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We propose a new method applying matrix theory to analyse the instability conditions of unique homogeneous coexistent state
of multispecies host-parasitoid systems. We consider the eigenvalues of linearized operator of systems, and by dimensionality
reduction, this infinite dimensional eigenproblem will be reduced to a parametrized finite dimensional eigenproblem, thereby
applying combinatorial matrix theory to analyse the linear instability of such constant steady-state.

1. Introduction and Main Result

In literature [1], Pearce et al. proposed the following reaction-
diffusion-chemotaxis models of multispecies host-parasitoid
interactions:𝑢1𝑡 = 𝑑1Δ𝑢1 + 𝑢1 (1 − 𝑢1) − 𝑎1V1 (1 − 𝑒−𝜌1𝑢1) ,𝑥 ∈ Ω, 𝑡 > 0,𝑢2𝑡 = 𝑑2Δ𝑢2 + 𝛾1𝑢2 (1 − 𝑢2) − 𝑎2V1 (1 − 𝑒−𝜌2𝑢2)− 𝑎3V2 (1 − 𝑒−𝜌3𝑢2) , 𝑥 ∈ Ω, 𝑡 > 0,

V1𝑡 = 𝑑3ΔV1 − 𝜒1∇ ⋅ (V1∇𝑤) + 𝑐1V1 (1 − 𝑒−𝜌1𝑢1)+ 𝑐2V1 (1 − 𝑒−𝜌2𝑢2) − 𝜂1V1, 𝑥 ∈ Ω, 𝑡 > 0,
V2𝑡 = 𝑑4ΔV2 − 𝜒2∇ ⋅ (V2∇𝑤) + 𝑐3V2 (1 − 𝑒−𝜌3𝑢2)− 𝜂2V2, 𝑥 ∈ Ω, 𝑡 > 0,𝑤𝑡 = 𝑑5Δ𝑤 + 𝛾2 (𝑢1 + 𝛾3𝑢2) − 𝜂3𝑤, 𝑥 ∈ Ω, 𝑡 > 0,𝜕𝑢1𝜕] = 𝜕𝑢2𝜕] = 𝜕V1𝜕] = 𝜕V2𝜕] = 𝜕𝑤𝜕] = 0,

𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢𝑖 (𝑥, 0) = 𝑢𝑖0 (𝑥) ,
V𝑖 (𝑥, 0) = V𝑖0 (𝑥) (𝑖 = 1, 2) ,𝑤 (𝑥, 0) = 𝑤0 (𝑥) , 𝑥 ∈ Ω,

(1)

where Ω ⊂ R𝑛 (𝑛 ≥ 1) is a given domain with smooth
boundary 𝜕Ω and ] is the outward unit normal on the
boundary 𝜕Ω. 𝑢1(𝑥, 𝑡) and 𝑢2(𝑥, 𝑡) represent the density of
hosts Pieris brassicae and Pieris rapae, respectively. V1(𝑥, 𝑡)
and V2(𝑥, 𝑡) represent the density of parasitoids Cotesia glom-
erata and Cotesia rubecula, respectively. 𝑤(𝑥, 𝑡) represents
the concentration of the chemoattractant produced during
feeding by the hosts. Moreover, the coefficients 𝑑𝑖 (𝑖 =1, 2, 3, 4) and 𝑎𝑖, 𝑐𝑖, 𝜌𝑖, 𝛾𝑖, 𝜂𝑖, 𝜒𝑖 (𝑖 = 1, 2, 3) are some positive
constants (see [1] for details).

System (1) models the aggregative parasitoid behaviour in
multispecies host-parasitoid community. The species consist
of two hosts P. brassicae and P. rapae, as well as two
parasitoids C. glomerata and C. rubecula.The host species are
common crop pests of brassical species, and the parasitoid
species have been used as successful biological control agents
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against the host species [2] (and references therein). The
aggregative behaviour of the parasitoids in (1) towards volatile
infochemicals emitted during hosts feeding is described as a
chemotactic response, and thus the plant infochemicals are
considered as chemoattractants. Model (1) assumes that four
speciesmove randomly in a spatial domain and the parasitoid
species are also directed by the chemoattractant. The host
species reproduce with logistic growth and undergo death
due to parasitism, and the parasitism by both parasitoids is
modelled by an Ivlev functional response, which is similar
to the Holling Type II functional response and is a standard
function for modelling parasitism or predation [3, 4]. The
parasitoid species reproduce next-generation by the para-
sitised hosts, and they are, respectively, subject to intrinsic
mortality rates 𝜂1 and 𝜂2. The chemoattractant is produced
as a linear response and undergoes natural degradation with
decay rate 𝜂3.

