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The helical flows of couple-stress fluids in a straight circular cylinder are studied in the framework of the newly developed, fully
determinate linear couple-stress theory. The fluid flow is generated by the helical motion of the cylinder with time-dependent
velocity. Also, the couple-stress vector is given on the cylindrical surface and the nonslip condition is considered. Using the integral
transformmethod, analytical solutions to the axial velocity, azimuthal velocity, nonsymmetric force-stress tensor, and couple-stress
vector are obtained.The obtained solutions incorporate the characteristic material length scale, which is essential to understand the
fluid behavior at microscales. If characteristic length of the couple-stress fluid is zero, the results to the classical fluid are recovered.
The influence of the scale parameter on the fluid velocity, axial flow rate, force-stress tensor, and couple-stress vector is analyzed by
numerical calculus and graphical illustrations. It is found that the small values of the scale parameter have a significant influence
on the flow parameters.

1. Introduction

The existence of couple stresses in continuum mechanics
is a consequence of the discrete character of the matter
at the finest scale. Also, the noncentral property of forces
between elementary particles of matter leads to the appearing
of couple stresses [1]. E. Cosserat and F. Cosserat [2] were
the first to have incorporated the couple stresses by con-
sidering the oriented material point triads and independent
microrotation in theory of continuum solids. Toupin [3],
Mindlin and Tiersten [4], and Koiter [5] have developed
theories with couple stresses, in which the rigid body motion
of the infinitesimal element of matter at each point of the
continuum is described by six degrees of freedom.

Based on these theories with couple stresses, Stokes [6]
has developed the theory of couple-stress fluids in order to
study the size-dependent behavior of flows. Stokes’ theory
represents the simplest generalization of the classical theory
of fluids, which considers the presence of couple stresses.
All the above models have various inconsistencies. In the
context of Stokes’ theory, the indeterminacy of the spherical

part of couple-stress tensor is a major shortcoming. Another
problem appears in the theory of Mindlin and Tiersten;
namely, in their theory, the constitutive relation for the force-
stress tensor contains the body couples. The indeterminate
spherical part of couple-stress tensor is ignored in Stokes’
theory, without justifications. Also, the presence of body
couples in the constitutive relations was neglected by Stokes
in his theory.

Hadjesfandiari et al. [1, 7, 8] have solved these issues by
using arguments based upon the energy equation along with
kinematical considerations.They developed a fully consistent
couple-stress theory for solids and fluids, which establishes
the couple-stress tensor and mean curvature rate tensor as
skew-symmetric energy conjugate measures. Their results
could be useful for examining fluid flow problems influenced
by the mechanics at small scales. Significant application
areas for size-dependent fluid mechanics involve modeling
of blood flows, lubrication problems, liquid crystals, and
polymeric suspensions. This branch of fluid mechanics has
attracted a growing interest from researchers in the field.
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Bakhti and Azrar [9] studied the steady flow of a couple-
stress fluid through constricted tapered artery under influ-
ence of a transverse magnetic field, moving catheter, and slip
velocity. Solutions to velocity and shear stress are expressed
with Bessel’s functions. Pralhad and Schultz [10] used the
couple-stress fluid model for the study of the steady flow of
blood through stenosed artery. Blood velocity, the resistance
to flow, and shear stress distribution have been obtained.
Verma et al. [11] have studied the blood flow in a stenosed
tube considering the blood as a couple-stress fluid. Effects
of slip velocity in stenosed tube were highlighted. Shenoy
and Pai [12] have made the static analysis of a misaligned
externally adjustable fluid-film bearing including turbulence
and couple-stress effects in lubricants blended with polymer
additives. Naduvinamani and Patil [13] obtained a numerical
solution to finite modified Reynolds equation for couple-
stress squeeze film lubrication of porous journal bearings.

The unsteady three-dimensional flow of couple-stress
fluid over a stretched surface withmass transfer and chemical
reaction was investigated by Hayat et al. [14]. Devakar and
Iyengar [15] investigated the generalized Stokes’ problems
for incompressible couple-stress fluids. The effects of kinetic
helicity (velocity-vorticity correlation) on turbulent momen-
tum transport were investigated by Yokoi et al. [16, 17]. Other
interesting topics can be found in references [18–21].

We must mention that the models considered in the
above articles are based on the theory developed by Mindlin,
Tiersten, and Stokes.

