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We consider a kind of second-order neutral functional differential equation. On the basis of Mawhin’s coincidence degree, the
existence and uniqueness of periodic solutions are proved. It is indicated that the result is related to the deviating arguments.
Moreover, we present two simulations to demonstrate the validity of analytical conclusion.

1. Introduction

In this paper, we consider a kind of second-order neutral
functional differential equations in the following form:

(𝑢 (𝑡) − 𝑘𝑢 (𝑡 − 𝜏))󸀠󸀠 = 𝑓 (𝑢 (𝑡)) 𝑢󸀠 (𝑡) + 𝛼 (𝑡) 𝑔 (𝑢 (𝑡))
+ 𝑛∑
𝑖=1

𝛽𝑖 (𝑡) ℎ (𝑢 (𝑡 − 𝜏𝑖 (𝑡)))
+ 𝑝 (𝑡) ,

(1)

where 𝑓, 𝑔, ℎ ∈ 𝐶(𝑅, 𝑅), 𝑝(𝑡), 𝜏𝑖(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are
continuous periodic functions defined on 𝑅 with period𝑇 > 0, 𝛼(𝑡), 𝛽𝑖(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are continuous periodic
functions defined on 𝑅 and have the same sign, and 𝑘, 𝜏 ∈ 𝑅
are constants such that |𝑘| ̸= 1.

As we know, neutral differential equations are widely
used in physics, biology, medicine, chemistry, economics,
ecology, aerospace, and so on. The research of their theory
and algorithm is greatly important. Many authors devote
themselves to research such kind of NFDE and get some

results; see papers [1–15]. These papers were devoted mainly
to studying the following types of equations:

(𝑢 (𝑡) − 𝑘𝑢 (𝑡 − 𝛿))󸀠 = 𝑔 (𝑡, 𝑢 (𝑡)) + ℎ (𝑡, 𝑢 (𝑡 − 𝜏 (𝑡)))
+ 𝑝 (𝑡) ,

(𝑢 (𝑡) − 𝑘𝑢 (𝑡 − 𝜏))󸀠󸀠 = 𝑎𝑢󸀠 (𝑡) + ℎ (𝑢 (𝑡 − 𝜏 (𝑡)))
+ 𝑝 (𝑡) ,

(𝑢 (𝑡) − 𝑘𝑢 (𝑡 − 𝜏))󸀠󸀠 = 𝑎𝑢󸀠 (𝑡) + 𝛼 (𝑡) 𝑔 (𝑢 (𝑡))
+ 𝑛∑
𝑖=1

𝛽𝑖 (𝑡) ℎ (𝑢 (𝑡 − 𝜏𝑖 (𝑡)))
+ 𝑝 (𝑡) .

(2)

By using the coincidence degree theory, the existence and
uniqueness of𝑇-periodic solutions for (2) are obtainedwhich
are not related to delays. Since the time delay in some
equations with practical application background is often very
small, it is easier to miss. We know that even a small delay
is also likely to have an important impact on the stability of
the system. Therefore it is necessary for us to consider the
influence of delays. Our work is based on such a background.
In this paper, our aim is to establish some criteria to guarantee
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the existence and uniqueness of periodic solution for (1) by
using Mawhin’s continuation theorem.

To state our main theorems, we also need some notations
as follows:

|𝑥|∞ = max
𝑡∈[0,𝑇]

|𝑥 (𝑡)| ,

|𝑥|𝑘 = (∫𝑇
0
|𝑥 (𝑡)|𝑘 𝑑𝑡)1/𝑘 .

(3)

Throughout this paper we assume that 𝜏𝑖 ∈ 𝐶1𝑇, and𝜏󸀠𝑖 (𝑡) < 1, for all 𝑡 ∈ [0, 𝑇], (𝑖 = 1, 2, . . . , 𝑛).
2. Main Lemmas

Lemma 1 (Gaines andMawhin [1]). Let𝑋 be a Banach spaces.
Suppose that 𝐿 : 𝐷(𝐿) ⊂ 𝑋 → 𝑋 is a Fredholm operator with
index zero and 𝑁 : Ω → 𝑋 is 𝐿-compact on Ω, where Ω is
an open bounded subset of 𝑋. Moreover, assume that all the
following conditions are satisfied:

(a) 𝐿𝑥 ̸= 𝜆𝑁𝑥, for all 𝜆 ∈ (0, 1) and 𝑥 ∈ 𝐷(𝐿) ∩ 𝜕Ω.
(b) 𝑁𝑥 ∉ Im 𝐿, for all 𝑥 ∈ Ker 𝐿 ∩ 𝜕Ω.
(c) deg{𝑄𝑁,Ω ∩ Ker 𝐿, 0} ̸= 0.

Then the equation 𝐿𝑥 = 𝑁𝑥 has at least one solution in𝐷(𝐿)∩Ω.
Lemma 2 (see [5]). Let 𝑥(𝑡) ∈ 𝑋 ∩ 𝐶1(𝑅, 𝑅). Suppose that
there exists a constant 𝐷 ≥ 0 such that󵄨󵄨󵄨󵄨𝑥 (𝜏0)󵄨󵄨󵄨󵄨 ≤ 𝐷, 𝜏0 ∈ [0, 𝑇] . (4)

Then

|𝑥|2 ≤ 𝑇𝜋 󵄨󵄨󵄨󵄨󵄨𝑥󸀠󵄨󵄨󵄨󵄨󵄨2 + √𝑇𝐷. (5)

Lemma3 (see [10]). If |𝑘| ̸= 1, then𝐴 has continuous bounded
inverse on 𝐶𝑇, and

(a) ‖𝐴−1𝑥‖ ≤ ‖𝑥‖/||𝑘| − 1|, for all 𝑥 ∈ 𝐶𝑇;
(b) ∫𝑇
0
|(𝐴−1𝑓)(𝑡)|𝑑𝑡 ≤ (1/|1− |𝑘||) ∫𝑇

0
|𝑓(𝑠)|𝑑𝑠, for all 𝑓 ∈𝐶𝑇;

(c) ∫𝑇
0
|(𝐴−1𝑓)(𝑡)|2𝑑𝑡 ≤ (1/(1 − |𝑘|)2) ∫𝑇

0
|𝑓(𝑠)|2𝑑𝑠, for all𝑓 ∈ 𝐶𝑇.

