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We carry out a classification of Lie symmetries for the (2 + 1)-dimensional nonlinear damped wave equation 𝑢𝑡𝑡 + 𝑓(𝑢)𝑢𝑡 =
div(𝑔(𝑢)grad𝑢) with variable damping. Similarity reductions of the equation are performed using the admitted Lie symmetries
of the equation and some interesting solutions are presented. Employing the multiplier approach, admitted conservation laws of
the equation are constructed for some new, interesting cases.

1. Introduction

The wave equation is a mathematical model that is used to
describe the propagations of waves as they occur in physics.
It arises in many fields like acoustics, electromagnetism, fluid
mechanics, general relativity, hydrodynamics, and quantum
mechanics [1, 2]. Therefore, investigating the wave equations
remains one of the hottest areas of research in applied
mathematics.

Historically, the first serious attempt to understand wave
behavior dates back to the sixth century BCwhen Pythagoras
studied the properties of sound waves produced by a string
in musical instrument [3]. During the scientific revolution,
rapid advances in understanding waves were made due to the
works of many prominent scientists such as Bynam et al. [4].
Furthermore, a revolutionary change in human perception of
wave phenomena took place in the nineteenth century when
Maxwell formulated his electromagnetic field theory [5].

In fact, mathematicians focused their attention in inves-
tigating the formation and motion of waves. Thus, extensive
studies have been conducted to obtain exact solutions to both
linear and nonlinear wave equations. In this context, Cajori
and Farlow obtained the first exact solution to the linear
wave equation [6, 7]. Further researches have been conducted
to investigate the nonlinear wave equations where different

approximate and numericmethods have been developed; see,
for example, [8–15].

Nevertheless, the classical wave model lacks the ability to
predict the behavior of wave phenomena arising in physical
systems under certain circumstances. Such situations are
frequently met when dealing with waves whose behavior
exhibits diffusion phenomena which can only be described
using the damped wave equation.

A damped wave in general is a wave whose amplitude of
oscillation decreases with time. This damping is expressed
mathematically by coupling an extra term to the classical
wave equation. The additional term has the effect of control-
ling the speed of oscillation [16]. Thus, the damped equa-
tion model can describe effectively many physical systems
involving processes that dissipate the energy stored in the
oscillation. In order to understand these physical systems, the
damped wave equations need to be investigated.

In fact, many authors have studied different classes of
damped wave equations by investigating their solutions or
by studying their asymptotic behavior [17–19]. Some other
researchers adopted the numerical approach in tackling this
type of equations [20]. However, studying damped wave
equations in terms of Lie point symmetries admitted by
them was not sufficiently addressed in literature. Indeed,
attention was focused so far on classifying symmetries of
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classical wave equations. In this context, a lot ofwork has been
published; see, for example, [21–23]. Ibragimov extended this
kind of work to the damped wave equations. For example, he
studied different forms of unperturbed damped wave equa-
tions by classifying their Lie symmetries [23]. Some other
researchers implemented the symmetries of certain classes
of damped wave equations to obtain analytical solutions
[24].

Indeed, one of the main applications of symmetries is
the construction of conservation laws for a given system.
The link between conservation laws and symmetries was first
introduced by Noether in 1918 [25, 26]. Although Noether’s
theorem provides a very powerful method for obtaining
conservation laws, it has a limitation in the sense that it is only
applicable for variational PDEs as it requires the existence
of a Lagrangian. Therefore, the multiplier approach has been
developed for deriving conservation laws for variational and
nonvariational PDEs. The procedure of obtaining conserva-
tion laws using the multiplier approach is explained in many
references; see, for example, [27, 28].

The aim of this paper is to extend the investigation of
damped wave equations of Ibragimov [22] by considering the
(2 + 1)-dimensional nonlinear damped wave equation given
by

𝑢𝑡𝑡 + 𝑓 (𝑢) 𝑢𝑡 = div (𝑔 (𝑢) grad 𝑢) , (1)

where the equation will be classified in terms of Lie point
symmetries it admits. These symmetries will be utilized
in performing different similarity reductions and, where
possible, exact solutions will be obtained. Furthermore, the
obtained symmetries will be exploited to construct conserva-
tion laws for some cases of interest by applying the multiplier
approach.

2. Symmetry Classification of
the Damped Wave Equation

We will consider (1) which can be equivalently written in the
following form:

𝑢𝑡𝑡 + 𝑓 (𝑢) 𝑢𝑡 = 𝑔 (𝑢) (𝑢𝑥𝑥 + 𝑢𝑦𝑦) + 𝑔 (𝑢) (𝑢2𝑥 + 𝑢2𝑦) . (2)

A symmetry of a differential equation in general is a trans-
formation that keeps its family of solutions invariant. To
obtain the symmetry algebra of (2), we take the infinitesimal
generator of symmetry algebra of the form

𝑋 = 𝜉 𝜕
𝜕𝑥 + 𝛾 𝜕

𝜕𝑦 + 𝜏 𝜕𝜕𝑡 + 𝜙 𝜕
𝜕𝑢 , (3)

where the coefficients 𝜉, 𝛾, 𝜏, and 𝜙 are functions of 𝑥, 𝑦, 𝑡,
and 𝑢. Using the invariance condition, that is, applying the

2nd prolongation 𝑋[2] to (2), yields the following system of
determining equations:

𝜉𝑢 = 𝛾𝑢 = 𝜏𝑢 = 𝜙𝑢𝑢 = 0, (4)

𝜉𝑡 − 𝑔 (𝑢) 𝜏𝑥 = 0, (5)

𝜉𝑦 + 𝛾𝑥 = 0, (6)

𝛾𝑡 − 𝑔 (𝑢) 𝜏𝑦 = 0, (7)

𝑓𝑢𝜙 + 𝑓 (𝑢) 𝜏𝑡 − 𝜏𝑡𝑡 + 𝑔 (𝑢) 𝜏𝑥𝑥 + 𝑔 (𝑢) 𝜏𝑦𝑦 + 2𝜙𝑡𝑢 = 0, (8)

− 𝑓 (𝑢) 𝛾𝑡 − 𝛾𝑡𝑡 + 𝑔 (𝑢) 𝛾𝑥𝑥 + 𝑔 (𝑢) 𝛾𝑦𝑦 − 2𝑔 (𝑢) 𝜙𝑦𝑢
= 0, (9)

− 𝑓 (𝑢) 𝜉𝑡 − 𝜉𝑡𝑡 + 𝑔 (𝑢) 𝜉𝑥𝑥 + 𝑔 (𝑢) 𝜉𝑦𝑦 − 2𝑔 (𝑢) 𝜙𝑥𝑢
= 0, (10)

𝑓 (𝑢) 𝜙𝑡 + 𝜙𝑡𝑡 − 𝑔 (𝑢) 𝜙𝑥𝑥 − 𝑔 (𝑢) 𝜙𝑦𝑦 = 0, (11)

− 𝑔𝑢𝜙 + 2𝑔 (𝑢) 𝜉𝑥 − 2𝑔 (𝑢) 𝜏𝑡 = 0, (12)

− 𝑔𝑢𝜙 + 2𝑔 (𝑢) 𝛾𝑦 − 2𝑔 (𝑢) 𝜏𝑡 = 0. (13)

Since we are interested in classifying Lie symmetries and
corresponding solutions of (2), we start by writing (13) in the
form

𝑔𝑢𝑔 𝜙 = 2𝛾𝑦 − 2𝜏𝑡. (14)

From the above equation, two cases are considered; namely,𝜙 = 0 and 𝜙 ̸= 0. We discuss each case separately as follows.

