𝑗(𝑢(𝑥1, 𝚥1)) are Lipschitz continuous with
󵄨󵄨󵄨󵄨󵄨󵄨𝛾 (𝑢(𝑙) (𝑥1, 𝚥1)) − 𝛾 (𝑢(𝑙)∗ (𝑥1, 𝚥1))󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑑 󵄨󵄨󵄨󵄨𝑢 (𝑥1, 𝚥1) − 𝑢∗ (𝑥1, 𝚥1)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐷𝑗 (𝑢 (𝑥1, 𝚥1)) − 𝐷𝑗 (𝑢∗ (𝑥1, 𝚥1))󵄨󵄨󵄨󵄨󵄨
≤ 𝑍𝑗 󵄨󵄨󵄨󵄨𝑢 (𝑥1, 𝚥1) − 𝑢∗ (𝑥1, 𝚥1)󵄨󵄨󵄨󵄨 ,

𝑗 = 0, 1, . . . , 𝑘 − 1.

(32)

Hence, we set

Γ = (𝑏 − 𝑎) (𝑑𝑁1 + 𝑘𝑍𝑁) ,
𝑍 = max 󵄨󵄨󵄨󵄨󵄨𝑍𝑗󵄨󵄨󵄨󵄨󵄨 ,
𝑁 = max

󵄨󵄨󵄨󵄨󵄨󵄨𝑁1𝑗 󵄨󵄨󵄨󵄨󵄨󵄨 ,
𝑗 = 0, 1, . . . , 𝑘 − 1.

(33)

Theorem 1. Two-dimensional nonlinear VFIDE has a unique
solution whenever 0 < Γ < 1.
Proof. Let 𝑢 and 𝑢∗ be two different solutions of (30). Then,

󵄨󵄨󵄨󵄨𝑢 (𝑥1, 𝚥1) − 𝑢∗ (𝑥1, 𝚥1)󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑥1

𝑎
𝑘1 (𝑥1, 𝚥1)

⋅ [𝛾 (𝑢(𝑙) (𝑥1, 𝚥1)) − 𝛾 (𝑢(𝑙)∗ (𝑥1, 𝚥1))] 𝑑𝜏
− 𝑘−1∑
𝑗=0

∫𝑥1
𝑎

𝑘2 (𝑥1, 𝚥1)

⋅ [𝐷𝑗 (𝑢 (𝑥1, 𝚥1)) − 𝐷𝑗 (𝑢∗ (𝑥1, 𝚥1))] 𝑑𝚥1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫𝑥1
𝑎

󵄨󵄨󵄨󵄨𝑘1 (𝑥1, 𝚥1)󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨󵄨𝛾 (𝑢(𝑙) (𝑥1, 𝚥1))
− 𝛾 (𝑢(𝑙)∗ (𝑥1, 𝚥1))󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝜏 +

𝑘−1∑
𝑗=0

∫𝑥1
𝑎

󵄨󵄨󵄨󵄨𝑘2 (𝑥1, 𝚥1)󵄨󵄨󵄨󵄨
⋅ 󵄨󵄨󵄨󵄨󵄨𝐷𝑗 (𝑢 (𝑥1, 𝚥1)) − 𝐷𝑗 (𝑢∗ (𝑥1, 𝚥1))󵄨󵄨󵄨󵄨󵄨 𝑑𝚥1
≤ (𝑏 − 𝑎) (𝑑𝑁1 + 𝑘𝑍𝑁) 󵄨󵄨󵄨󵄨𝑢 (𝑥1, 𝚥1) − 𝑢∗ (𝑥1, 𝚥1)󵄨󵄨󵄨󵄨
= Γ 󵄨󵄨󵄨󵄨𝑢 (𝑥1, 𝚥1) − 𝑢∗ (𝑥1, 𝚥1)󵄨󵄨󵄨󵄨 ,

(34)

from which we get (1 − Γ)|𝑢 − 𝑢∗| ≤ 0. Since 0 < Γ < 1,
therefore |𝑢 − 𝑢∗| = 0. Therefore, 𝑢 = 𝑢∗ and this completes
the proof.