Let𝑋 = 𝐶𝑇 = {𝑥 | 𝑥 ∈ 𝐶(𝑅, 𝑅), 𝑥(𝑡 + 𝑇) = 𝑥(𝑡)} with the
norm ‖𝑥‖𝑋 = |𝑥|∞, and 𝑌 = 𝐶1𝑇 = {𝑥 | 𝑥 ∈ 𝐶1(𝑅, 𝑅), 𝑥(𝑡 +𝑇) = 𝑥(𝑡)} with the norm ‖𝑥‖𝑌 = max{|𝑥|∞, |𝑥󸀠|∞}. Clearly,𝑋 and 𝑌 are two Banach spaces. We also defined operators 𝐴
and 𝐿 in the following, respectively:

𝐴 : 𝑋 󳨀→ 𝑋,
(𝐴𝑥) (𝑡) = 𝑢 (𝑡) − 𝑘𝑢 (𝑡 − 𝜏) , (6)

𝐿 : 𝐷 (𝐿) ⊂ 𝑋 󳨀→ 𝑋,
𝐿𝑥 = (𝐴𝑥)󸀠󸀠 , (7)

where𝐷(𝐿) = {𝑥 | 𝑥 ∈ 𝐶2(𝑅, 𝑅), 𝑥(𝑡 + 𝑇) ≡ 𝑥(𝑡)}.

Next define a nonlinear operator𝑁 : 𝑋 → 𝑋 by setting

𝑁𝑥 = 𝑓 (𝑢 (𝑡)) 𝑢󸀠 (𝑡) + 𝛼 (𝑡) 𝑔 (𝑢 (𝑡))
+ 𝑛∑
𝑖=1

𝛽𝑖 (𝑡) ℎ (𝑢 (𝑡 − 𝜏𝑖 (𝑡))) + 𝑝 (𝑡) . (8)

ByHale’s terminology [9], a solution 𝑢(𝑡) of (1) is 𝑢 ∈ 𝐶󸀠(𝑅, 𝑅)
such that𝐴𝑢 ∈ 𝐶2(𝑅, 𝑅) and (1) are satisfied on 𝑅. In general,𝑢 ∉ 𝐶2(𝑅, 𝑅). But, under the condition |𝑘| ̸= 1, we see from
Lemma 1 of [4] that (𝐴𝑥)󸀠󸀠 = 𝐴𝑥󸀠󸀠. So a 𝑇-periodic solution𝑢(𝑡) of (1) must be such that 𝑢 ∈ 𝐶2(𝑅, 𝑅). Meanwhile,
according to Lemma 3, we can easily get that Ker𝐿 = 𝑅,
and Im 𝐿 = {𝑥 | 𝑥 ∈ 𝑋, ∫𝑇

0
𝑥(𝑠)𝑑𝑠 = 0}. Therefore, the

operator 𝐿 is a Fredholm operator with index zero. Define the
continuous projectors 𝑃 : 𝑌 → Ker 𝐿 and 𝑄 : 𝑋 → 𝑋/ Im 𝐿
by setting

𝑃𝑥 = 𝑥 (0) ,
𝑄𝑥 = 1𝑇 ∫𝑇

0
𝑥 (𝑠) 𝑑𝑠. (9)

Set 𝐿𝑃 = 𝐿|𝐷(𝐿)∩Ker𝑃 : 𝐷(𝐿) ∩ Ker𝑃 → Im 𝐿; then 𝐿𝑃 has
continuous inverse 𝐿−1𝑃 defined by

𝐿−1𝑃 𝑦 (𝑡) = (𝐴−1𝐹𝑦) (𝑡) , (10)

where

(𝐹𝑦) (𝑡) = −12 ∫
𝑇

0
𝑠𝑦 (𝑠) 𝑑𝑠 + ∫𝑇

0

𝑡𝑇𝑠𝑦 (𝑠) 𝑑𝑠
+ ∫𝑇
0
(𝑡 − 𝑠) 𝑦 (𝑠) 𝑑𝑠

− 1𝑇 ∫𝑇
0
∫𝑢
0
(𝑢 − 𝑠) 𝑦 (𝑠) 𝑑𝑠 𝑑𝑢.

(11)

Therefore, it is easy to see from (7) and (8) that 𝑁 is 𝐿-
compact on Ω, whereΩ is an open bounded set in𝑋.

In view of (7) and (8), the operator equation

𝐿𝑥 = 𝜆𝑁𝑥 (12)

is equivalent to the following equation:

(𝑢 (𝑡) − 𝑘𝑢 (𝑡 − 𝜏))󸀠󸀠 = 𝜆𝑓 (𝑢 (𝑡)) 𝑢󸀠 (𝑡)
+ 𝜆𝛼 (𝑡) 𝑔 (𝑢 (𝑡))
+ 𝜆 𝑛∑
𝑖=1

𝛽𝑖 (𝑡) ℎ (𝑢 (𝑡 − 𝜏𝑖 (𝑡)))
+ 𝜆𝑝 (𝑡) .