Case 1 (𝜙 = 0). Substituting 𝜙 = 0 in the overdetermined
system, (4)–(13), leads to the following solution:

𝜏 = 𝑐1,
𝜉 = 𝑐2 − 𝑐4𝑦,
𝛾 = 𝑐3 + 𝑐4𝑥.

(15)

The above solution is valid for arbitrary𝑓 and arbitrary 𝑔 and
consequently leads to the minimal subalgebra group ⟨𝐺4⟩ of
vector fields ⟨𝜕/𝜕𝑡, 𝜕/𝜕𝑥, 𝜕/𝜕𝑦, 𝑥(𝜕/𝜕𝑦) − 𝑦(𝜕/𝜕𝑥)⟩.
Case 2 (𝜙 ̸= 0). In this case we can reconsider (14) by writing
in the form

𝑔𝑢𝑔 = 2𝛾𝑦 − 2𝜏𝑡
𝜙 . (16)

Since the left hand side of (16) depends only on 𝑢, it can be
put in the form

𝑔𝑢𝑔 = 2𝛾𝑦 − 2𝜏𝑡
𝜙 = ℎ (𝑢) . (17)
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At this stage, we consider three possibilities; namely, ℎ(𝑢) = 0,ℎ(𝑢) = constant ̸= 0, and ℎ(𝑢) functionally depending on 𝑢.
Case 2.1 (ℎ(𝑢) = 0). In this case, (17) can be put in the form

𝑔𝑢𝑔 = 2𝛾𝑦 − 2𝜏𝑡
𝜙 = 0. (18)

From the above equation it is instantly found that 𝑔(𝑢) = 𝛼
while 𝛾𝑦 = 𝜏𝑡. Substituting for 𝑔 in (10) and differentiating the
resulting equation with respect to 𝑢 give

𝑓𝑢𝜉𝑡 = 0. (19)

Thus, three cases arise from (19); namely, (1) 𝑓𝑢 ̸= 0, 𝜉𝑡 = 0,
(2) 𝑓𝑢 = 0, 𝜉𝑡 ̸= 0, and (3) 𝑓𝑢 = 𝜉𝑡 = 0, which we consider one
by one.

Case 2.1.1 (𝑓𝑢 ̸= 0, 𝜉𝑡 = 0). Differentiating (8) with respect to𝑢 gives

𝑓𝑢𝑢𝜙 + 𝑓𝑢𝜙𝑢 + 𝑓𝑢𝜏𝑡 = 0. (20)

Since 𝑓𝑢 ̸= 0, the above equation can be written as

𝑓𝑢𝑢𝑓𝑢 = −𝜙𝑢 + 𝜏𝑡𝜙 = 𝐺 (𝑢) . (21)

Notice that (21) generates three possibilities;𝐺(𝑢) = 0,𝐺(𝑢) =
constant ̸= 0, and 𝐺(𝑢) ̸= 0.
Case 2.1.1a (𝐺(𝑢) = 0). Hence, (21) becomes

𝑓𝑢𝑢𝑓𝑢 = −𝜙𝑢 + 𝜏𝑡𝜙 = 0. (22)

Solving (22) and substituting the solution in the overdeter-
mined system (see (4)–(13)) produce the following solution:

𝜏 = 𝑐1 + 𝑐5𝑡,
𝜉 = 𝑐2 + 𝑐5𝑥 − 𝑐4𝑦,
𝛾 = 𝑐3 + 𝑐4𝑥 + 𝑐5𝑦,
𝜙 = −𝑐5 (𝜎𝛽 + 𝑢) ,

(23)

with 𝑓(𝑢) = 𝛽𝑢 + 𝜎 such that 𝛽 ̸= 0. The generators of
the five-dimensional symmetry group are generated by vector
fields given by ⟨𝜕/𝜕𝑡, 𝜕/𝜕𝑥, 𝜕/𝜕𝑦, 𝑥(𝜕/𝜕𝑦)−𝑦(𝜕/𝜕𝑥), 𝑡(𝜕/𝜕𝑡)+𝑥(𝜕/𝜕𝑥) + 𝑦(𝜕/𝜕𝑦) − (𝜎/𝛽 + 𝑢)(𝜕/𝜕𝑢)⟩.
Case 2.1.1b (𝐺(𝑢) = 𝛽 ̸= 0). In this case (21) takes the form

𝑓𝑢𝑢𝑓𝑢 = −𝜙𝑢 + 𝜏𝑡𝜙 = 𝛽. (24)

Following the method adopted in Case 2.1.1a leads to the
following solution of the overdetermined system equations
(4)–(13):

𝜏 = 𝑐1 − 𝑐5𝑡,
𝜉 = 𝑐2 − 𝑐5𝑥 − 𝑐4𝑦,
𝛾 = 𝑐3 + 𝑐4𝑥 − 𝑐5𝑦,
𝜙 = 𝑐5𝛽 ,

(25)

with 𝑓(𝑢) = (𝜎/𝛽)𝑒𝛽𝑢 and 𝜎 ̸= 0 and 𝛽 ̸= 0. The cor-
responding algebra of the 5-symmetry group is spanned by⟨𝜕/𝜕𝑡, 𝜕/𝜕𝑥, 𝜕/𝜕𝑦, 𝑥(𝜕/𝜕𝑦) − 𝑦(𝜕/𝜕𝑥), −𝑡(𝜕/𝜕𝑡) − 𝑥(𝜕/𝜕𝑥) −𝑦(𝜕/𝜕𝑦) + (1/𝛽)(𝜕/𝜕𝑢)⟩.
Case 2.1.1c (𝐺(𝑢) ̸= 0). To deal with this case, we first
differentiate (21) with respect to 𝑢 to obtain

𝐺 (𝑢) 𝜙𝑢 + 𝐺 (𝑢) 𝜙 = 0. (26)

It is straightforward to solve the above equation to get

𝜙 = 𝐴 (𝑡, 𝑥, 𝑦)
𝐺 (𝑢) . (27)