Theorem 2. The series solution 𝑢(𝑥1, 𝚥1) = ∑∞𝑖=0 𝑢𝑖(𝑥1, 𝚥1) of
(1) using HPM convergence when 0 < Γ < 1 and ‖𝑢1(𝑥1, 𝚥1)‖ <∞.

Proof. Denote with (𝐶[ ́𝐽], ‖ ⋅ ‖) the Banach space of all
continuous functions on ́𝐽 with the norm ‖ ̇𝑓(𝑥1, 𝚥1)‖ =
max | ̇𝑓(𝑥1, 𝚥1)| for all 𝑥1, 𝚥1 in ́𝐽. Define the sequence of
partial sums 𝛿𝑛, and let 𝛿𝑛 and 𝛿𝑚 be arbitrary partial sums
with 𝑛 ≥ 𝑚. We are going to prove that 𝛿𝑛 = ∑𝑛𝑖=0 𝑢𝑖(𝑥1, 𝚥1) is
a Cauchy sequence in this Banach space:

󵄩󵄩󵄩󵄩𝛿𝑛 − 𝛿𝑚󵄩󵄩󵄩󵄩 = max
∀𝑥1 ,𝚥1∈

́𝐽

󵄨󵄨󵄨󵄨𝛿𝑛 − 𝛿𝑚󵄨󵄨󵄨󵄨
= max
∀𝑥1 ,𝚥1∈

́𝐽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑛∑
𝑖=𝑚+1

𝑢𝑖 (𝑥1, 𝚥1)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= max
∀𝑥1 ,𝚥1∈

́𝐽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑛∑
𝑖=𝑚+1

[
[∫
𝑥1

𝑎
𝑘1 (𝑥1, 𝚥1)𝐻𝑖𝑑𝜏

− 𝑘−1∑
𝑗=0

∫𝑥1
𝑎

𝑘2 (𝑥1, 𝚥1) 𝐿 𝑖𝑗𝑑𝚥1]]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= max
∀𝑥1 ,𝚥1∈

́𝐽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑥1

𝑎
𝑘1 (𝑥1, 𝚥1)(𝑛−1∑

𝑖=𝑚

𝐻𝑖)𝑑𝜏

− 𝑘−1∑
𝑗=0

∫𝑥1
𝑎

𝑘2 (𝑥, 𝚥1)(𝑛−1∑
𝑖=𝑚

𝐿 𝑖𝑗)𝑑𝚥1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .

(35)

From (20), we have

𝑛−1∑
𝑖=𝑚

𝐻𝑖 = 𝛾 (𝛿𝑛−1) − 𝛾 (𝛿𝑚−1)
𝑛−1∑
𝑖=𝑚

𝐿 𝑖𝑗 = 𝐷𝑗 (𝛿𝑛−1) − 𝐷𝑗 (𝛿𝑚−1) .
(36)
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So,

󵄩󵄩󵄩󵄩𝛿𝑛 − 𝛿𝑚󵄩󵄩󵄩󵄩
= max
∀𝑥1 ,𝚥1∈

́𝐽
(󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑥1

𝑎
𝑘1 (𝑥1, 𝚥1) [𝛾 (𝛿𝑛−1) − 𝛾 (𝛿𝑚−1)] 𝑑𝜏

− 𝑘−1∑
𝑗=0

∫𝑥1
𝑎

𝑘2 (𝑥1, 𝚥1) [𝐷𝑗 (𝛿𝑛−1) − 𝐷𝑗 (𝛿𝑚−1)] 𝑑𝚥1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨)

≤ max
∀𝑥1 ,𝚥1∈

́𝐽
(∫𝑥1
𝑎

󵄨󵄨󵄨󵄨𝑘1 (𝑥1, 𝚥1)󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝛾 (𝛿𝑛−1) − 𝛾 (𝛿𝑚−1)󵄨󵄨󵄨󵄨 𝑑𝜏

+ 𝑘−1∑
𝑗=0

(∫𝑥1
𝑎

󵄨󵄨󵄨󵄨𝑘2 (𝑥1, 𝚥1)󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝐷𝑗 (𝛿𝑛−1) − 𝐷𝑗 (𝛿𝑚−1)󵄨󵄨󵄨󵄨󵄨 𝑑𝚥1))
≤ Γ 󵄩󵄩󵄩󵄩𝛿𝑛−1 − 𝛿𝑚−1󵄩󵄩󵄩󵄩 .