In the present paper we consider the consistent theory
of couple-stress fluids elaborated by Hadjesfandiari and his
coworkers [1, 8] and, we study the helical flows of couple-
stress fluids within a straight circular cylinder under general
boundary conditions. In the studied problem, the fluid
motion is generated by the helical motion of the cylindri-
cal surface with the time-dependent axial and azimuthal
velocities and by the time-dependent couple-stress vector
on the cylinder surface. The nonslip conditions are, also,
considered. Using suitable nondimensional variables, we
determine analytical solutions to the axial and azimuthal
velocities by means of the integral transform method. The
axial angular velocity and the flow rate are also obtained.
Components of the nonsymmetric force-stress tensor and
the couple-stress vector are determined from the constitutive
relations and velocity field. Obviously, if the characteristic
length of couple-stress fluids is zero, we recover results for the
classical fluid. The obtained analytical solutions are used in
order to perform numerical calculations using the Mathcad
software for particular external loadings. The results are
graphically presented. It is found that all flow parameters
are influenced by the fluid scale parameter. The significant
influence is obtained for small values of the scale parameter.

2. Statement of the Problem

Weconsider a homogeneous, incompressible, viscous couple-
stress fluid flowing inside a straight circular cylinder of radius𝑅. The cylindrical coordinate system (𝑟, 𝜃, 𝑧) has the 𝑧-axis
identical with the cylinder axis. The governing equations of
the couple-stress fluid are as follows [1, 8]:

(i) Continuity equation:

∇ ⋅ V⃗ = 𝜕V𝑟𝜕𝑟 + 1𝑟 𝜕V𝜃𝜕𝜃 + 𝜕V𝑧𝜕𝑧 = 0, (1)

where V⃗ = V𝑟 ⃗𝑒𝑟 + V𝜃 ⃗𝑒𝜃 + V𝑧 ⃗𝑒𝑧 is the fluid velocity.
(ii) Equation of linear momentum (the body forces are

neglected):

𝜌(𝜕V⃗𝜕𝑡 + ∇V⃗ ⋅ V⃗) = −∇𝑝 + 𝜇∇2V⃗ − 𝜂∇2∇2V⃗, (2)

where 𝜌 is the fluid density, 𝜇 is the dynamic viscosity, 𝜂 is
the viscosity coefficient of couple-stress fluid, and 𝑝 is the
thermodynamic pressure.

(iii) The constitutive equations:
The nonsymmetric force-stress tensor:

T = −𝑝I + 𝜏, 𝜏 = 2𝜇D + 2𝜂Ω, (3)

where

D = 12 [∇V⃗ + (∇V⃗)𝑇] , (4)

Ω = 12 [∇V⃗ − (∇V⃗)𝑇] (5)

represent the strain rate tensor and the angular velocity
tensor, respectively.

The polar couple-stress vector:

𝑀⃗ = 2𝜂ΔV⃗. (6)

In this paper, we consider that the velocity field and
pressure are functions of the form

V⃗ (𝑟, 𝑡) = V𝜃 (𝑟, 𝑡) ⃗𝑒𝜃 + V⃗𝑧 (𝑟, 𝑡) ⃗𝑒𝑧,
𝑝 = 𝑝 (𝑟, 𝑡) . (7)

Equation (1) is identically satisfied and (2)–(6) become

𝜕𝑝𝜕𝑟 = 𝜌𝑟 V2𝜃,
𝜌𝜕V𝜃𝜕𝑡 = 𝜇 (Δ − 1𝑟2 ) V𝜃 − 𝜂 (Δ − 1𝑟2 )(Δ − 1𝑟2 ) V𝜃,
𝜌𝜕V𝑧𝜕𝑡 = 𝜇ΔV𝑧 − 𝜂Δ2V𝑧,
𝜏𝑟𝑟 = 0,
𝜏𝑟𝜃 = 𝜇𝑟 𝜕𝜕𝑟 (V𝜃𝑟 ) − 𝜂Δ [1𝑟 𝜕𝜕𝑟 (𝑟V𝜃)] ,
𝜏𝑟𝑧 = 𝜇𝜕V𝑧𝜕𝑟 − 𝜂Δ(𝜕V𝑧𝜕𝑟 ) ,
𝜏𝜃𝑟 = 𝜇𝑟 𝜕𝜕𝑟 (V𝜃𝑟 ) + 𝜂Δ [1𝑟 𝜕𝜕𝑟 (𝑟V𝜃)] ,
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𝜏𝜃𝜃 = 0,
𝜏𝜃𝑧 = 0,
𝜏𝑧𝑟 = 𝜇𝜕V𝑧𝜕𝑟 + 𝜂Δ(𝜕V𝑧𝜕𝑟 ) ,
𝜏𝑧𝜃 = 0,
𝜏𝑧𝑧 = 0,
𝑀𝑟 = 0,
𝑀𝜃 = 2𝜂 (Δ − 1𝑟2 ) V𝜃,
𝑀𝑧 = 2𝜂ΔV𝑧.