Substituting (27) in (4) yields

𝐺 (𝑢) = 1
𝛽𝑢 + 𝜌 . (28)

Hence, (27) becomes

𝜙 = 𝐴 (𝑡, 𝑥, 𝑦) (𝛽𝑢 + 𝜌) . (29)

Also, (21) can be recast as

𝑓𝑢𝑢𝑓𝑢 = 1
𝛽𝑢 + 𝜌 . (30)

Solving the above equation immediately yields

𝑓 (𝑢) = 𝜎
𝛽 + 1 (𝛽𝑢 + 𝜌)1+1/𝛽 , (31)

where 𝛽 ∉ {0, −1}. After some more manipulation, the
following solution of the overdetermined system equations
(4)–(13) is obtained:

𝜏 = 𝑐1 + 𝑐5𝑡,
𝜉 = 𝑐2 + 𝑐5𝑥 − 𝑐4𝑦,
𝛾 = 𝑐3 + 𝑐4𝑥 + 𝑐5𝑦,
𝜙 = − 𝑐5𝛽 + 1 (𝛽𝑢 + 𝜌) ,

(32)

with𝑔(𝑢) = 𝛼. Accordingly, the vector fields generating a five-
parameter Lie group are given by ⟨𝜕/𝜕𝑡, 𝜕/𝜕𝑥, 𝜕/𝜕𝑦, 𝑥(𝜕/𝜕𝑦)−
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𝑦(𝜕/𝜕𝑥), 𝑡(𝜕/𝜕𝑡) + 𝑥(𝜕/𝜕𝑥) + 𝑦(𝜕/𝜕𝑦) − (1/(𝛽 + 1))(𝛽𝑢 +𝜌)(𝜕/𝜕𝑢)⟩.
Case 2.1.2 (𝑓𝑢 = 0, 𝜉𝑡 ̸= 0). In this case, 𝑓(𝑢) = 𝛽. Hence,
since both functions𝑓 and 𝑔 are constant; thenwe expect this
case to give themaximal set of Lie symmetries. After carrying
out some calculations it turns out that the obtained solution
of the determining system is

𝜏 = 𝑐1 + 2𝑐5𝑥 + 2𝑐6𝑦,
𝜉 = 𝑐2 + 2𝑐5𝛼𝑡 − 𝑐4𝑦,
𝛾 = 𝑐3 + 2𝑐6𝛼𝑡 + 𝑐4𝑥,
𝜙 = (𝑐7 − 𝑐5𝛽𝑥 − 𝑐6𝛽𝑦) 𝑢 + 𝐴 (𝑡, 𝑥, 𝑦) ,

(33)

where 𝐴(𝑡, 𝑥, 𝑦) satisfies the differential constraint given by

𝛽𝐴 𝑡 + 𝐴 𝑡𝑡 − 𝛼𝐴𝑥𝑥 − 𝛼𝐴𝑦𝑦 = 0. (34)

As a result, this case admits the 7-group Lie symmetries
given by ⟨𝜕/𝜕𝑡, 𝜕/𝜕𝑥, 𝜕/𝜕𝑦, 𝑥(𝜕/𝜕𝑦) − 𝑦(𝜕/𝜕𝑥), 2𝑥(𝜕/𝜕𝑡) +2𝛼𝑡(𝜕/𝜕𝑥) − 𝛽𝑥𝑢(𝜕/𝜕𝑢), 2𝑦(𝜕/𝜕𝑡) + 2𝛼𝑡(𝜕/𝜕𝑦) − 𝛽𝑦𝑢(𝜕/𝜕𝑢),𝑢(𝜕/𝜕𝑢)⟩ along with an arbitrary symmetry 𝐴(𝑡, 𝑥, 𝑦)(𝜕/𝜕𝑢).
Case 2.1.3 (𝑓𝑢 = 𝜉𝑡 = 0). It turns out that this case leads to
finite six-dimensional symmetry algebra which is a subset of
the algebra obtained in Case 2.1.2.

Case 2.2 (ℎ(𝑢) = constant ̸= 0). In this case (17) takes the
form

𝑔𝑢𝑔 = 2𝛾𝑦 − 2𝜏𝑡
𝜙 = 𝛼, (35)

which can be easily integrated over 𝑢 to give

𝑔 (𝑢) = 𝛽𝑒𝛼𝑢. (36)

Also, solving (35) for 𝜙 yields

𝜙 = 𝐴 (𝑡, 𝑥, 𝑦) . (37)

Using (37) in the overdetermined system, (4)–(13), and after
manipulating further leads to the following solution:

𝜏 = 𝑐1 + 𝑐5𝑡,
𝜉 = 𝑐2 − 𝑐4𝑦 + 𝑐5 (1 − 𝛼

2𝜎)𝑥,
𝛾 = 𝑐3 + 𝑐4𝑥 + 𝑐5 (1 − 𝛼

2𝜎)𝑦,
𝜙 = −𝑐5𝜎 ,

(38)

subject to 𝑓(𝑢) = (𝜌/𝜎)𝑒𝜎𝑢, where 𝜎 ∉ {0, 𝛼/2}. The sym-
metry algebra for this case is generated by the following five
vector fields ⟨𝜕/𝜕𝑡, 𝜕/𝜕𝑥, 𝜕/𝜕𝑦, 𝑥(𝜕/𝜕𝑦) − 𝑦(𝜕/𝜕𝑥), 𝑡(𝜕/𝜕𝑡) +(1 − 𝛼/2𝜎)𝑥(𝜕/𝜕𝑥) + (1 − 𝛼/2𝜎)𝑦(𝜕/𝜕𝑦) − (1/𝜎)(𝜕/𝜕𝑢)⟩.
Case 2.3 (ℎ(𝑢) ̸= 0). In this case, we write (17) as

𝜙ℎ (𝑢) = 2𝛾𝑦 − 2𝜏𝑡. (39)

Differentiating the above equation with respect to 𝑢 and
solving immediately give

𝜙 = 𝐴 (𝑡, 𝑥, 𝑦)
ℎ (𝑢) , (40)

where 𝐴(𝑡, 𝑥, 𝑦) is an integration function. Substituting (40)
in (4) gives

ℎ (𝑢) = 1
𝛼𝑢 + 𝛽 . (41)

Consequently, (40) becomes

𝜙 = 𝐴 (𝑡, 𝑥, 𝑦) (𝛼𝑢 + 𝛽) . (42)

After some more manipulations, (42) reduces to

𝜙 = 𝐴 (𝑡) (𝛼𝑢 + 𝛽) . (43)

Using (41) in (17) gives

𝑔𝑢𝑔 = 1
𝛼𝑢 + 𝛽, (44)

which on integration over 𝑢 becomes

𝑔 (𝑢) = 𝜆 (𝛼𝑢 + 𝛽)1/𝛼 . (45)