In [1], the stability properties of the constant stationary
states to system (1) are studied using the linear stability anal-
ysis; it shows that the trivial steady-state (0, 0, 0, 0, 0) and the
semi-trivial steady-states (1, 1, 0, 0, 𝑤∗), (𝑢∗1 , 𝑢∗2 , V∗1 , 0, 𝑤∗),
and (𝑢∗1 , 𝑢∗2 , 0, V∗2 , 𝑤∗) are unstable. To the stability of unique
homogeneous coexistent state (𝑢∗1 , 𝑢∗2 , V∗1 , V∗2 , 𝑤∗), when the
chemotactic sensitivity coefficients (𝜒1, 𝜒2) are set to zero,
the largest real part of the eigenvalues R(𝜆) < 0 for all the
spatial wave number 𝜅, which implies diffusion, cannot drive
instability. As the chemotaxis strength is increased,R(𝜆) > 0
appearing for a larger range of values of 𝜅, it shows that the
instability of unique coexistent state is due to the effect of
chemotaxis, that is, chemotaxis-driven instability.

In this paper, we propose a new analysis method
for mainly applying matrix theoretic tools to analyse the
instability of unique homogeneous coexistent state (𝑢∗1 ,𝑢∗2 , V∗1 , V∗2 , 𝑤∗) of system (1). Briefly speaking, we consider
the eigenvalues of linearized operator of system (1), and by
dimensionality reduction, this infinite dimensional eigen-
problemwill be reduced to a parametrized finite dimensional
eigenproblem, thereby applying nonnegativematrix theory to
analyse the linear instability conditions of unique coexistent
state (𝑢∗1 , 𝑢∗2 , V∗1 , V∗2 , 𝑤∗) of system (1). Our main result is as
follows.

Theorem 1. Let the matrix L(𝜇𝑖) satisfies the following two
hypothetical conditions:

(H1) J is Metzler matrix and irreducible,
(H2) 𝜇𝑖𝜒1V∗1 > 0 or 𝜇𝑖𝜒2V∗2 > 0;

then the steady-state (𝑢∗1 , 𝑢∗2 , V∗1 , V∗2 , 𝑤∗) is linearly unstable if𝜒1 or 𝜒2 is sufficiently large.

Remark 2. Theorem 1 implies, for large chemotactic sensitiv-
ity 𝜒1 or 𝜒2, the spatial pattern formation of model (1) may
evolve by chemotaxis-driven Turing instability (see, e.g., [5–
7]).

This paper is organized as follows: in Section 2, we
introduce some terminology and definitions and two well-
known lemmas from matrix theory. In order to keep the
integrity of the content, we arrange Section 3, and the finite

dimensional eigenproblem is reduced to infinite dimension.
In Section 4, the main result for Theorem 1 is proved. In
Section 5, examples as well as conclusion about the degree
of commonality and limitations of the proposed method are
presented.

2. Some Auxiliary Results

Before processing next content, we first introduce some ter-
minology used throughout this paper from the combinatorial
matrix theory. 𝐴, as a square matrix, denote 𝜌(𝐴) for the
spectral radius of 𝐴. Written 𝐴 ≥ 0 if each entry of a real
matrix (or vector)𝐴 is nonnegative. Similarly,𝐴 > 0 signifies
that every entry of 𝐴 is positive. Next, we also need the
following definitions and lemmas (see, e.g., [8, Theorems 1.4
and 2.35 in Chapter 2]).
Definition 3. 𝐴 is an 𝑁 × 𝑁 matrix. 𝐴 is called𝑀𝑒𝑡𝑧𝑙𝑒𝑟 𝑚𝑎𝑡𝑟𝑖𝑥 if every off-diagonal entry of 𝐴 is non-
negative; that is, 𝐴 𝑖𝑗 ≥ 0, 𝑖 ̸= 𝑗. (2)