(13)

Lemma 4 (see [8]). Let 𝑔 ∈ 𝐶𝑇, 𝜏 ∈ 𝐶1𝑇 with 𝜏󸀠(𝑡) < 1, for all𝑡 ∈ [0, 𝑇]. Then 𝑔(𝜇(𝑡)) ∈ 𝐶𝑇, where 𝜇(𝑡) is inverse function of𝑡 − 𝜏(𝑡).
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The following lemma which we obtained in [16] gives
more accurate inequality about the deviating argument 𝜏 than
Lemma 2 in [4].

Lemma5 (see [16]). Let 𝜏 ∈ (−𝑇/2, 0)∪(0, 𝑇/2) be a constant.
Then for for all 𝑥 ∈ 𝐶1(𝑅, 𝑅) ∩ 𝐶𝑇, we have

∫𝑇
0
|𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏)|2 𝑑𝑡
≤ 𝜏2 (1 + |𝜏|2𝑇)∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨𝑥󸀠 (𝑡)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑡.
(14)

Lemma 6. Assume that the following conditions are satisfied:

(𝐻1) One of the following conditions holds:
(a) (𝑔(𝑥1)−𝑔(𝑥2))(𝑥1−𝑥2) > 0, (ℎ(𝑥1)−ℎ(𝑥2))(𝑥1−𝑥2) > 0, for all 𝑥1, 𝑥2 ∈ 𝑅, 𝑥1 ̸= 𝑥2,
(b) (𝑔(𝑥1)−𝑔(𝑥2))(𝑥1−𝑥2) < 0, (ℎ(𝑥1)−ℎ(𝑥2))(𝑥1−𝑥2) < 0, for all 𝑥1, 𝑥2 ∈ 𝑅, 𝑥1 ̸= 𝑥2.

(𝐻2) One of the following conditions holds:
(a) There exists two positive constants 𝐿 𝑖 (𝑖 = 1, 2)

such that |𝑘|+(𝛼∗𝑇2/𝜋2)𝐿1+(𝑛𝑇2𝛽∗/𝜋2)𝐿2 < 1;
󵄨󵄨󵄨󵄨𝑔 (𝑥1) − 𝑔 (𝑥2)󵄨󵄨󵄨󵄨 ≤ 𝐿1 󵄨󵄨󵄨󵄨𝑥1 − 𝑥2󵄨󵄨󵄨󵄨 , ∀𝑥1, 𝑥2 ∈ 𝑅;󵄨󵄨󵄨󵄨ℎ (𝑥1) − ℎ (𝑥2)󵄨󵄨󵄨󵄨 ≤ 𝐿2 󵄨󵄨󵄨󵄨𝑥1 − 𝑥2󵄨󵄨󵄨󵄨 , ∀𝑥1, 𝑥2 ∈ 𝑅. (15)

(b) There exists three positive constants 𝐿 𝑖 (𝑖 = 2)
such that 1+(𝛼∗𝑇2/𝜋2)𝐿1+(𝑛𝑇2𝛽∗/𝜋2)𝐿2 < |𝑘|;

󵄨󵄨󵄨󵄨𝑔 (𝑥1) − 𝑔 (𝑥2)󵄨󵄨󵄨󵄨 ≤ 𝐿1 󵄨󵄨󵄨󵄨𝑥1 − 𝑥2󵄨󵄨󵄨󵄨 , ∀𝑥1, 𝑥2 ∈ 𝑅;󵄨󵄨󵄨󵄨ℎ (𝑥1) − ℎ (𝑥2)󵄨󵄨󵄨󵄨 ≤ 𝐿2 󵄨󵄨󵄨󵄨𝑥1 − 𝑥2󵄨󵄨󵄨󵄨 , ∀V1, V2 ∈ 𝑅, (16)

where 𝛼∗ = max𝑡∈[0,𝑇]|𝛼(𝑡)| and 𝛽∗ = max𝑡∈[0,𝑇]|𝛽𝑖(𝑡)|.
Then (1) has at most one 𝑇-periodic solution.

Proof. Suppose that 𝑢1(𝑡) and 𝑢2(𝑡) are two 𝑇-periodic
solutions of (1). Then we have

[(𝑢1 (𝑡) − 𝑢2 (𝑡)) − 𝑘 (𝑢1 (𝑡 − 𝜏) − 𝑢2 (𝑡 − 𝜏))]󸀠󸀠
− [𝑓 (𝑢1 (𝑡)) 𝑢󸀠1 (𝑡) − 𝑓 (𝑢2 (𝑡)) 𝑢󸀠2 (𝑡)]
− 𝛼 (𝑡) [𝑔 (𝑢1 (𝑡)) − 𝑔 (𝑢2 (𝑡))]
− 𝑛∑
𝑖=1

𝛽𝑖 (𝑡) [ℎ (𝑢1 (𝑡 − 𝜏𝑖 (𝑡))) − ℎ (𝑢2 (𝑡 − 𝜏𝑖 (𝑡)))]
= 0.

(17)

Set 𝜓(𝑡) = 𝑢1(𝑡) − 𝑢2(𝑡); we obtain
𝜓󸀠󸀠 (𝑡) − 𝑘𝜓󸀠󸀠 (𝑡 − 𝜏)
− [𝑓 (𝑢1 (𝑡)) 𝑢󸀠1 (𝑡) − 𝑓 (𝑢2 (𝑡)) 𝑢󸀠2 (𝑡)]
− 𝛼 (𝑡) [𝑔 (𝑢1 (𝑡)) − 𝑔 (𝑢2 (𝑡))]
− 𝑛∑
𝑖=1

𝛽𝑖 (𝑡) [ℎ (𝑢1 (𝑡 − 𝜏𝑖 (𝑡))) − ℎ (𝑢2 (𝑡 − 𝜏𝑖 (𝑡)))] 𝑑𝑡
= 0.