Furthermore, simple calculations show that 𝜏 is a function of 𝑡
only. At this point, substituting (43) in (8) and differentiating
the resulting equation with respect to 𝑢 we obtain

𝑓𝑢𝑢 (𝛼𝑢 + 𝛽)𝐴 (𝑡) = (−𝛼𝐴 (𝑡) − 𝜏𝑡) 𝑓𝑢. (46)

At this stage we consider two possibilities; namely,𝑓𝑢 ̸= 0 and𝑓𝑢 = 0.
Case 2.3.1 (𝑓𝑢 ̸= 0). After some manipulations the following
solution is obtained:

𝜏 = 𝑐1 − 2𝑐5 (𝛼 + 𝜎)
1 − 2 (𝛼 + 𝜎) 𝑡,

𝜉 = 𝑐2 − 𝑐4𝑦 + 𝑐5𝑥,
𝛾 = 𝑐3 + 𝑐4𝑥 + 𝑐5𝑦,
𝜙 = 2𝑐51 − 2 (𝛼 + 𝜎) (𝛼𝑢 + 𝛽) ,

(47)

where 𝑓(𝑢) = (𝜌/(𝜎 + 𝛼))(𝛼𝑢 + 𝛽)𝜎/𝛼+1, provided that 𝜎 +𝛼 ̸= 0 and 𝛼 ̸= 0. As a result, the symmetry algebra for
this case is constructed, generating a five-parameter group⟨𝜕/𝜕𝑡, 𝜕/𝜕𝑥, 𝜕/𝜕𝑦, 𝑥(𝜕/𝜕𝑦) − 𝑦(𝜕/𝜕𝑥), −(2(𝛼 + 𝜎)/(1 − 2(𝛼 +
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𝜎)))𝑡(𝜕/𝜕𝑡) + 𝑥(𝜕/𝜕𝑥) + 𝑦(𝜕/𝜕𝑦) + (2(𝛼𝑢 + 𝛽)/(1 − 2(𝛼 +𝜎)))(𝜕/𝜕𝑢)⟩.
Case 2.3.2 (𝑓(𝑢) = 0). This case suggests that 𝑓(𝑢) = 𝜎.
Then, carrying out further calculations, one arrives at the
following results:

𝜏 = (𝑐5 − 𝑐72 ) 𝑡 −
𝑐62𝜎2 𝑒−𝜎𝑡 + 𝑐1,

𝜉 = 𝑐5𝑥 − 𝑐4𝑦 + 𝑐2,
𝛾 = 𝑐4𝑥 + 𝑐5𝑦 + 𝑐3,
𝜙 = (𝑐7 − 𝑐6𝜎 𝑒−𝜎𝑡) (𝛼𝑢 + 𝛽) .

(48)

Substituting (48) in (8) yields

𝜎(𝑐5 − 𝑐72 ) + 𝑐6𝑒−𝜎𝑡 (1 + 2𝛼) = 0. (49)

It is obvious that (49) leads to the following two equations:

𝑐7 = 2𝑐5, (50)

𝑐6 (1 + 2𝛼) = 0. (51)

As a result, (51) gives rise to two possibilities. Namely, 𝛼 =−1/2 and 𝑐6 = 0.
Case 2.3.2a (𝛼 = −1/2, 𝑐6 ̸= 0). Substituting (50) and the
value of 𝛼 in (48) gives

𝜏 = 𝑐1 − 𝑐62𝜎2 𝑒−𝜎𝑡,
𝜉 = 𝑐2 − 𝑐4𝑦 + 𝑐5𝑥,
𝛾 = 𝑐3 + 𝑐4𝑥 + 𝑐5𝑦,
𝜙 = (2𝑐5 − 𝑐6𝜎 𝑒−𝜎𝑡)(𝛽 − 1

2𝑢) .

(52)

Consequently, the symmetry algebra is extended by two extra
symmetries: ⟨𝜕/𝜕𝑡, 𝜕/𝜕𝑥, 𝜕/𝜕𝑦, 𝑥(𝜕/𝜕𝑦) − 𝑦(𝜕/𝜕𝑥), 𝑥(𝜕/𝜕𝑥) +𝑦(𝜕/𝜕𝑦) + 2(𝛽 − (1/2)𝑢)(𝜕/𝜕𝑢), −(𝑒−𝜎𝑡/2𝜎2)(𝜕/𝜕𝑡) − (𝑒−𝜎𝑡/𝜎)(𝛽 − (1/2)𝑢)(𝜕/𝜕𝑢)⟩, where 𝜎 ̸= 0. Notice also that (45)
in this case takes the form 𝑔(𝑢) = 𝜆(𝛽 − (1/2)𝑢)−2.
Case 2.3.2b (𝛼 ̸= −1/2, 𝑐6 = 0). The solution of the overdeter-
mined system for this case takes the form

𝜏 = 𝑐1,
𝜉 = 𝑐2 − 𝑐4𝑦 + 𝑐5𝑥,
𝛾 = 𝑐3 + 𝑐4𝑥 + 𝑐5𝑦,
𝜙 = 2𝑐5 (𝛼𝑢 + 𝛽) ,

(53)

which generates a five-dimensional symmetry group ⟨𝜕/𝜕𝑡,𝜕/𝜕𝑥, 𝜕/𝜕𝑦, 𝑥(𝜕/𝜕𝑦) − 𝑦(𝜕/𝜕𝑥), 𝑥(𝜕/𝜕𝑥) + 𝑦(𝜕/𝜕𝑦) + 2(𝛼𝑢 +𝛽)(𝜕/𝜕𝑢)⟩. Finally, our calculations have shown that the case

𝛼 = −1/2 with 𝑐6 = 0 is not interesting as it does not generate
extra symmetries.

At this stage, we conclude Section 2 where it is shown that
(2) has at least four-dimensional symmetry algebra which is
given by the group ⟨𝐺4⟩. In this section we have presented
the particular forms of 𝑓 and 𝑔 that admit extra symmetries.
Table 1 shows the extra symmetries obtained for each case
arising in the classification.

3. Reduction of the Damped Wave Equation

In this section we briefly discuss solutions of considered
damped wave equation (2) by reduction via symmetry alge-
bra. In particular, we will use two-dimensional subalgebras
to reduce the considered equation to an ODE.The procedure
of reducing a PDE using its symmetries is standard and it
is explained in detail in many references; see, for example,
[29]. In the context of this paper, the procedure of performing
the reduction will be shown in detail for the general form
of (2) where the functions 𝑓(𝑢) and 𝑔(𝑢) are arbitrary. For
particular forms of 𝑓(𝑢) and 𝑔(𝑢), the reduced equations and
the corresponding similarity variables are given in Table 2.