Definition 4. The directed graph 𝐺(𝐴) associated with an𝑁 × 𝑁 matrix 𝐴 consists of 𝑁 vertices 𝑉1, 𝑉2, . . . , 𝑉𝑛, where
an edge leads from 𝑉𝑖 to 𝑉𝑗 if and only if 𝑎𝑖𝑗 ̸= 0.
Definition 5. A directed graph 𝐺 is strongly connected if, for
any ordered pair (𝑉𝑖, 𝑁𝑗) of vertices of 𝐺 (with 𝑖 ̸= 𝑗), there
exists a sequence of edges (a path) which leads from 𝑉𝑖 to 𝑉𝑗.
Definition 6. A matrix 𝐴 is called reducible if there exists an𝑛 order permutation matrix 𝑃 such that

𝑃𝐴𝑃−1 = (𝐴11 𝐴120 𝐴22) , (3)

where𝐴11 is a 𝑟×𝑟matrix and𝐴22 is a 𝑟×𝑟matrix (0 ≤ 𝑟 ≤ 𝑛).
Otherwise,𝐴 is called irreducible.The directed graph𝐺(𝐴) of
irreducible matrix 𝐴 is strongly connected.

Lemma 7 (Perron-Frobenius). Let 𝐴 ≥ 0 be a square matrix.(1) If 𝐴 ≥ 0, then 𝜌(𝐴) is a simple eigenvalue of 𝐴, greater
than the magnitude of any other eigenvalue.(2) If 𝐴 is irreducible, then 𝜌(𝐴) is a simple eigenvalue,
and any eigenvalue of 𝐴 of the same modulus is also simple.𝐴 has a positive eigenvector 𝑥⃗ corresponding to 𝜌(𝐴), and any
nonnegative eigenvector of 𝐴 is a multiple of 𝑥⃗.
Lemma 8 (spectral radius bounds). Let𝐴 ≥ 0 be an irreduci-
ble𝑁 ×𝑁matrix. Letting 𝑠𝑖 denote the sum of the elements of
the 𝑖th row of 𝐴, define

𝑆 (𝐴) = max
1≤𝑖≤𝑁

𝑠𝑖,𝑠 (𝐴) = min
1≤𝑖≤𝑁

𝑠𝑖. (4)

Then the spectral radius 𝜌(𝐴) satisfies𝑠 (𝐴) ≤ 𝜌 (𝐴) ≤ 𝑆 (𝐴) . (5)
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Finally, for simplicity, we denote column vector 𝑈 =(𝑈1, 𝑈2, 𝑉1, 𝑉2,𝑊), and let 𝑓1 = 𝑢1(1 − 𝑢1) − 𝑎1V1(1 − 𝑒−𝜌1𝑢1),𝑓2 = 𝛾1𝑢2(1 − 𝑢2) − 𝑎2V1(1 − 𝑒−𝜌2𝑢2) − 𝑎3V2(1 − 𝑒−𝜌3𝑢2), 𝑔1 =𝑐1V1(1−𝑒−𝜌1𝑢1)+ 𝑐2V1(1−𝑒−𝜌2𝑢2)−𝜂1V1, 𝑔2 = 𝑐3V2(1−𝑒−𝜌3𝑢2)−𝜂2V2, ℎ = 𝛾2(𝑢1 + 𝛾3𝑢2) − 𝜂3𝑤.
3. Dimensionality Reduction

With the help of these well-known results in Section 2, now
we start our work. Linearizing about the unique homoge-
neous coexistent state (𝑢∗1 , 𝑢∗2 , V∗1 , V∗2 , 𝑤∗) by setting small
spatiotemporal perturbations𝑢𝑖 (𝑥, 𝑡) = 𝑢∗𝑖 + 𝜀𝑈𝑖 (𝑥, 𝑡) ,

V𝑖 (𝑥, 𝑡) = V∗𝑖 + 𝜀𝑉𝑖 (𝑥, 𝑡) (𝑖 = 1, 2) ,𝑤 (𝑥, 𝑡) = 𝑤∗ + 𝜀𝑊 (𝑥, 𝑡) ,
(6)

we obtain the linearized system of (1) as follows:𝑈𝑡 (𝑥, 𝑡) = 𝐿𝑈 (𝑥, 𝑡) , (7)

where the linearized operator 𝐿 = D +J, and

D = ((
(

𝑑1Δ 0 0 0 00 𝑑2Δ 0 0 00 0 𝑑3Δ 0 −𝜒1V∗1Δ0 0 0 𝑑4Δ −𝜒2V∗2Δ0 0 0 0 𝑑5Δ
))
)