(18)

Integrating (18) from 0 to 𝑇, we have
∫𝑇
0
𝛼 (𝑡) [𝑔 (𝑢1 (𝑡)) − 𝑔 (𝑢2 (𝑡))] 𝑑𝑡 − ∫𝑇

0

𝑛∑
𝑖=1

𝛽𝑖 (𝑡)
⋅ [ℎ (𝑢1 (𝑡 − 𝜏𝑖 (𝑡))) − ℎ (𝑢2 (𝑡 − 𝜏𝑖 (𝑡)))] 𝑑𝑡 = 0.

(19)

By using the integral mean value theorem, we find that there
is 𝜉 ∈ [0, 𝑇] such that

𝛼 (𝜉) [𝑔 (𝑢1 (𝜉)) − 𝑔 (𝑢2 (𝜉))]
+ 𝑛∑
𝑖=1

𝛽𝑖 (𝜉) [ℎ (𝑢1 (𝑡 − 𝜏𝑖 (𝜉))) − ℎ (𝑢2 (𝑡 − 𝜏𝑖 (𝜉)))]
= 0.

(20)

From (𝐻1), (20) implies that

(𝑢1 (𝜉) − 𝑢2 (𝜉)) (𝑢1 (𝜉 − 𝜏 (𝜉)) − 𝑢2 (𝜉 − 𝜏 (𝜉))) ≤ 0. (21)

Since 𝜓(𝑡) = 𝑢1(𝑡) − 𝑢2(𝑡) is a continuous function on 𝑅, it
follows that there exists a constant 𝜂 ∈ 𝑅 such that

𝜓 (𝜂) = 0. (22)

Let 𝜂 = 𝑛𝑇+𝜂∗, where 𝜂∗ ∈ [0, 𝑇] and 𝑛 is an integer.Then
(22) implies that there exists a constants 𝜂∗ ∈ [0, 𝑇] such that

𝜓 (𝜂) = 𝜓 (𝜂∗) = 0. (23)

From Lemma 2, using Schwarz inequality and the following
relation:

󵄨󵄨󵄨󵄨𝜓 (𝑡)󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜓 (𝜂
∗) + ∫𝑡

𝜂∗
𝜓󸀠 (𝑠) 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ ∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨𝜓󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨 𝑑𝑠,
𝑡 ∈ [0, 𝑇] ,

(24)

we obtain

󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨∞ ≤ √𝑇 󵄨󵄨󵄨󵄨󵄨𝜓󸀠󵄨󵄨󵄨󵄨󵄨2 , (25)

󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 ≤ 𝑇𝜋 󵄨󵄨󵄨󵄨󵄨𝜓󸀠󵄨󵄨󵄨󵄨󵄨2 . (26)
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Case 1. If (𝐻2)(a)holds,multiplying both sides of (18) by𝜓󸀠󸀠(𝑡)
and then integrating them from 0 to 𝑇, using (26), we have

󵄨󵄨󵄨󵄨󵄨𝜓󸀠󸀠󵄨󵄨󵄨󵄨󵄨22 ≤ |𝑘| 󵄨󵄨󵄨󵄨󵄨𝜓󸀠󸀠󵄨󵄨󵄨󵄨󵄨22 + |𝛼 (𝑡)|
⋅ ∫𝑇
0
𝐿1 󵄨󵄨󵄨󵄨𝑢1 (𝑡) − 𝑢2 (𝑡)󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝜓󸀠󸀠 (𝑡)󵄨󵄨󵄨󵄨󵄨 𝑑𝑡 +

𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝛽𝑖 (𝑡)󵄨󵄨󵄨󵄨
⋅ ∫𝑇
0
𝐿2 󵄨󵄨󵄨󵄨𝑢1 (𝑡 − 𝜏𝑖 (𝑡)) − 𝑢2 (𝑡 − 𝜏𝑖 (𝑡))󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝜓󸀠󸀠 (𝑡)󵄨󵄨󵄨󵄨󵄨 𝑑𝑡

≤ |𝑘| 󵄨󵄨󵄨󵄨󵄨𝜓󸀠󸀠󵄨󵄨󵄨󵄨󵄨22 + 𝛼∗𝑇𝜋 𝐿1 󵄨󵄨󵄨󵄨󵄨𝜓󸀠󵄨󵄨󵄨󵄨󵄨2 󵄨󵄨󵄨󵄨󵄨𝜓󸀠󸀠󵄨󵄨󵄨󵄨󵄨2 + 𝑛𝑇𝛽∗𝜋 𝐿2 󵄨󵄨󵄨󵄨󵄨𝜓󸀠󵄨󵄨󵄨󵄨󵄨2
⋅ 󵄨󵄨󵄨󵄨󵄨𝜓󸀠󸀠󵄨󵄨󵄨󵄨󵄨2 .

(27)

Since 𝜓(0) = 𝜓(𝑇), it follows that there exists a constant𝑡∗ ∈ [0, 𝑇] such that 𝜓󸀠(𝑡∗) = 0. From Lemma 2, using
Schwarz inequality and the following relation:

󵄨󵄨󵄨󵄨󵄨𝜓󸀠 (𝑡)󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜓󸀠 (𝑡∗) + ∫

𝑡

𝑡∗
𝜓󸀠󸀠 (𝑠) 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ ∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨𝜓󸀠󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨 𝑑𝑠,
𝑡 ∈ [0, 𝑇] ,

(28)

we obtain
󵄨󵄨󵄨󵄨󵄨𝜓󸀠󵄨󵄨󵄨󵄨󵄨∞ ≤ √𝑇 󵄨󵄨󵄨󵄨󵄨𝜓󸀠󸀠󵄨󵄨󵄨󵄨󵄨2 , (29)