Notice that the commutation relations between elements
of ⟨𝐺4⟩ are [𝑋1, 𝑋2] = [𝑋1, 𝑋3] = [𝑋1, 𝑋4] = [𝑋2, 𝑋3] = 0.
Thus, we have four subalgebras of two dimensions. We will
perform reduction for each subalgebra as follows.

(a) Reduction under the Subalgebra ⟨𝑋1, 𝑋2⟩. Solving the
characteristic system, it is straightforward to find the follow-
ing similarity variables:

𝜉1 (𝑡, 𝑥, 𝑦) = 𝑥,
𝜉2 (𝑡, 𝑥, 𝑦) = 𝑦,
𝑉 (𝜉1, 𝜉2) = 𝑢.

(54)

In the light of these similarity transformations, (2) is easily
reduced to the form

𝑔 (𝑉) (𝑉𝜉1𝜉1 + 𝑉𝜉2𝜉2) + 𝑔 (𝑉) (𝑉2𝜉1 + 𝑉2𝜉2) = 0. (55)

The second level of reduction is performed using the symme-
try𝑋2 = 𝜕/𝜕𝑥. Hence, the symmetry

𝑋 = 𝑋2 (𝜉1) 𝜕
𝜕𝜉1 + 𝑋2 (𝜉2) 𝜕

𝜕𝜉2 + 𝑋2 (𝑉) 𝜕
𝜕𝑉 (56)

is inherited by (55). This inherited symmetry is used to
obtain the new similarity variables. Thus, again, we solve
the characteristic system to obtain the following similarity
variables:

𝑠 (𝜉1, 𝜉2) = 𝜉2,
𝑊 (𝑠) = 𝑉. (57)

Using the new similarity variables, (55) is reduced to

𝑔 (𝑊)𝑊𝑠𝑠 + 𝑔 (𝑊)𝑊2𝑠 = 0. (58)
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Table 1: Symmetries other than minimal of (2) for particular forms of 𝑓 and 𝑔.
Case number 𝑓(𝑢) 𝑔(𝑢) Symmetries other than minimal
1 Arbitrary Arbitrary No extra symmetries

2 𝛽𝑢 + 𝜎 𝛼 𝑋5 = 𝑡 𝜕𝜕𝑡 + 𝑥 𝜕
𝜕𝑥 + 𝑦 𝜕

𝜕𝑦 − (𝜎𝛽 + 𝑢) 𝜕
𝜕𝑢

3 𝜎
𝛽𝑒𝛽𝑢 𝛼 𝑋5 = −𝑡 𝜕𝜕𝑡 − 𝑥 𝜕

𝜕𝑥 − 𝑦 𝜕
𝜕𝑦 + 1

𝛽
𝜕
𝜕𝑢

4 𝜎
𝛽 + 1 (𝛽𝑢 + 𝜌)1+1/𝛽 𝛼 𝑋5 = 𝑡 𝜕𝜕𝑡 + 𝑥 𝜕

𝜕𝑥 + 𝑦 𝜕
𝜕𝑦 − 1

𝛽 + 1 (𝛽𝑢 + 𝜌) 𝜕
𝜕𝑢

5 𝛽 𝛼
𝑋5 = 2𝑥 𝜕

𝜕𝑡 + 2𝛼𝑡 𝜕𝜕𝑥 − 𝛽𝑥𝑢 𝜕
𝜕𝑢

𝑋6 = 2𝑦 𝜕
𝜕𝑡 + 2𝛼𝑡 𝜕𝜕𝑥 − 𝛽𝑦𝑢 𝜕

𝜕𝑢
𝑋7 = 𝑢 𝜕

𝜕𝑢
𝑋∞ = 𝐴(𝑡, 𝑥, 𝑦) 𝜕𝜕𝑢 , where 𝐴(𝑡, 𝑥, 𝑦) satisfies (2)

6
𝜌
𝜎𝑒𝜎𝑢 𝛽𝑒𝛼𝑢 𝑋5 = 𝑡 𝜕𝜕𝑡 + (1 − 𝛼

2𝜎) 𝑥
𝜕
𝜕𝑥 + (1 − 𝛼

2𝜎)𝑦
𝜕
𝜕𝑦 − 1

𝜎
𝜕
𝜕𝑢

7
𝜌

𝛼 + 𝜎 (𝛼𝑢 + 𝛽)𝜎/𝛼+1 𝜆 (𝛼𝑢 + 𝛽)1/𝛽 𝑋5 = −2(𝛼 + 𝜎)
1 − 2 (𝛼 + 𝜎) 𝑡

𝜕
𝜕𝑡 + 𝑥 𝜕

𝜕𝑥 + 𝑦 𝜕
𝜕𝑦 + 2(𝛼𝑢 + 𝛽)

1 − 2 (𝛼 + 𝜎)
𝜕
𝜕𝑢

8 𝜎 𝜆 (𝛼𝑢 + 𝛽)1/𝛼 𝑋5 = 𝑥 𝜕
𝜕𝑥 + 𝑦 𝜕

𝜕𝑦 + 2 (𝛼𝑢 + 𝛽) 𝜕
𝜕𝑢

9 𝜎 𝜆(𝛽 − 0.5𝑢)−2 𝑋5 = 𝑥 𝜕
𝜕𝑥 + 𝑦 𝜕

𝜕𝑦 + 2 (𝛽 − 0.5𝑢) 𝜕
𝜕𝑢

𝑋6 = −𝑒−𝜎𝑡
2𝜎2

𝜕
𝜕𝑡 −

𝑒−𝜎𝑡
𝜎 (𝛽 − 0.5𝑢) 𝜕

𝜕𝑢

(b) Reduction under the Subalgebra ⟨𝑋1, 𝑋3⟩. Following the
same procedure as in case (a) we reduce (2) again into (58)
but with the following similarity variables: 𝑠 = 𝑥 and𝑊 = 𝑢.
(c) Reduction under the Subalgebra ⟨𝑋1, 𝑋4⟩. The damped
wave equation, that is (2), in this case is reduced to

𝑔 (𝑊) (𝑊𝑠 + 𝑠𝑊𝑠𝑠) + 𝑠2𝑔 (𝑊)𝑊2𝑠 = 0. (59)

The corresponding similarity variables are 𝑠 = 𝑥2 + 𝑦2 and𝑊 = 𝑢.
(d) Reduction under the Subalgebra ⟨𝑋2, 𝑋3⟩. In this case (2)
is reduced to

𝑊𝑠𝑠 + 𝑓 (𝑊)𝑊𝑠 = 0, (60)

where 𝑠 = 𝑡 and𝑊 = 𝑢.
Since reductions performed are valid for arbitrary func-

tions 𝑓(𝑢) and 𝑔(𝑢), we can use them to obtain exact
solutions for all particular forms of 𝑓 and 𝑔 arising from
the classification. For example, if we consider the case where𝑓(𝑢) = (𝜌/𝜎)𝑒𝜎𝑢 and 𝑔(𝑢) = 𝛽𝑒𝛼𝑢, then we can obtain exact
solution for damped wave equation (2) by first substituting
for 𝑔 in (59) to obtain