,

J = ((
(

𝐽11 𝐽12 𝐽13 𝐽14 𝐽15𝐽21 𝐽22 𝐽23 𝐽24 𝐽25𝐽31 𝐽32 𝐽33 𝐽34 𝐽35𝐽41 𝐽42 𝐽43 𝐽44 𝐽45𝐽51 𝐽52 𝐽53 𝐽54 𝐽55
))
)

;
(8)

𝐽𝑘𝑙 stands for the Fréchet derivative of 𝑘th component
of (𝑓1, 𝑓2, 𝑔1, 𝑔2, ℎ) with respect to 𝑙th component of(𝑢1, 𝑢2, V1, V2, 𝑤) evaluated at (𝑢∗1 , 𝑢∗2 , V∗1 , V∗2 , 𝑤∗), (𝑘, 𝑙 =1, 2, . . . , 5).

Let 𝜆 be an eigenvalue of 𝐿; then it satisfies𝐿𝑌 = 𝜆𝑌, (9)

where 𝑌 = (𝑌1(𝑥), 𝑌2(𝑥), 𝑌3(𝑥), 𝑌4(𝑥), 𝑌5(𝑥))𝑇 for corre-
sponding eigenfunction. By definition of theweak eigenprob-
lem, we easily know that 𝜆 is an eigenvalue of 𝐿 if there exists
a nontrivial 𝑌 in [𝐻1(Ω)]5 satisfying

− ∫
Ω
𝑑1∇𝑌1 ⋅ ∇𝜑 𝑑𝑥 + 5∑

𝑙=1

𝐽1𝑙 ∫
Ω
𝑌𝑙𝜑𝑑𝑥 = 𝜆∫

Ω
𝑌1𝜑𝑑𝑥,

− ∫
Ω
𝑑2∇𝑌2 ⋅ ∇𝜑 𝑑𝑥 + 5∑

𝑙=1

𝐽2𝑙 ∫
Ω
𝑌𝑙𝜑𝑑𝑥 = 𝜆∫

Ω
𝑌2𝜑𝑑𝑥,

− ∫
Ω
𝑑3∇𝑌3 ⋅ ∇𝜑 𝑑𝑥 + ∫

Ω
𝜒1V∗1∇𝑌5 ⋅ ∇𝜑 𝑑𝑥

+ 5∑
𝑙=1

𝐽3𝑙 ∫
Ω
𝑌𝑙𝜑𝑑𝑥 = 𝜆∫

Ω
𝑌3𝜑𝑑𝑥,

− ∫
Ω
𝑑4∇𝑌4 ⋅ ∇𝜑 𝑑𝑥 + ∫

Ω
𝜒2V∗2∇𝑌5 ⋅ ∇𝜑 𝑑𝑥

+ 5∑
𝑙=1

𝐽4𝑙 ∫
Ω
𝑌𝑙𝜑𝑑𝑥 = 𝜆∫

Ω
𝑌4𝜑𝑑𝑥,

− ∫
Ω
𝑑5∇𝑌5 ⋅ ∇𝜑 𝑑𝑥 + 5∑

𝑙=1

𝐽5𝑙 ∫
Ω
𝑌𝑙𝜑𝑑𝑥 = 𝜆∫

Ω
𝑌5𝜑𝑑𝑥,

(10)

for all 𝜑 in𝐻1(Ω). Notice that the infinite dimensional eigen-
problem (10) can be deduced from the classical formulation
(9) when the boundary 𝜕Ω and the eigenfunctions 𝑌 are
smooth enough. Additionally, according to irregular domains
with possibly nonsmooth eigenfunctions, we adopt the weak
formulation (10) as the definition of our eigenproblem.