󵄨󵄨󵄨󵄨󵄨𝜓󸀠󵄨󵄨󵄨󵄨󵄨2 ≤ 𝑇𝜋 󵄨󵄨󵄨󵄨󵄨𝜓󸀠󸀠󵄨󵄨󵄨󵄨󵄨2 . (30)

Substituting (30) into (27), we get

󵄨󵄨󵄨󵄨󵄨𝜓󸀠󸀠󵄨󵄨󵄨󵄨󵄨22 ≤ |𝑘| 󵄨󵄨󵄨󵄨󵄨𝜓󸀠󸀠󵄨󵄨󵄨󵄨󵄨22 + 𝛼∗𝑇2𝜋2 𝐿1 󵄨󵄨󵄨󵄨󵄨𝜓󸀠󸀠󵄨󵄨󵄨󵄨󵄨22 + 𝑛𝑇2𝛽∗𝜋2 𝐿2 󵄨󵄨󵄨󵄨󵄨𝜓󸀠󸀠󵄨󵄨󵄨󵄨󵄨22 . (31)

Since |𝑘| + (𝛼∗𝑇2/𝜋2)𝐿1 + (𝑛𝑇2𝛽∗/𝜋2)𝐿2 < 1, thus (31)
implies that

𝜓 (𝑡) ≡ 𝜓󸀠 (𝑡) ≡ 0, ∀𝑡 ∈ 𝑅. (32)

Hence, 𝑢1(𝑡) = 𝑢2(𝑡) for all 𝑡 ∈ 𝑅. Therefore, (1) has at most
one 𝑇-periodic solution.
Case 2. If (𝐻2)(b) holds, multiplying both sides of (18) by𝜓󸀠󸀠(𝑡 − 𝜏) and then integrating them from 0 to 𝑇, using (26)
and (30), we have

|𝑘| 󵄨󵄨󵄨󵄨󵄨𝜓󸀠󸀠󵄨󵄨󵄨󵄨󵄨22 ≤ 󵄨󵄨󵄨󵄨󵄨𝜓󸀠󸀠󵄨󵄨󵄨󵄨󵄨22 + 𝛼∗𝑇2𝜋2 𝐿1 󵄨󵄨󵄨󵄨󵄨𝜓󸀠󸀠󵄨󵄨󵄨󵄨󵄨22 + 𝑛𝑇2𝛽∗𝜋2 𝐿2 󵄨󵄨󵄨󵄨󵄨𝜓󸀠󸀠󵄨󵄨󵄨󵄨󵄨22 . (33)

Since 1+(𝛼∗𝑇2/𝜋2)𝐿1+(𝑛𝑇2𝛽∗/𝜋2)𝐿2 < |𝑘|, thus (33) implies
that

𝜓 (𝑡) ≡ 𝜓󸀠 (𝑡) ≡ 0, ∀𝑡 ∈ 𝑅. (34)

Hence, 𝑢1(𝑡) = 𝑢2(𝑡) for all 𝑡 ∈ 𝑅. Therefore, (1) has at most
one 𝑇-periodic solution.

Lemma 7 (see [17]). Assume that (𝐻1) holds and the following
conditions are satisfied:

(𝐻3)There exists a constant 𝜌 > 0 such that one of the
following conditions holds:

(a) 𝑢[𝛼(𝑡)𝑔(𝑢) + ∑𝑛𝑖=1 𝛽𝑖(𝑡)ℎ(𝑢) + 𝑝(𝑡)] > 0, for all𝑡 ∈ 𝑅, |𝑢| ≥ 𝜌;
(b) 𝑢[𝛼(𝑡)𝑔(𝑢) + ∑𝑛𝑖=1 𝛽𝑖(𝑡)ℎ(𝑢) + 𝑝(𝑡)] < 0, for all𝑡 ∈ 𝑅, |𝑢| ≥ 𝜌.

If 𝑢(𝑡) is a 𝑇-periodic solution of (13), then

|𝑢|∞ ≤ 𝜌 + √𝑇 󵄨󵄨󵄨󵄨󵄨𝑢󸀠󵄨󵄨󵄨󵄨󵄨2 . (35)

3. Main Result

Theorem 1. Let (𝐻1) and (𝐻2) hold. Assume that either the
condition (𝐻3)(𝑎) or the condition (𝐻3)(𝑏) is satisfied and the
following inequality holds:

𝑇2 |𝑘 + 1|
(1 − |𝑘|)2 (𝛼∗𝐿1 +

𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
11 − 𝜏󸀠𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1/2

∞

𝛽∗𝐿2) < 1. (36)

Then (1) has a unique 𝑇-periodic solution.
Proof. From Lemma 5, together with Lemma 6, it is easy to
see that (1) has at most one 𝑇-periodic solution. Thus, to
prove Theorem 1, it suffices to show that (1) has at least one𝑇-periodic solution.

Let 𝑢(𝑡) be a 𝑇-periodic solution of (13). If (𝐻2) holds,
multiplying both sides of (13) by 𝑢(𝑡) − 𝑘𝑢(𝑡 − 𝜏) and then
integrating them from 0 to 𝑇, we have

∫𝑇
0
[(𝐴𝑢󸀠) (𝑡)]2 𝑑𝑡 ≤ 𝛼∗𝑇𝐿1 |𝑘 + 1| |𝑢|2∞
+ 𝛼∗√𝑇 󵄨󵄨󵄨󵄨𝑔 (0)󵄨󵄨󵄨󵄨 (|𝜏|2 + |𝜏|32𝑇 )1/2 󵄨󵄨󵄨󵄨󵄨𝑢󸀠󵄨󵄨󵄨󵄨󵄨2 + 𝛽∗𝐿2 |𝑘
+ 1| 𝑛∑
𝑖=1

∫𝑇
0

󵄨󵄨󵄨󵄨𝑢 (𝑡 − 𝜏𝑖 (𝑡))󵄨󵄨󵄨󵄨 |𝑢 (𝑡)| 𝑑𝑡
+ (𝑛𝛽∗𝑇 |𝑘 + 1| |ℎ (0)| + 𝑇 |𝑘 + 1| 󵄨󵄨󵄨󵄨𝑝󵄨󵄨󵄨󵄨∞
+ 𝛼∗𝑇 󵄨󵄨󵄨󵄨𝑔 (0)󵄨󵄨󵄨󵄨 |𝑘 − 1|) |𝑢|∞ .