𝛽𝑒𝛼𝑊 (𝑊𝑠 + 𝑠𝑊𝑠𝑠) + 𝛼𝛽𝑒𝛼𝑊𝑠2𝑊2𝑠 = 0. (61)

Then, solving (61) we get

𝑊 = 𝑐1 log |𝑠| − 𝑐1 log
𝑎𝑠 +

1
𝑐1
 + 𝑐2. (62)

Finally, in order to express the solution in terms of the original
variables of (2), we transform each similarity variable in (62)
to its corresponding variable given in case (c) above; that is,
we substitute for 𝑠 = 𝑥2 +𝑦2 and𝑊 = 𝑢 in solution (62).This
substitution gives rise to a static exact solution of (2), given
by

𝑢 (𝑡, 𝑥, 𝑦) = 𝑐1 log (𝑥2 + 𝑦2) − 𝑐1 log
𝑎𝑥

2 + 𝑎𝑦2 + 1
𝑐1


+ 𝑐2.
(63)

Furthermore, we can perform more reductions by consider-
ing combination of symmetries. For instance, if we use the
subalgebra ⟨𝜕/𝜕𝑡 + 2(𝜕/𝜕𝑥) + 𝜕/𝜕𝑦, 𝜕/𝜕𝑡 + 𝜕/𝜕𝑥 + 2(𝜕/𝜕𝑦)⟩,
then (2) is reduced into

9𝑊𝑠𝑠 − 3𝑓 (𝑊)𝑊𝑠 = 2𝑔 (𝑊)𝑊𝑠𝑠 + 2𝑔 (𝑊)𝑊2𝑠 , (64)

where 𝑠 = 𝑥 + 𝑦 − 3𝑡 and𝑊 = 𝑢. In particular, if we choose𝑓(𝑢) = 𝑒𝑢 and 𝑔(𝑢) = 𝜎 then (64) becomes

(9 − 2𝜎)𝑊𝑠𝑠 − 3𝑒𝑊𝑊𝑠 = 0. (65)

The solution of (65) is given by𝑊 = log |(3−(2/3)𝜎)/(𝑐1−𝑠)|.
This solution is equivalent to the following solution of (2):

𝑢 (𝑡, 𝑥, 𝑦) = log


3 − (2/3) 𝜎
𝑐1 − 𝑥 − 𝑦 + 3𝑡

 . (66)

Furthermore, if we choose 𝑓(𝑢) = 𝑢 and 𝑔(𝑢) = 𝜎 then (64)
becomes

(9 − 2𝜎)𝑊𝑠𝑠 − 3𝑊𝑊𝑠 = 0. (67)
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Solving (67) we obtain𝑊 = √2𝑐1/3 tan[(√6𝑐1/2(9 − 2𝜎))𝑠 +𝐶2], which gives rise to the following exact solution of
(2):

𝑢 (𝑡, 𝑥, 𝑦)
= √2𝑐13 tan[ √6𝑐12 (9 − 2𝜎) (𝑥 + 𝑦 − 3𝑡) + 𝐶2] .

(68)

Exact solutions for different forms of the studied equation are
provided in Table 3.

4. Conservation Laws

A conservation law of a system of PDEs in general is
a divergence expression which vanishes on solutions of
the system. Keeping in mind that (2) does not possess a
Lagrangian, we implement the alternate multiplier approach
to construct conservation laws for some interesting cases that
have been obtained in Section 2. This powerful approach can
be summarized in two steps as follows.

(i) Determine a set of conservation laws multipliers
so that a linear combination of the PDEs with the
multipliers yields a divergence expression.

(ii) Find the corresponding flux/densities to construct the
conservation laws.

A conserved form of a partial differential equation

𝐸 (𝑥, 𝑦, 𝑡, 𝑢, 𝑢𝑥, 𝑢𝑦, 𝑢𝑡, 𝑢𝑥𝑥, . . .) = 0 (69)

is represented by a two-form differential operator 𝜔 =𝑇𝑡𝐷𝑥𝐷𝑦+𝑇𝑥𝐷𝑦𝐷𝑡 +𝑇𝑦𝐷𝑡𝐷𝑥 for which𝐷𝜔 is a three-form
operator which vanishes on the solutions of the PDE (𝐷 is the
total exterior derivative).Themultipliermethod to determine
these is detailed in [28], inter alia.

In the remaining part of this paper we will briefly give
the multipliers and the corresponding conservation laws
resulting from the multiplier approach. The cases will be
presented in the same order followed in Section 2 where for
each of the cases 𝑇𝑥 and 𝑇𝑦 denotes the conserved fluxes in 𝑥
and 𝑦 directions, respectively, while𝑇𝑡 denotes the conserved
densities.

Case 1. This general case admits nine distinct multipliers. In
particular, the multipliers 𝑄1 = 1 and 𝑄2 = 𝑓1(𝑦 − 𝑖𝑥) +𝑓2(𝑦 + 𝑖𝑥) are admitted. That is, in terms of real valued
functions, we get 𝑄𝑥𝐴,𝐵 = 𝑒±𝑥(𝐴 cos𝑦 + 𝐵 sin𝑦) and 𝑄𝑦𝐴,𝐵 =
𝑒±𝑦(𝐴 cos𝑥+𝐵 sin𝑥). Notice that we have taken into account
that all 𝑥’s and 𝑦’s are interchangeable for this general case.

For the remaining cases we will show the extra multipliers
and their corresponding conserved vectors.

Case 2. This case admits the multiplier 𝑄1 = 𝑒−𝑥(𝑎 sin𝑦 +𝑏 cos𝑦). The corresponding conserved flow is given by

𝑇𝑥 = 𝛼 (−𝑒−𝑥) (a sin𝑦 + 𝑏 cos𝑦) (𝑢 + 𝑢𝑥) ,
𝑇𝑦 = 𝛼𝑒−𝑥 (𝑎𝑢 cos𝑦 − 𝑏𝑢 sin𝑦 − 𝑎𝑢𝑦 sin𝑦

− 𝑏𝑢𝑦 cos𝑦) ,
𝑇𝑡 = 1

2𝑒−𝑥 (𝑎 sin𝑦 + 𝑏 cos𝑦) (𝛽𝑢2 + 2𝜎𝑢 + 2𝑢𝑡) .