Let 0 = 𝜇0 < 𝜇1 < 𝜇2 < ⋅ ⋅ ⋅ be the eigenvalues of
the operator −Δ on Ω with the homogeneous Neumann
boundary conditions; that is, 𝜇𝑖 satisfies−Δ𝜙𝑖 = 𝜇𝑖𝜙𝑖, 𝑥 ∈ Ω, 𝑖 = 0, 1, 2, . . . ,𝜕𝜙𝑖𝜕] = 0, 𝑥 ∈ 𝜕Ω, (11)

where ] is the outward unit normal vector of the boundary𝜕Ω and 𝜙𝑖 in 𝐻1(Ω) is the normalized eigenfunction corre-
sponding eigenvalues 𝜇𝑖. In the sense of weak eigenproblem,
we have

− ∫
Ω
∇𝜙𝑖 ⋅ ∇𝜑 𝑑𝑥 = 𝜇𝑖 ∫

Ω
𝜙𝑖𝜑𝑑𝑥,

∀𝜑 ∈ 𝐻1 (Ω) , 𝑖 = 0, 1, 2, . . . . (12)

With these preliminaries, by generalizing amethod of Schaaf,
1985 [9], the eigenvalues of infinite dimensional eigenprob-
lem (10) can be reduced to the following finite dimensional
eigenproblem:

L (𝜇𝑖) 𝑌 = 𝜆𝑌, (13)

whereL(𝜇𝑖) = D𝜇𝑖 +J, and

D𝜇𝑖 = ((
(

−𝜇𝑖𝑑1 0 0 0 00 −𝜇𝑖𝑑2 0 0 00 0 −𝜇𝑖𝑑3 0 𝜇𝑖𝜒1V∗10 0 0 −𝜇𝑖𝑑4 𝜇𝑖𝜒2V∗20 0 0 0 −𝜇𝑖𝑑5
))
)

. (14)

The relations between (10) and (13) are written by the
following lemma.

Lemma 9. Thenumber 𝜆 is the solution of eigenproblem (10) if
and only if it is an eigenvalue of matrixL(𝜇𝑖) for some integer𝑖 ≥ 0.
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The above lemma is well known and we omit its proof.
Hereto, the main objective of this section is already com-
pleted.

4. Proof of Main Result

In this section, the sufficient condition for the destabilization
of unique homogeneous coexistent state (𝑢∗1 , 𝑢∗2 , V∗1 , V∗2 , 𝑤∗)
to system (1), that is, Theorem 1, is proved.

Proof ofTheorem 1. In terms of Lemma 9, it is enough to prove
that the matrixL(𝜇𝑖) has a positive eigenvalue 𝜆 for some 𝜇𝑖
under the given hypotheses (H1) and (H2).

To this end, fix some 𝜇𝑖 > 0, denote 𝑘1 = 𝜇𝑖𝜒1V∗1 , 𝑘2 =𝜇𝑖𝜒2V∗2 , and let 𝑀 = L(𝜇𝑖) + 𝑟𝐼, where 𝑟 > 0 is taken
large enough such that all diagonal entries of𝑀 are positive,
and the matrix 𝐼 is a five-order unit matrix. In fact, by the
hypothetical conditions (H1) and (H2), the directed graph𝐺(𝑀) made of vertices 𝑉1, 𝑉2, . . . , 𝑉5 is strongly connected.
On the other hand, it is obvious that 𝑀 is a nonnegative
matrix. So we have 𝑀 as an irreducible nonnegative matrix.
The following is divided into three steps to process it.

Step 1. Since 𝑀 is a nonnegative irreducible matrix, by
Lemma 7, and the spectral radius 𝜌(𝑀) is an eigenvalue of𝑀, then 𝑀𝛼 = 𝜌(𝑀)𝛼, with 𝛼 for corresponding positive
eigenvector. Notice that𝑀 = L(𝜇𝑖) + 𝑟𝐼, and we have

L (𝜇𝑖) 𝛼 = (𝜌 (𝑀) − 𝑟) 𝛼. (15)

This implies that 𝜌(𝑀) − 𝑟 is an eigenvalue for L(𝜇𝑖). It is
obvious that 𝜌(𝑀) − 𝑟 is positive if 𝜌(𝑀) → +∞ holds.