(37)

Since

∫𝑇
0
|𝑢 (𝑡 − 𝜏 (𝑡))|2 𝑑𝑡 = ∫𝑇−𝜏(𝑇)

−𝜏(0)

|𝑢 (𝑠)|21 − 𝜏󸀠 (𝜇 (𝑠))𝑑𝑠
≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 11 − 𝜏󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨∞ ∫
𝑇

0
|𝑢 (𝑠)|2 𝑑𝑠,

(38)
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following from (37), we have

∫𝑇
0

󵄨󵄨󵄨󵄨󵄨(𝐴𝑢󸀠) (𝑡)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑡 ≤ |𝑘 + 1| 𝑇[𝛼∗𝐿1

+ 𝛽∗𝐿2( 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
11 − 𝜏󸀠𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1/2

∞

)] |𝑢|2∞
+ (𝑛𝛽∗𝑇 |𝑘 + 1| |ℎ (0)| + 𝑇 |𝑘 + 1| 󵄨󵄨󵄨󵄨𝑝󵄨󵄨󵄨󵄨∞
+ 𝛼∗𝑇 󵄨󵄨󵄨󵄨𝑔 (0)󵄨󵄨󵄨󵄨 |𝑘 − 1|) |𝑢|∞ + 𝛼∗√𝑇 󵄨󵄨󵄨󵄨𝑔 (0)󵄨󵄨󵄨󵄨 (|𝜏|2

+ |𝜏|32𝑇 )1/2 󵄨󵄨󵄨󵄨󵄨𝑢󸀠󵄨󵄨󵄨󵄨󵄨2 .

(39)

As 𝑢󸀠2(𝑡) = |𝐴−1𝐴𝑢󸀠(𝑡)|2 ≤ (1/(1 − |𝑘|)2)|(𝐴𝑢󸀠)(𝑡)|2, using
(35), from (39) we get

󵄨󵄨󵄨󵄨󵄨𝑢󸀠󵄨󵄨󵄨󵄨󵄨22 ≤ 1
(1 − |𝑘|)2 {|𝑘 + 1| 𝑇[𝛼∗𝐿1

+ 𝛽∗𝐿2( 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
11 − 𝜏󸀠𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1/2

∞

)](𝜌2 + 2𝜌√𝑇 󵄨󵄨󵄨󵄨󵄨𝑢󸀠󵄨󵄨󵄨󵄨󵄨2
+ 𝑇 󵄨󵄨󵄨󵄨󵄨𝑢󸀠󵄨󵄨󵄨󵄨󵄨22) + (𝑛𝛽∗𝑇 |𝑘 + 1| |ℎ (0)| + 𝑇 |𝑘 + 1| 󵄨󵄨󵄨󵄨𝑝󵄨󵄨󵄨󵄨∞
+ 𝛼∗𝑇 󵄨󵄨󵄨󵄨𝑔 (0)󵄨󵄨󵄨󵄨 |𝑘 − 1|) (𝜌 + √𝑇 󵄨󵄨󵄨󵄨󵄨𝑢󸀠󵄨󵄨󵄨󵄨󵄨2)}

+ 𝛼∗√𝑇 󵄨󵄨󵄨󵄨𝑔 (0)󵄨󵄨󵄨󵄨 (|𝜏|2 + |𝜏|32𝑇 )1/2 󵄨󵄨󵄨󵄨󵄨𝑢󸀠󵄨󵄨󵄨󵄨󵄨2 .

(40)

Since (𝑇2|𝑘+1|/(1− |𝑘|)2)(𝛼∗𝐿1 +∑𝑛𝑖=1 |1/(1−𝜏󸀠𝑖 )|1/2∞ 𝛽∗𝐿2) <1, thus (40) implies that there exists a positive constant𝑀∗2 ,
such that

󵄨󵄨󵄨󵄨󵄨𝑢󸀠󵄨󵄨󵄨󵄨󵄨22 ≤ 𝑀∗2 ,
|𝑢|∞ ≤ 𝜌 + √𝑇𝑀∗2 fl 𝑀2.

(41)

If 𝑢 ∈ Ω1 = {𝑢 : 𝑢 ∈ Ker 𝐿 ∩ 𝑋 and 𝑁𝑢 ∈ Im 𝐿}, then there
exists a constant𝑀1 such that

𝑢 (𝑡) ≡ 𝑀1,
∫𝑇
0
[𝛼 (𝑡) 𝑔 (𝑀1) + 𝑛∑

𝑖=1

𝛽𝑖 (𝑡) ℎ (𝑀1) + 𝑝 (𝑡)] 𝑑𝑡 = 0. (42)

Thus

|𝑢 (𝑡)| ≡ 󵄨󵄨󵄨󵄨𝑀1󵄨󵄨󵄨󵄨 < 𝜌, ∀𝑥 (𝑡) ∈ Ω1. (43)

Let𝑀 = |𝑀1| + 𝑀∗2 +𝑀2 + 1, and takeΩ = {𝑢 ∈ 𝑋 : ‖𝑢‖𝑋 ≤𝑀}. It is easy to see that𝑁 is 𝐿-compact onΩ. We have from
(42), (43) that the conditions (a) and (b) in Lemma 1 hold.