(8)

We consider the following initial-boundary conditions:

V𝜃 (𝑟, 0) = 0,
V𝑧 (𝑟, 0) = 0, (9)

V𝜃 (0, 𝑡) = 0,
𝑀𝜃 (0, 𝑡) = 0,
𝜕V𝑧𝜕𝑟
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=0 = 0,

(10)

V𝜃 (𝑅, 𝑡) = 𝑉1𝑓1 (𝑡) ,
𝑀𝜃 (𝑅, 𝑡) = 2𝜂𝑚1𝑓2 (𝑡) , (11)

V𝑧 (𝑅, 𝑡) = 𝑉0𝑔1 (𝑡) ,
𝑀𝑧 (𝑅, 𝑡) = 2𝜂𝑚2𝑔2 (𝑡) . (12)

Functions 𝑓1(𝑡), 𝑓2(𝑡), 𝑔1(𝑡), and 𝑔2(𝑡) are piecewise
continuous functions on [0, 𝑡]; for every 𝑡 > 0, they have
exponential order at infinity and 𝑓1(0) = 𝑓2(0) = 𝑔1(0) =𝑔2(0).

We define the characteristic material length

ℓ = √ 𝜂𝜇 [m] , (13)

which is absent in classical fluid mechanics but is fundamen-
tal for couple-stress fluids.

Introducing the nondimensional variables

𝑟∗ = 𝑟𝑅 ,
𝑡∗ = ]𝑡𝑅2 ,
𝑢∗ = 𝑅V𝜃

]
,

V∗ = 𝑅V𝑧
]
,

𝑝∗ = 𝑅2𝑝𝜌]2 ,
𝑎 = ℓ2𝑅2 ,
𝜏
∗ = 𝑅2𝜌]2 𝜏,

𝑀⃗∗ = 𝑅𝜌]2 𝑀⃗,
𝑓∗
1
(𝑡∗) = 𝑅𝑉1

]
𝑓1 (𝑅2𝑡∗] ) ,

𝑓∗
2
(𝑡∗) = 𝑚1𝑅3

]
𝑓2 (𝑅2𝑡∗] ) ,

𝑔∗
1
(𝑡∗) = 𝑅𝑉0

]
𝑔1 (𝑅2𝑡∗] ) ,

𝑔∗
2
(𝑡∗) = 𝑚2𝑅3

]
𝑔2 (𝑅2𝑡∗] )

(14)

into (8)–(10) and dropping the star notation, we obtain the
following nondimensional problem:

𝜕𝑝𝜕𝑟 = 1𝑟𝑢2, (15)

𝜕𝑢𝜕𝑡 = (Δ − 1𝑟2 ) 𝑢 − 𝑎 (Δ − 1𝑟2 )(Δ − 1𝑟2 ) 𝑢, (16)

𝜕V𝜕𝑡 = ΔV − 𝑎Δ2V, (17)

𝜏𝑟𝑟 = 0,
𝜏𝑟𝜃 = 𝑟 𝜕𝜕𝑟 (𝑢𝑟 ) − 𝑎Δ[1𝑟 𝜕𝜕𝑟 (𝑟𝑢)] ,
𝜏𝑟𝑧 = 𝜕V𝜕𝑟 − 𝑎Δ(𝜕V𝜕𝑟) ,

(18)

𝜏𝜃𝑟 = 𝑟 𝜕𝜕𝑟 (𝑢𝑟 ) + 𝑎Δ[1𝑟 𝜕𝜕𝑟 (𝑟𝑢)] ,
𝜏𝜃𝜃 = 0,
𝜏𝜃𝑧 = 0,

(19)

𝜏𝑧𝑟 = 𝜕V𝜕𝑟 + 𝑎Δ(𝜕V𝜕𝑟) ,
𝜏𝑧𝜃 = 0,
𝜏𝑧𝑧 = 0,

(20)
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𝑀𝑟 = 0,
𝑀𝜃 = 2𝑎 (Δ − 1𝑟2 ) 𝑢,
𝑀𝑧 = 2𝑎ΔV,

(21)

𝑢 (𝑟, 0) = 0,
V (𝑟, 0) = 0, (22)

𝑢 (0, 𝑡) = 0,
𝑀𝜃 (0, 𝑡) = 0,
𝜕V𝜕𝑟
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=0 = 0,

(23)

𝑢 (1, 𝑡) = 𝑓1 (𝑡) ,
𝑀𝜃 (1, 𝑡) = 2𝑎𝑓2 (𝑡) , (24)

V (1, 𝑡) = 𝑔1 (𝑡) ,
𝑀𝑧 (1, 𝑡) = 2𝑎𝑔2 (𝑡) . (25)

In the end of this section, we give two lemmas regarding
some properties to the operators from (16) and (17). These
properties will be used in order to find solutions of the above
problem.