(70)

Furthermore, the multiplier 𝑄2 = 𝑒𝑥(𝑎 sin𝑦 + 𝑏 cos𝑦) is also
admitted. It gives rise to the following conserved current:

𝑇𝑥 = 𝛼𝑒𝑥 (𝑎 sin𝑦 + 𝑏 cos𝑦) (𝑢 − 𝑢𝑥) ,
𝑇𝑦
= 𝛼𝑒𝑥 (𝑎𝑢 cos𝑦 − 𝑏𝑢 sin𝑦 − 𝑎𝑢𝑦 sin𝑦 − 𝑏𝑢𝑦 cos𝑦) ,

𝑇𝑡 = 1
2𝑒𝑥 (𝑎 sin𝑦 + 𝑏 cos𝑦) (𝛽𝑢2 + 2𝜎𝑢 + 2𝑢𝑡) .

(71)

Case 3. We have two multipliers for this case. The first one
is 𝑄1 = 𝑒−𝑥(𝑎 sin𝑦 + 𝑏 cos𝑦). The corresponding conserved
vector is given by

𝑇𝑥 = −𝛼𝑒−𝑥 (𝑎 sin𝑦 + 𝑏 cos𝑦) (𝑢 + 𝑢𝑥) ,
𝑇𝑦 = 𝛼𝑒−𝑥 (𝑎𝑢 cos𝑦 − 𝑏𝑢 sin𝑦 − 𝑎𝑢𝑦 sin𝑦

− 𝑏𝑢𝑦 cos𝑦) ,
𝑇𝑡 = 1

𝛽 (𝑒−𝑥 (𝑎 sin𝑦 + 𝑏 cos𝑦) (𝜎𝑒𝑢 − 𝜎 + 𝛽𝑢𝑡)) .

(72)

The second multiplier is 𝑄2 = 𝑒𝑥(𝑎 sin𝑦 + 𝑏 cos𝑦) with
corresponding conserved vector

𝑇𝑥 = 𝛼𝑒𝑥 (𝑎 sin𝑦 + 𝑏 cos𝑦) (𝑢 − 𝑢𝑥) ,
𝑇𝑦
= 𝛼𝑒𝑥 (𝑎𝑢 cos𝑦 − 𝑏𝑢 sin𝑦 − 𝑎𝑢𝑦 sin𝑦 − 𝑏𝑢𝑦 cos𝑦) ,

𝑇𝑡 = 1
𝛽 (𝑒𝑥 (𝑎 sin𝑦 + 𝑏 cos𝑦) (𝜎𝑒𝑢 − 𝜎 + 𝛽𝑢𝑡)) .

(73)

Case 4.This case admits twomultipliers.The first one is𝑄1 =𝑒−𝑥(𝑎 sin𝑦+𝑏 cos𝑦). It leads to the following conserved flow:
𝑇𝑥 = −𝛼𝛽𝑒−𝑥 (𝑎 sin𝑦 + 𝑏 cos𝑦) (𝑢𝑥𝑒𝑢 + 𝑒𝑢 − 1) ,
𝑇𝑦 = −𝛼𝛽𝑒−𝑥 (𝑢𝑦𝑒𝑢 (𝑎 sin𝑦 + 𝑏 cos𝑦)

− (𝑒𝑢 − 1) (𝑎 cos𝑦 − 𝑏 sin𝑦)) ,
𝑇𝑡 = 1

𝜎2 (𝑎 sin𝑦𝑒−𝑥 + 𝑏 cos𝑦𝑒−𝑥) (𝜌𝑒𝜎𝑢 − 𝜌 + 𝜎2𝑢𝑡) .

(74)
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Table 3: Some exact solutions of wave equation (2) with particular forms of 𝑓 and 𝑔.
𝑓(𝑢) 𝑔(𝑢) 𝑢(𝑡, 𝑥, 𝑦)
𝛽𝑢 + 𝜎 𝛼 𝑐1𝑥 + 𝑐2𝛽𝑢 + 𝜎 𝛼 𝑐1𝑦 + 𝑐2𝛽𝑢 + 𝜎 𝛼 𝑐1 log (𝑥2 + 𝑦2) + 𝑐2
𝛽𝑢 + 𝜎 𝛼 √−𝜎2 − 2𝛽𝑐1

𝛽 tan [(−𝑡2 − 𝑐22 )√−𝜎2 − 2𝛽𝑐1] − 𝜎
𝛽𝜎

𝛽𝑒𝛽𝑢 𝛼 𝑐1𝑦 + 𝑐2𝜎
𝛽𝑒𝛽𝑢 𝛼 𝑐1𝑥 + 𝑐2𝜎
𝛽𝑒𝛽𝑢 𝛼 𝑐1 log (𝑥2 + 𝑦2) + 𝑐2
𝜎
𝛽𝑒𝛽𝑢 𝛼 − 1𝛽 log


𝜎

𝑐1𝛽2 −
𝑒−𝛽𝑐1(𝑦+𝑐2)
𝑐1𝛽2

𝜎
𝛽𝑒𝛽𝑢 𝛼 𝑐1 arctan 𝑥

𝑦 + log

𝑥
𝑦
 −

1
2 log(1 + 𝑥2

𝑦2) + 𝑐2
𝜎
𝛽𝑒𝛽𝑢 𝛼 − 1𝛽 log

1 +
𝜎

𝑐1𝛽2 −
𝑒−𝛽𝑐1𝑦−𝛽𝑐1𝑐2

𝑐1𝛽2
𝜎

𝛽 + 1 (𝛽𝑢 + 𝜌)1+1/𝛽 𝛼 𝑐1𝑦 + 𝑐2𝜎
𝛽 + 1 (𝛽𝑢 + 𝜌)1+1/𝛽 𝛼 𝑐1𝑥 + 𝑐2𝜎
𝛽 + 1 (𝛽𝑢 + 𝜌)1+1/𝛽 𝛼 𝑐1 log (𝑥2 + 𝑦2) + 𝑐2
𝛽 𝛼 𝑐1𝑦 + 𝑐2𝛽 𝛼 𝑐1𝑥 + 𝑐2𝛽 𝛼 𝑐1 log (𝑥2 + 𝑦2) + 𝑐2𝛽 𝛼 −𝑐1𝛽 𝑒−𝛽𝑡 + 𝑐2
𝜌
𝜎𝑒𝜎𝑢 𝛽𝑒𝛼𝑢 log 𝑎𝑦 + 𝑐1𝑎 + 𝑐2
𝜌
𝜎𝑒𝜎𝑢 𝛽𝑒𝛼𝑢 log 𝑎𝑥 + 𝑐1𝑎 + 𝑐2𝜌
𝜎𝑒𝜎𝑢 𝛽𝑒𝛼𝑢 𝑐1 log (𝑥2 + 𝑦2) − 𝑐1 log(𝑎𝑥2 + 𝑎𝑦2 + 1