Furthermore, define continuous functions 𝐻1(𝑢, 𝜇) and𝐻2(𝑢, 𝜇) by setting
𝐻1 (𝑢, 𝜇)

= (1 − 𝜇) 𝑢
+ 𝜇𝑇 ∫𝑇

0
[𝛼 (𝑡) 𝑔 (𝑢) + 𝑛∑

𝑖=1

𝛽𝑖 (𝑡) ℎ (𝑢) + 𝑝 (𝑡)] 𝑑𝑡;
𝜇 ∈ [0, 1] ,

𝐻2 (𝑢, 𝜇)
= − (1 − 𝜇) 𝑢
+ 𝜇𝑇 ∫𝑇

0
[𝛼 (𝑡) 𝑔 (𝑢) + 𝑛∑

𝑖=1

𝛽𝑖 (𝑡) ℎ (𝑢) + 𝑝 (𝑡)] 𝑑𝑡;
𝜇 ∈ [0, 1] .

(44)

If the condition (𝐻3)(a) holds, then
𝑢𝐻1 (𝑢, 𝜇) ̸= 0, ∀𝑢 ∈ 𝜕Ω ∩ Ker 𝐿. (45)

Hence, using the homotopy invariance theorem, we have

deg {𝑄𝑁,Ω ∩ Ker 𝐿, 0} = deg{ 1𝑇
⋅ ∫𝑇
0
[𝛼 (𝑡) 𝑔 (𝑢) + 𝑛∑

𝑖=1

𝛽𝑖 (𝑡) ℎ (𝑢) + 𝑝 (𝑡)] 𝑑𝑡, Ω

∩ Ker 𝐿, 0} = deg {𝑥, Ω ∩ Ker 𝐿, 0} ̸= 0.

(46)

If the condition (𝐻3)(b) holds, then
𝑢𝐻2 (𝑢, 𝜇) ̸= 0, ∀𝑢 ∈ 𝜕Ω ∩ Ker 𝐿. (47)

Hence, using the homotopic invariance theorem, we have

deg {𝑄𝑁,Ω ∩ Ker 𝐿, 0} = deg{ 1𝑇
⋅ ∫𝑇
0
[𝛼 (𝑡) 𝑔 (𝑢) + 𝑛∑

𝑖=1

𝛽𝑖 (𝑡) ℎ (𝑢) + 𝑝 (𝑡)] 𝑑𝑡, Ω

∩ Ker 𝐿, 0} = deg {−𝑥,Ω ∩ Ker 𝐿, 0} ̸= 0.

(48)

Which completes the condition (c) in Lemma 1.
Up to now, all conditions in Lemma 1 are satisfied, and

hence (1) has a unique 𝑇-periodic solution.
Theorem 2. Let (𝐻1) and (𝐻2) hold. Assume that either the
condition (𝐻3)(𝑎) or the condition (𝐻3)(𝑏) is satisfied and the
following inequality holds:

𝛼∗𝑇𝐿1 + 𝑛𝑇𝛽∗𝐿2 < 1. (49)

Then (1) has a unique 𝑇-periodic solution.
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Proof.

Case 1. If (𝐻2)(a) holds, multiplying the two sides of (13) by𝑢(𝑡) and integrating them on [0, 𝑇], we have
󵄨󵄨󵄨󵄨󵄨𝑢󸀠󵄨󵄨󵄨󵄨󵄨22 = ∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨𝑢󸀠 (𝑡)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑡 ≤ 𝛼∗𝑇 (𝐿1 |𝑢|2∞ + 󵄨󵄨󵄨󵄨𝑔 (0)󵄨󵄨󵄨󵄨 |𝑢|∞)
+ 𝑛𝑇𝛽∗ (𝐿2 |𝑢|2∞ + |ℎ (0)| |𝑢|∞) + 𝑇 󵄨󵄨󵄨󵄨𝑝󵄨󵄨󵄨󵄨∞ |𝑢|∞
≤ (𝛼∗𝑇𝐿1 + 𝑛𝑇𝛽∗𝐿2) 󵄨󵄨󵄨󵄨󵄨𝑢󸀠󵄨󵄨󵄨󵄨󵄨22
+ [2𝜌√𝑇 (𝛼∗𝑇𝐿1 + 𝑛𝑇𝛽∗𝐿2)
+ √𝑇 (𝑇 󵄨󵄨󵄨󵄨𝑝󵄨󵄨󵄨󵄨∞ + 𝛼∗𝑇 󵄨󵄨󵄨󵄨𝑔 (0)󵄨󵄨󵄨󵄨 + 𝑛𝑇𝛽∗ |ℎ (0)|)] 󵄨󵄨󵄨󵄨󵄨𝑢󸀠󵄨󵄨󵄨󵄨󵄨2
+ 𝜎1,

(50)

where 𝜎1 = 𝜌2(𝛼∗𝑇𝐿1 + 𝑛𝑇𝛽∗𝐿2) + 𝜌(𝑇|𝑝|∞ + 𝛼∗𝑇|𝑔(0)| +𝑛𝑇𝛽∗|ℎ(0)|).
As 𝛼∗𝑇𝐿1 + 𝑛𝑇𝛽∗𝐿2 < 1, there is a constant𝑀3 > 0 such

that

󵄨󵄨󵄨󵄨󵄨𝑢󸀠󵄨󵄨󵄨󵄨󵄨22 ≤ 𝑀3,
|𝑢|∞ ≤ 𝜌 + √𝑇𝑀3.

(51)

Case 2. If (𝐻2)(b) holds, multiplying the two sides of (13) by𝑢(𝑡 − 𝜏) and integrating them on [0, 𝑇], using the methods
similar to those used in Case 1, we can show that (51) holds.