(37)

Let 𝑛 = 𝑚 + 1; then,
󵄩󵄩󵄩󵄩𝛿𝑚+1 − 𝛿𝑚󵄩󵄩󵄩󵄩 ≤ Γ 󵄩󵄩󵄩󵄩𝛿𝑚 − 𝛿𝑚−1󵄩󵄩󵄩󵄩 ≤ Γ2 󵄩󵄩󵄩󵄩𝛿𝑚−1 − 𝛿𝑚−2󵄩󵄩󵄩󵄩

≤ ⋅ ⋅ ⋅ ≤ Γ𝑚 󵄩󵄩󵄩󵄩𝛿1 − 𝛿0󵄩󵄩󵄩󵄩 . (38)

So,

󵄩󵄩󵄩󵄩𝛿𝑛 − 𝛿𝑚󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝛿𝑚+1 − 𝛿𝑚󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝛿𝑚+2 − 𝛿𝑚+1󵄩󵄩󵄩󵄩 + ⋅ ⋅ ⋅
+ 󵄩󵄩󵄩󵄩𝛿𝑛 − 𝛿𝑛−1󵄩󵄩󵄩󵄩

≤ [Γ𝑚 + Γ𝑚+1 + ⋅ ⋅ ⋅ + Γ𝑛−1] 󵄩󵄩󵄩󵄩𝛿1 − 𝛿0󵄩󵄩󵄩󵄩
≤ Γ𝑚 [1 + Γ + Γ2 + ⋅ ⋅ ⋅ + Γ𝑛−𝑚−1] 󵄩󵄩󵄩󵄩𝛿1 − 𝛿0󵄩󵄩󵄩󵄩
≤ Γ𝑚 [1 − Γ𝑛−𝑚1 − Γ ] 󵄩󵄩󵄩󵄩𝑢1 (𝑥1, 𝚥1)󵄩󵄩󵄩󵄩 .

(39)

Since 0 < Γ < 1, we have (1 − Γ𝑛−𝑚) < 1; then,
󵄩󵄩󵄩󵄩𝛿𝑛 − 𝛿𝑚󵄩󵄩󵄩󵄩 ≤ Γ𝑚1 − Γ max

∀𝑥1 ,𝚥1∈
́𝐽

󵄩󵄩󵄩󵄩𝑢1 (𝑥1, 𝚥1)󵄩󵄩󵄩󵄩 . (40)

But |𝑢1(𝑥1, 𝚥1)| < ∞ (since ̇𝑓1(𝑥1, 𝚥1) is bounded), so, as𝑚 → ∞, then ‖𝛿𝑛−𝛿𝑚‖ → 0.We conclude that 𝛿𝑛 is a Cauchy
sequence in 𝐶[ ́𝐽], and therefore the series is convergent and
the proof is complete.

Theorem 3. When using VIM for solving two-dimensional
nonlinear VFIDE where 0 < Γ < 1 and 𝑃𝑘(𝑥1, 𝚥1) = 1, then𝑢(𝑥1, 𝚥1) = lim𝑛→∞𝑢𝑛(𝑥1, 𝚥1) converges.
Proof. One has

𝑢𝑛+1 (𝑥1, 𝚥1) = 𝑢𝑛 (𝑥1, 𝚥1) − ∫𝚥1
0

[
[𝑢𝑛 (𝑥1, 𝜍)

− 𝑓1 (𝑥1, 𝜍) − ∫𝑥1
𝑎

𝑘1 (𝑥1, 𝜍) 𝛾 (𝑢𝑙𝑛 (𝑥1, 𝜍)) 𝑑𝜏
+ 𝑘−1∑
𝑗=0

∫𝑥1
𝑎

𝑘2 (𝑥1, 𝜍) (𝑢𝑛)𝑗 (𝑥1, 𝜍) 𝑑𝚥1]]𝑑𝜍
(41)

𝑢 (𝑥1, 𝚥1) = 𝑢 (𝑥1, 𝚥1) − ∫𝚥1
0

[
[𝑢 (𝑥1, 𝜍) − 𝑓1 (𝑥1, 𝜍)