𝑐1 ) + 𝑐2
𝜌

𝜎 + 𝛼(𝛼𝑢 + 𝛽)1+𝜎/𝛼 𝜆 (𝛼𝑢 + 𝛽)1/𝛼 (𝑐1 (𝛼 + 1) (𝑦 + 𝑐2))𝛼/(𝛼+1) − 𝛽
𝛼𝜌

𝜎 + 𝛼(𝛼𝑢 + 𝛽)1+𝜎/𝛼 𝜆 (𝛼𝑢 + 𝛽)1/𝛼 (𝑐1 (𝛼 + 1) (𝑥 + 𝑐2))𝛼/(𝛼+1) − 𝛽
𝛼

𝜎 𝜆 (𝛼𝑢 + 𝛽)1/𝛼 1
𝛼 [(𝑐1𝑦 + 𝑐2)𝛼/(𝛼+1) − 𝛽]

𝜎 𝜆 (𝛼𝑢 + 𝛽)1/𝛼 1
𝛼 [(𝑐1𝑥 + 𝑐2)𝛼/(𝛼+1) − 𝛽]

𝜎 𝜆 (𝛼𝑢 + 𝛽)1/𝛼 𝑐2 − 𝑐1𝜎 𝑒−𝜎𝑡
𝜎 𝜆(𝛽 − 1

2𝑢)
−2 𝑐2 − 𝑐1𝜎 𝑒−𝜎𝑡

𝜎 𝜆(𝛽 − 1
2𝑢)

−2 2𝛽 − 2
𝑐1𝑦 + 𝑐2

𝜎 𝜆(𝛽 − 1
2𝑢)

−2 2𝛽 − 2
𝑐1𝑥 + 𝑐2

𝜎 𝜆(𝛽 − 1
2𝑢)

−2 2𝛽 − 𝑐2𝑒−𝜎𝑡𝑦 + 𝑐1
𝜎 𝜆(𝛽 − 1

2𝑢)
−2 2𝛽 − 𝑐2𝑒−𝜎𝑡𝑥 + 𝑐1

𝜎 𝜆(𝛽 − 1
2𝑢)

−2 2𝛽 − 2𝑐2𝑒−𝜎𝑡𝑐1 − log (𝑥2 + 𝑦2)
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The second multiplier is 𝑄2 = 𝑒𝑥(𝑎 sin𝑦 + 𝑏 cos𝑦). It gives
rise to the following conserved flow:

𝑇𝑥 = −𝛼𝛽 (𝑎 sin𝑦 + 𝑏 cos𝑦) ((𝑢𝑥 − 1) 𝑒𝑢+𝑥 + 𝑒𝑥) ,
𝑇𝑦 = −𝛼𝛽𝑒𝑥 [𝑒𝑢 (𝑢𝑦 (𝑎 sin𝑦 + 𝑏 cos𝑦) − 𝑎 cos𝑦

+ 𝑏 sin𝑦) + 𝑎 cos𝑦 − 𝑏 sin𝑦] ,
𝑇𝑡 = 1

𝜎2 (𝑎𝑒𝑥 sin𝑦 + 𝑏𝑒𝑥 cos𝑦) (𝜌𝑒𝜎𝑢 − 𝜌 + 𝜎2𝑢𝑡) .

(75)

Case 5. This case admits two multipliers given by

𝑄1 = 𝑒−𝑥 (𝑎 sin𝑦 + 𝑏 cos𝑦) ,
𝑄2 = 𝑒𝑥 (𝑎 sin𝑦 + 𝑏 cos𝑦) , (76)

from which the conservation law is too tedious to construct.

Case 6. We have four multipliers given by

𝑄1 = 𝑒−𝑥 (𝑎 sin𝑦 + 𝑏 cos𝑦) ,
𝑄2 = 𝑒𝑥 (𝑎 sin𝑦 + 𝑏 cos𝑦) ,
𝑄3 = 𝑒𝜎𝑡+𝑥 (𝑎 sin𝑦 + 𝑏 cos𝑦) ,
𝑄4 = 𝑒𝜎𝑡−𝑥 (𝑎 sin𝑦 + 𝑏 cos𝑦) .

(77)

In particular, the fourth multiplier 𝑄4 gives rise to the
following conserved flow:

𝑇𝑥 = − 1
𝛼 + 1 [𝜆𝑒𝜎𝑡−𝑥 (𝑎 sin𝑦 + 𝑏 cos𝑦)

⋅ ((𝛼𝑢 + 𝛽)1/𝛼 (𝛼𝑢 + (𝛼 + 1) 𝑢𝑥 + 𝛽) − 𝛽1/𝛼+1)] ,
𝑇𝑦 = 𝜆𝑒𝜎𝑡−𝑥

𝛼 + 1 [(𝛼𝑢 + 𝛽)1/𝛼 (𝛼𝑢 + 𝛽) (𝑎 cos𝑦 − 𝑏 sin𝑦)

− (𝛼 + 1) 𝑢𝑦 (𝑎 sin𝑦 + 𝑏 cos𝑦)] + 𝜆𝑒𝜎𝑡−𝑥𝛽1/𝛼+1
𝛼 + 1 (𝑏

⋅ sin𝑦 − 𝑎 cos𝑦) ,
𝑇𝑡 = 𝑢𝑡𝑒𝜎𝑡−𝑥 (𝑎 sin𝑦 + 𝑏 cos𝑦) .

(78)

Notice that the last case admits the additional multipliers𝑒𝜎𝑡𝑄𝑥𝐴,𝐵 and 𝑒𝜎𝑡𝑄𝑦𝐴,𝐵.
Case 7. This case admits six multipliers given by

𝑄1 = 𝑒−𝑥 (𝑎 sin𝑦 + 𝑏 cos𝑦) ,
𝑄2 = 𝑒𝑥 (𝑎 sin𝑦 + 𝑏 cos𝑦) ,
𝑄3 = 𝑒𝜎𝑡−𝑥 (𝑎 sin𝑦 + 𝑏 cos𝑦) ,
𝑄4 = 𝑒𝜎𝑡+𝑥 (𝑎 sin𝑦 + 𝑏 cos𝑦) ,
𝑄5 = 𝑒𝜎𝑡𝑄𝑥𝐴,𝐵,
𝑄6 = 𝑒𝜎𝑡𝑄𝑦𝐴,𝐵.

(79)

5. Conclusion

In this paper, we carried out a symmetry classification of
the (2 + 1)-dimensional nonlinear damped wave equation.
It has been shown that the minimal subalgebra admitted
by the equation is four-dimensional. In some interesting
cases, the subalgebra can be extended by one to three extra
symmetries. Reductions of the studied equation have also
been performed using two-dimensional subalgebras where
some exact solutions have been obtained. Furthermore, the
multipliers have beenprovided formost of the cases discussed
in the paper while conservation laws have been constructed
for some cases of interest.

The study presented in this paper paves the way for fur-
ther investigation regarding nonlinear damped wave equa-
tions arising inmathematical physics or other scientific fields.
In particular the (3 + 1) nonlinear damped wave equation
could also be considered.
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