Step 2. Denote by 𝑀𝑡 the transpose of the matrix 𝑀; then
det(𝑀 − 𝜆𝐼) = det(𝑀𝑡 − 𝜆𝐼); further𝜌 (𝑀) = 𝜌 (𝑀𝑡) . (16)

So we get 𝜌 (𝑀) 󳨀→ +∞ ⇐⇒
𝜌(𝑀𝑡) 󳨀→ +∞. (17)

Step 3. For any integer 𝑛 ≥ 1, and notice 𝑀𝑛𝛼 =𝑀(𝑛−1)(𝑀𝛼) = 𝜆𝑀(𝑛−1)𝛼 = ⋅ ⋅ ⋅ = 𝜆𝑛𝛼, and by Lemma 7 and
(16), we have

𝜌 ((𝑀𝑡)𝑛) = (𝜌 (𝑀𝑡) 0)𝑛 . (18)

It is clear that we can obtain 𝜌(𝑀𝑡) by taking the 𝑛th root of𝜌((𝑀𝑡)𝑛). In the following we claim that

lim
𝜒1→∞

𝜌 (𝑀) = +∞,
lim
𝜒2→∞

𝜌 (𝑀) = +∞. (19)

ThenTheorem 1 follows from claim (19).
Since 𝐺(𝑀𝑡) is strongly connected, there exists a path

from 𝑉𝑖 → 𝑉𝑗, for any 𝑖 and 𝑗 (𝑖, 𝑗 ∈ {1, 2, . . . , 5}), of some

length (number of connecting edges) 𝑙. Also since 𝑀𝑡 has
positive diagonal entries, each vertex of 𝐺(𝑀𝑡) has a loop.
Consequently, if there is a path of length 𝑙, then there is a
path of any length longer than 𝑙 as well. It follows that there
exists a number 𝑛 such that every two vertices in 𝐺(𝑀𝑡) are
connected by a path of length 𝑛, say 𝑉𝑖 → 𝑉𝑖𝑛−1 → 𝑉𝑖𝑛−2 →⋅ ⋅ ⋅ → 𝑉𝑖2 → 𝑉𝑖1 → 𝑉𝑗. Additionally, it is not difficult to
observe the (𝑖, 𝑗)th entry of (𝑀𝑡)𝑛 as follows:[(𝑀𝑡)𝑛]

𝑖𝑗
= ∑
𝑖1

[(𝑀𝑡)𝑛−1]
𝑖𝑖1
[(𝑀𝑡)]

𝑖1𝑗

= ∑
𝑖1

∑
𝑖2

[(𝑀𝑡)𝑛−2]
𝑖𝑖2
[(𝑀𝑡)]

𝑖2𝑖1
[(𝑀𝑡)]

𝑖1𝑗

= ∑
𝑖1

∑
𝑖2

⋅ ⋅ ⋅ ∑
𝑖𝑛−1

[(𝑀𝑡)]
𝑖𝑖𝑛−1

⋅ [(𝑀𝑡)]
𝑖𝑛−1𝑖𝑛−2

⋅ ⋅ ⋅ [(𝑀𝑡)]
𝑖2𝑖1

[(𝑀𝑡)]
𝑖1𝑗

,
(20)

where the ranges of matrix indices 𝑖1, 𝑖2, . . . , 𝑖𝑛−1 belong to set{1, 2, . . . , 5}.
With above the number 𝑛, consider the (𝑖, 3)th entry of(𝑀𝑡)𝑛. Then the corresponding path from 𝑉𝑖 → 𝑉3 is written

as 𝑉𝑖 󳨀→ 𝑉𝑖𝑛−1 󳨀→ 𝑉𝑖𝑛−2 󳨀→ ⋅ ⋅ ⋅ 󳨀→ 𝑉𝑖2 󳨀→ 𝑉𝑖1 󳨀→ 𝑉3. (21)

Let 𝑖1 = 5 in (21); we obtain[(𝑀𝑡)𝑛]
𝑖,3≥ [(𝑀𝑡)]
𝑖,𝑖𝑛−1

[(𝑀𝑡)]
𝑖𝑛−1 ,𝑖𝑛−2

⋅ ⋅ ⋅ [(𝑀𝑡)]
𝑖2 ,5

[(𝑀𝑡)]
5,3= [(𝑀)]𝑖𝑛−1,𝑖 [(𝑀)]𝑖𝑛−2,𝑖𝑛−1 ⋅ ⋅ ⋅ [(𝑀)]5,𝑖2 [(𝑀)]3,5 .