− ∫𝑥1
𝑎

𝑘1 (𝑥1, 𝜍) 𝛾 (𝑢𝑙 (𝑥1, 𝜍)) 𝑑𝜏
+ 𝑘−1∑
𝑗=0

∫𝑥1
𝑎

𝑘2 (𝑥1, 𝜍) (𝑢)𝑗 (𝑥1, 𝜍) 𝑑𝚥1]]𝑑𝜍.
(42)

By subtracting relation (41) from (42),

𝑢𝑛+1 (𝑥1, 𝚥1) − 𝑢 (𝑥1, 𝚥1) = 𝑢𝑛 (𝑥1, 𝚥1) − 𝑢 (𝑥1, 𝚥1) − ∫𝚥1
0

[
[𝑢𝑛 (𝑥1, 𝜍) − 𝑢 (𝑥1, 𝜍)

− ∫𝑥1
𝑎

𝑘1 (𝑥1, 𝜍) [𝛾 (𝑢𝑙𝑛 (𝑥1, 𝜍)) − 𝛾 (𝑢𝑙 (𝑥1, 𝜍))] 𝑑𝜏 + 𝑘−1∑
𝑗=0

∫𝑥1
𝑎

𝑘2 (𝑥1, 𝜍) [𝐷𝑗 (𝑢𝑛 (𝑥1, 𝜍)) − 𝐷𝑗 (𝑢 (𝑥1, 𝜍)) 𝑑𝚥1]]]𝑑𝜍.
(43)

Hence, we set𝑒𝑛+1 (𝑥1, 𝚥1) = 𝑢𝑛+1 (𝑥1, 𝚥1) − 𝑢 (𝑥1, 𝚥1) ,
𝑒𝑛 (𝑥1, 𝚥1) = 𝑢𝑛 (𝑥1, 𝚥1) − 𝑢 (𝑥1, 𝚥1) . (44)

Then,

𝑒𝑛+1 (𝑥1, 𝚥1) = 𝑒𝑛 (𝑥1, 𝚥1) − ∫𝚥1
0

[
[𝑢𝑛 (𝑥1, 𝜍) − 𝑢 (𝑥1, 𝜍)

− ∫𝑥1
𝑎

𝑘1 (𝑥1, 𝜍) [𝛾 (𝑢𝑙𝑛 (𝑥1, 𝜍)) − 𝛾 (𝑢𝑙 (𝑥1, 𝜍))] 𝑑𝜏

+ 𝑘−1∑
𝑗=0

∫𝑥1
𝑎

𝑘2 (𝑥1, 𝜍)

⋅ [𝐷𝑗 (𝑢𝑛 (𝑥1, 𝜍)) − 𝐷𝑗 (𝑢 (𝑥1, 𝜍))] 𝑑𝚥1]]𝑑𝜍
≤ 𝑒𝑛 (𝑥1, 𝚥1) (1 − (𝑏 − 𝑎) (𝑑𝑁1 + 𝑘𝑍𝑁)) = (1 − Γ)
⋅ 𝑒𝑛 (𝑥1, 𝚥1) .

(45)
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Therefore,󵄩󵄩󵄩󵄩𝑒𝑛+1󵄩󵄩󵄩󵄩 = max
∀𝑥1 ,𝚥1∈

́𝐽

󵄨󵄨󵄨󵄨𝑒𝑛+1󵄨󵄨󵄨󵄨 ≤ (1 − Γ) max
∀𝑥1 ,𝚥1∈

́𝐽

󵄨󵄨󵄨󵄨𝑒𝑛󵄨󵄨󵄨󵄨 = 󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩 . (46)

Since 0 < Γ < 1, then ‖𝑒𝑛‖ → 0. So, the series converges and
the proof is complete.