The rest of the proof is similar to that ofTheorem 1 and is
omitted.

4. Application

Finally, we give two examples to illustrate our main results.

Example 1. Consider the following equation:

(𝑢 (𝑡) − 771𝑢 (𝑡 − 𝜏))󸀠󸀠
= − sin (𝑢 (𝑡)) 𝑢󸀠 (𝑡) − 18071 (𝑢 (𝑡) − 12)
− 119 sin (𝑢 (𝑡 − 1)) 𝑢 (𝑡 − 1) − 1199 sin (𝑡) .

(52)

In this example 𝑘 = 771, 𝑓(𝑢(𝑡))𝑢󸀠(𝑡) = sin(𝑢(𝑡))𝑢󸀠(𝑡), 𝛼(𝑡) =1/8071, 𝑔(𝑢(𝑡)) = 𝑢(𝑡) − 1/2, 𝛽1(𝑡) = 1/19, ℎ(𝑢(𝑡 − 𝜏1(𝑡))) =
sin(𝑢(𝑡 − 1))𝑢(𝑡 − 1), 𝜏1(𝑡) = 1, 𝑝(𝑡) = 1/199 sin(𝑡); then 𝛼∗ =1/8071, 𝛽∗ = 1/19, 𝐿1 = 𝐿2 = 1, 𝑇 = 34𝜋, 𝜏󸀠𝑖 = 0 which
implies that 1 + (𝛼∗𝑇2/𝜋2)𝐿1 + (𝑛𝑇2𝛽∗/𝜋2)𝐿2 < |𝑘| and

𝑇2 |𝑘 + 1|
(1 − |𝑘|)2 (𝛼∗𝐿1 +

𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
11 − 𝜏󸀠𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1/2

∞

𝛽∗𝐿2) < 1. (53)

Thus by applying Theorem 1, we have that (52) has a unique𝑇-periodic solution (see Figures 1 and 2).
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Figure 1: Periodic solution of (52) with delayed condition 𝑢(𝑥) =−5.5 (𝑥 ≤ 0) and initial condition 𝑢󸀠(0) = 0.

T
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Figure 2: Time series of periodic solution of (52).

Example 2. Consider the following equation:

(𝑢 (𝑡) + 14𝑢 (𝑡 − 𝜏))
󸀠󸀠

= 120 (𝑢 (𝑡) + 1) 𝑢󸀠 (𝑡) − 𝑡512𝜋2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑢 (𝑡) − 12

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ (󵄨󵄨󵄨󵄨sgn 𝑡󵄨󵄨󵄨󵄨2 − 191192) [𝑢 (𝑡 − 115 sin 𝑡) + 2]
− 𝑡70𝑢 (𝑡 − 𝜋25 cos 𝑡) + 𝑒| cos 𝑡|.

(54)

In this example 𝑘 = −1/4,𝑓(𝑢(𝑡))𝑢󸀠(𝑡) = (1/20)(𝑢(𝑡)+1)𝑢󸀠(𝑡),𝛼(𝑡) = −𝑡/512𝜋2, 𝑔(𝑢(𝑡)) = |𝑢(𝑡) − 1/2|, 𝛽1(𝑡) = | sgn 𝑡|2 −191/192, ℎ(𝑢(𝑡 − 𝜏1(𝑡))) = 𝑢(𝑡 − (1/15) sin 𝑡) + 2, 𝛽2(𝑡) = 𝑡/70,ℎ(𝑢(𝑡 − 𝜏2(𝑡))) = 𝑢(𝑡 − (𝜋/25) cos 𝑡), 𝑝(𝑡) = 𝑒| cos 𝑡|; then 𝛼∗ =1/256𝜋, 𝛽∗ = 1/192, 𝐿1 = 𝐿2 = 1, 𝑇 = 2𝜋 which implies that|𝑘| + (𝛼∗𝑇2/𝜋2)𝐿1 + (𝑛𝑇2𝛽∗/𝜋2)𝐿2 < 1 and
𝛼∗𝑇𝐿1 + 𝑛𝑇𝛽∗𝐿2 < 1. (55)

Thus by applying Theorem 2, we have that (54) has a unique𝑇-periodic solution.
5. Result and Discussions

Remark 1. Obviously, (1) whichwe study in this paper ismore
general. Even if for the case of 𝑓(𝑥) ≡ 𝑎, the conditions
imposed on 𝑔 and approaches to estimate a priori bound of
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solutions to (1) are different from the corresponding ones of
the past work [1–3, 6].

Remark 2. In the past works, many scholars studied some
kinds of second-order neutral functional differential equa-
tions and obtained some good results of existence and
uniqueness of periodic solutions. However, these results are
not related to delays. As we know that even a small delay
is also likely to have an important impact on the system.
Therefore, we focus on the relationship between the existence
of periodic solutions and the delays. By using Mawhin’s
coincidence degree, the existence and uniqueness of periodic
solutions of (1) are obtained. The interesting is that we get
some existence results which are related to the delays 𝜏𝑖(𝑡) (𝑖 =1, 2, . . . , 𝑛). That is different from the past results (Theorem 4
[3], Theorem 3.1 [5], and Theorem 3.1 [17]).

Remark 3. From the above examples, we see the results are
related to the deviating argument 𝜏𝑖(𝑡) (𝑖 = 1, 2, . . . , 𝑛), which
are different from the theorems in papers [1–6, 15, 17–19]
and the references therein. The studies indicate this kind
of system with time delays can exhibit periodic solutions,
which shows that second-order neutral functional delayed
differential equation has the potential to reproduce the
complex dynamics of real applied background in physics,
economics, ecology, mechanics, and so forth.
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