(22)

Since the nonnegativity of matrix 𝑀 and the
existence of path (21), the multiply formulation[(𝑀)]𝑖𝑛−1 ,𝑖[(𝑀)]𝑖𝑛−2,𝑖𝑛−1 ⋅ ⋅ ⋅ [(𝑀)]5,𝑖2[(𝑀)]3,5 is positive, and it
is an nondecreasing polynomial in 𝑘1, denoting𝑃𝑖 (𝑘1) 𝑘1 = [(𝑀)]𝑖𝑛−1,𝑖 [(𝑀)]𝑖𝑛−2 ,𝑖𝑛−1 ⋅ ⋅ ⋅ [(𝑀)]5,𝑖2 𝑘1. (23)

Let 𝑃(𝑘) denote the minimum of such 𝑃𝑖(𝑘1) for any 1 ≤𝑖 ≤ 5; then the minimal row sum 𝑠((𝑀𝑡)𝑛) satisfies𝑠 ((𝑀𝑡)𝑛) ≥ min
1≤𝑖≤5

[(𝑀𝑡)𝑛]
𝑖,5

≥ 𝑃 (𝑘1) 𝑘1. (24)

By Lemma 8 (spectral radius bounds),𝜌 ((𝑀𝑡)𝑛) ≥ 𝑠 ((𝑀𝑡)𝑛) ≥ 𝑃 (𝑘1) 𝑘1. (25)

Letting 𝑘1 → +∞ (same as 𝜒1 → +∞), then

lim
𝑘1→+∞

𝜌 ((𝑀𝑡)𝑛) = +∞; (26)

this implies thatL(𝜇𝑖) exists a positive eigenvalue. It follows
that (𝑢∗1 , 𝑢∗2 , V∗1 , V∗2 , 𝑤∗) is linearly unstable by the well-known
result in [10].

Remark 10. The proof for lim𝜒2→+∞𝜌((𝑀)) = +∞ follows in
the same manner by finding a path of length 𝑛 from 𝑉𝑖 →𝑉4 (1 ≤ 𝑖 ≤ 5).

The proof of Theorem 1 is completed.
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Figure 1: Dispersion curves of 𝜅2 (𝑥-axis) against the largest R(𝜆) (𝑦-axis) for 𝜒1 = 𝜒2 = 0 (a), 𝜒1 = 𝜒2 = 0.000535 (b), 𝜒1 = 𝜒2 = 0.000545
(c), and 𝜒1 = 𝜒2 = 0.0015 (d) (see [1] for details).
5. Examples and Conclusion

Example 1. In literature [11], Tang and Tao studied the
chemotaxis-driven linear instability for the following model:

𝜕𝑁𝜕𝑡 = 𝐷𝑁Δ𝑁 +𝑁 (1 − 𝑁) − 𝑠1𝑃 (1 − 𝑒−𝜌1𝑁) ,𝜕𝑃𝜕𝑡 = 𝐷𝑃Δ𝑃 − 𝜒𝑃∇ ⋅ (𝑃∇𝑘) + 𝑐1𝑃 (1 − 𝑒−𝜌1𝑁)− 𝜂1𝑃,𝜕𝑘𝜕𝑡 = 𝐷𝑘Δ𝑘 + 𝛾2𝑁 − 𝜂3𝑘,𝜕𝑁𝜕] = 𝜕𝑃𝜕] = 𝜕𝑘𝜕] = 0 on 𝜕Ω,𝑁 (𝑥, 0) = 𝑁0 (𝑥) ,𝑃 (𝑥, 0) = 𝑃0 (𝑥) ,𝑘 (𝑥, 0) = 𝑘0 (𝑥) .

(27)

One can see that model (27) is a submodel for (1). In
the case of Ω = (0, 1), they analytically proved the linear
instability of the unique homogeneous coexistence state of
(27) for large chemotaxis coefficient 𝜒𝑃. It is easy to see that
it is a directed corollary for our Theorem 1 in the case ofΩ ⊂ R.