Theorem 4. The maximum absolute truncation error of the
series 𝑢(𝑥1, 𝚥1) = ∑∞𝑖=0 𝑢𝑖(𝑥1, 𝚥1) to (1) is estimated to be

max
∀𝑥1 ,𝚥1∈

́𝐽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑢 (𝑥1, 𝚥1) −
𝑚∑
𝑖=0

𝑢𝑖 (𝑥1, 𝚥1)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ Γ𝑚+11 − Γ max
∀𝑥1 ,𝚥1∈

́𝐽

󵄨󵄨󵄨󵄨𝛾 (𝑢0)󵄨󵄨󵄨󵄨 .
(47)

Proof. FromTheorem 2 and inequality (40), we have

󵄩󵄩󵄩󵄩𝛿𝑛 − 𝛿𝑚󵄩󵄩󵄩󵄩 ≤ Γ𝑚1 − Γ max
∀𝑥1 ,𝚥1∈

́𝐽

󵄩󵄩󵄩󵄩𝑢1 (𝑥1, 𝚥1)󵄩󵄩󵄩󵄩 . (48)

As 𝑛 → ∞, then 𝛿𝑛 → 𝑢(𝑥1, 𝚥1) and we have

max
∀𝑥,𝑡∈ ́𝐽

󵄨󵄨󵄨󵄨𝑢1 (𝑥1, 𝚥1)󵄨󵄨󵄨󵄨
≤ (𝑏 − 𝑎) (𝑑𝑁1 + 𝑘𝑍𝑁) max

∀𝑥1 ,𝚥1∈
́𝐽

󵄨󵄨󵄨󵄨𝛾 (𝑢0)󵄨󵄨󵄨󵄨
≤ Γ max
∀𝑥1 ,𝚥1∈

́𝐽

󵄨󵄨󵄨󵄨𝛾 (𝑢0)󵄨󵄨󵄨󵄨 .
(49)

So,

󵄩󵄩󵄩󵄩𝑢 (𝑥1, 𝚥1) − 𝛿𝑚󵄩󵄩󵄩󵄩 ≤ Γ𝑚+11 − Γ max
∀𝑥1 ,𝚥1∈

́𝐽

󵄨󵄨󵄨󵄨𝛾 (𝑢0)󵄨󵄨󵄨󵄨 . (50)

Finally, the maximum absolute truncation error in the
interval ́𝐽 is

max
∀𝑥1 ,𝚥1∈

́𝐽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑢 (𝑥1, 𝚥1) −
𝑚∑
𝑖=0

𝑢𝑖 (𝑥1, 𝚥1)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ Γ𝑚+11 − Γ max
∀𝑥1 ,𝚥1∈

́𝐽

󵄨󵄨󵄨󵄨𝛾 (𝑢0)󵄨󵄨󵄨󵄨 .
(51)

8. Numerical Examples

Example 1. Consider the nonlinear integrodifferential equa-
tion

𝜕2𝑢 (𝑥1, 𝚥1)𝜕𝚥21 + 𝜕2𝑢 (𝑥1, 𝚥1)𝜕𝑥1𝜕𝚥1 − 𝑥1𝑢3 (𝑥1, 𝚥1)
+ ∫𝑥1
0

∫1
0
𝑢2 (𝑦, 𝜏) 𝑑𝑦 𝑑𝜏 = ̇𝑓 (𝑥1, 𝚥1) ,

𝑥1 ∈ [0, 1] ,
(52)

where

̇𝑓 (𝑥1, 𝚥1) = 2𝚥1 + 115𝑥31𝚥51 − 𝑥41𝚥51 + 2𝑥1, (53)

with the initial conditions

I.Cs : {{{{{{{
𝑢 (𝑥1, 0) = 0,
𝜕𝑢 (𝑥1, 0)𝜕𝚥1 = 0, (54)

which has exact solution 𝑢(𝑥1, 𝑡1) = 𝑥1𝚥21. This example
is solved by using the variational iteration method with
He’s polynomials VHPM (see (26)) and VAHPM (see (27))
expressing the nonlinear terms of 𝐻̆ and 𝐻, respectively, in
Table 1.

Example 2. Consider the nonlinear integrodifferential equa-
tion

𝑢 (𝑥1, 𝚥1) 𝜕2𝑢 (𝑥1, 𝚥1)𝜕𝚥21 − 4𝑢 (𝑥1, 𝚥1) 𝜕2𝑢 (𝑥1, 𝚥1)𝜕𝑥21
+ 4∫𝑥1
0

∫1
0
𝑢2 (𝑦, 𝜏) 𝑑𝑦 𝑑𝜏 = ̇𝑓 (𝑥1, 𝚥1) ,

𝑥1 ∈ [0, 1] ,
(55)

where

̇𝑓 (𝑥1, 𝚥1)
= (𝑥1 − 12𝜋 sin (2𝜋𝑥1)) (𝚥1 − 14𝜋 sin (4𝜋𝚥1)) , (56)

with the boundary conditions

B.Cs : 𝑢 (0, 𝚥1) = 𝑢 (1, 𝚥1) = 0 (57)

and the initial conditions

I.Cs : {{{{{{{
𝑢 (𝑥1, 0) = sin (𝜋𝑥1) , 0 ≤ 𝑥1 ≤ 1
𝜕𝑢 (𝑥1, 0)𝜕𝚥1 = 0, 0 ≤ 𝑥1 ≤ 1, (58)

which has exact solution 𝑢(𝑥1, 𝚥1) = sin(𝜋𝑥1) cos(2𝜋𝚥1). This
example is solved by using VHPM (see (26)) and VAHPM
(see (27)) expressing the nonlinear terms of 𝐻̆ and 𝐻,
respectively, in Table 2.

9. Conclusion

In this paper, we applied VHPM and VAHPM to solve non-
linear mixed VFIDE.The proposed VAHPM converges faster
than the VHPM. Based on the proposed formula (27) with
accelerated He’s polynomials formula (20), the convergence
of the technique is proved. The presented technique is very
easy to implement and it reduces the computation size.
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Table 1: Exact solution, approximate solution, and error by using VHPM and VAHPM.

𝑥1 𝚥1 Exact Appr.(VHPM) Err.(VHPM) Appr.(VAHPM) Err.(VAHPM)0.00𝐸 + 00 0.00𝐸 + 00 0.00000𝐸 + 00 0.00000𝐸 + 00 0.00000𝐸 + 00 0.00000𝐸 + 00 0.00000𝐸 + 003.00𝐸 − 03 3.00𝐸 − 03 2.70000𝐸 − 08 9.90000𝐸 − 08 2.70000𝐸 − 08 3.60000𝐸 − 08 9.00000𝐸 − 095.00𝐸 − 03 5.00𝐸 − 03 1.25000𝐸 − 07 4.58330𝐸 − 07 3.33333𝐸 − 07 1.66667𝐸 − 07 4.16670𝐸 − 087.00𝐸 − 03 7.00𝐸 − 03 3.43000𝐸 − 07 1.25767𝐸 − 06 9.14670𝐸 − 07 4.57333𝐸 − 07 1.14333𝐸 − 079.00𝐸 − 03 9.00𝐸 − 02 7.290000𝐸 − 07 2.67300𝐸 − 06 1.94400𝐸 − 06 9.72000𝐸 − 07 2.43000𝐸 − 07
Table 2: Exact solution, approximate solution, and error by using VHPM and VAHPM.

𝑥1 𝚥1 Exact Appr.(VHPM) Err.(VHPM) Appr.(VAHPM) Err.(VAHPM)0.00𝐸 + 00 0.00𝐸 + 00 0.00000𝐸 + 00 0.00000𝐸 + 00 0.00000𝐸 + 00 0.00000𝐸 + 00 0.00000𝐸 + 003.00𝐸 − 03 3.00𝐸 − 03 9.42295𝐸 − 03 9.41128𝐸 − 03 1.16700𝐸 − 05 9.42443𝐸 − 03 1.48000𝐸 − 065.00𝐸 − 03 5.00𝐸 − 03 1.56997𝐸 − 02 1.56384𝐸 − 02 6.13000𝐸 − 05 1.57054𝐸 − 02 5.70000𝐸 − 067.00𝐸 − 03 7.00𝐸 − 03 2.19680𝐸 − 02 2.17975𝐸 − 02 1.70500𝐸 − 04 2.19817𝐸 − 02 1.37000𝐸 − 059.00𝐸 − 03 9.00𝐸 − 02 2.82253𝐸 − 02 2.78610𝐸 − 02 3.64300𝐸 − 04 2.82534𝐸 − 02 2.81000𝐸 − 05
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