Example 2. In the introduction of this paper, we showed
that the stability properties of the constant stationary states
of system (1) were studied in [1]. Authors confirmed, by
applying the usual linear analysis method and combining
with numerical simulation in one-dimensional domain Ω =(0, 1), the unique constant coexistence state for (1) was linear
instability if the chemotaxis strengths 𝜒1, 𝜒2 are above a
threshold, where the results of numerical simulation are as
in Figure 1.

By observing Figure 1, as chemotaxis strength is increased
the system becomes increasingly unstable (R(𝜆) > 0 for
a large range of values of the spatial wave number 𝜅). In
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one-dimensional space, Theorem 1 is obviously the same as
the observed result.

It is well known that linear analysis can be carried out
to determine the stability properties of the steady-states
to small spatiotemporal perturbations. In the process, we
generalized amethod of literature [9]; it allows us to relate the
eigenvalues of infinite dimensional eigenproblem to a finite
dimensional eigenproblem, and the latter is easier to analyse,
and the techniques are standard. Solving the characteristic
polynomial is a difficulty for the standard linear stability
analysis, especially for higher-degree polynomial. In order to
overcome this difficulty, dispersing curves are usually plotted
to display the change of eigenvalue real part. The fifth-order
polynomial appeared in this paper; the new method was
presented utilizing combinatorial matrix theory; it is the key
of how to find an appropriate length path such that every two
vertices can be connected in a directed graph. The method
is of great value to avoid the tediously long calculations and
complicated analysis about high order polynomial.

Competing Interests

The author declares that there is not any conflict of interests
regarding the publication of this paper.

Acknowledgments

Thiswork is supported by the ChinaNational Natural Science
Foundation (nos. 11361055; 11261053) and the Natural Science
Research Key Project of University of Anhui Province (no.
KJ2015A251).

References

[1] I. G. Pearce, M. A. J. Chaplain, P. G. Schofield, A. R. Anderson,
and S. F. Hubbard, “Chemotaxis-induced spatio-temporal het-
erogeneity in multi-species hot-parasitoid systems,” Journal of
Mathematical Biology, vol. 55, no. 3, pp. 365–388, 2007.

[2] I. G. Pearce, M. A. Chaplain, P. G. Schofield, A. R. Anderson,
and S. F. Hubbard, “Modelling the spatio-temporal dynamics
of multi-species host-parasitoid interactions: heterogeneous
patterns and ecological implications,” Journal of Theoretical
Biology, vol. 241, no. 4, pp. 876–886, 2006.

[3] N. J. Savill, P. Rohani, and P. Hogeweg, “Self-reinforcing spatial
patterns enslave evolution in a host-parasitoid system,” Journal
of Theoretical Biology, vol. 188, no. 1, pp. 11–20, 1997.

[4] J. A. Sherratt, M. A. Lewis, and A. C. Fowler, “Ecological chaos
in the wake of invasion,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 92, no. 7, pp. 2524–
2528, 1995.

[5] H. Gao and S. Fu, “Nonlinear instability for a volume-filling
chemotaxis model with logistic growth,” Abstract and Applied
Analysis, vol. 2014, Article ID 248657, 11 pages, 2014.

[6] S. Fu and J. Liu, “A mathematical characterization for patterns
of a Keller-Segel model with a cubic source term,” Advances
in Mathematical Physics, vol. 2013, Article ID 934745, 11 pages,
2013.

[7] S. Fu and J. Liu, “Spatial pattern formation in the Keller-Segel
model with a logistic source,” Computers and Mathematics with

Applications. An International Journal, vol. 66, no. 3, pp. 403–
417, 2013.

[8] A. Berman and R. J. Plemmons, Nonnegative Matrices in the
Mathematical Sciences, vol. 9 ofClassics in AppliedMathematics,
SIAM, Philadelphia, Pa, USA, 1994.

[9] R. Schaaf, “Stationary solutions of chemotaxis systems,” Trans-
actions of the AmericanMathematical Society, vol. 292, no. 2, pp.
531–556, 1985.

[10] D. Henry, Geometric Theory of Semilinear Parabolic Equations,
vol. 840 of Lecture Notes in Mathematics, Springer, Berlin,
Germany, 1981.

[11] X. Tang and Y. Tao, “Analysis of a chemotaxis model for multi-
species host-parasitoid interactions,” Applied Mathematical Sci-
ences, vol. 2, no. 25, pp. 1239–1252, 2008.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