Lemma 1. If 𝛼𝑛, 𝑛 = 1, 2, . . . are the positive roots of
Bessel function 𝐽0(𝑥), V𝑛(𝑡) = ∫1

0
V(𝑟, 𝑡)𝑟𝐽0(𝛼𝑛𝑟)𝑑𝑟, and(𝜕V(𝑟, 𝑡)/𝜕𝑟)|𝑟=0 = 0, then,

(i)

∫1
0

(ΔV (𝑟, 𝑡)) 𝑟𝐽0 (𝛼𝑛𝑟) 𝑑𝑟
= 𝛼𝑛𝐽1 (𝛼𝑛) V (1, 𝑡) − 𝛼2𝑛V𝑛 (𝑡) ;

(26)

(ii)

∫1
0

(Δ2V (𝑟, 𝑡)) 𝑟𝐽0 (𝛼𝑛𝑟) 𝑑𝑟
= −𝛼3
𝑛
𝐽1 (𝛼𝑛) V (1, 𝑡) + 𝛼𝑛𝐽1 (𝛼𝑛) ΔV (𝑟, 𝑡)|𝑟=1

+ 𝛼4
𝑛
V𝑛 (𝑡) .

(27)

Lemma 2. If 𝛽𝑛, 𝑛 = 1, 2, . . . are the positive roots of
Bessel function 𝐽1(𝑥), 𝑢𝑛(𝑡) = ∫10 𝑢(𝑟, 𝑡)𝑟𝐽1(𝛽𝑛𝑟)𝑑𝑟, and (Δ −1/𝑟2)𝑢(𝑟, 𝑡)|𝑟=0 = 0, then,

(i)

∫1
0

((Δ − 1𝑟2 ) 𝑢 (𝑟, 𝑡)) 𝑟𝐽0 (𝛼𝑛𝑟) 𝑑𝑟
= −𝛽𝑛𝐽0 (𝛼𝑛) 𝑢 (1, 𝑡) − 𝛽2𝑛𝑢𝑛 (𝑡) ;

(28)

(ii)

∫1
0

((Δ − 1𝑟2 )
2 𝑢 (𝑟, 𝑡)) 𝑟𝐽1 (𝛽𝑛𝑟) 𝑑𝑟

= 𝛽3
𝑛
𝐽0 (𝛽𝑛) 𝑢 (1, 𝑡)
+ 𝛽𝑛𝐽0 (𝛽𝑛) (Δ − 1𝑟2 ) 𝑢 (𝑟, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=1 + 𝛽4𝑛𝑢𝑛 (𝑡) .
(29)

The demonstration of relations (26)–(29) is made easy
using integration by parts and properties of Bessel functions
[22, 23]. It is noted that V𝑛(𝑡) is zero-order finite Hankel
transform of function V(𝑟, 𝑡) and 𝑢𝑛(𝑡) is the finite Hankel
transform of the first order of function 𝑢(𝑟, 𝑡), respectively.
3. Solution of the Problem

In order to find the solution of problem (15)–(25), we use the
Laplace transform with respect to the variable time and finite
Hankel transform with respect the radial coordinate [24, 25].

3.1. Velocity Field. Applying the Laplace and finite Hankel
transforms to (16) and (17), using the initial and boundary
conditions (22)–(25) and Lemmas 1 and 2, we obtain the
following transformed equations:

𝑢𝑛 (𝑠) = −𝛽𝑛𝐽0 (𝛽𝑛) (1 + 𝑎𝛽
2

𝑛
)

𝑠 + 𝛽2
𝑛
(1 + 𝑎𝛽2

𝑛
) 𝑓
1
(𝑠)

+ 𝑎𝛽𝑛𝐽0 (𝛽𝑛)𝑠 + 𝛽2
𝑛
(1 + 𝑎𝛽2

𝑛
)𝑓2 (𝑠) ,

V𝑛 (𝑠) = 𝛼𝑛𝐽1 (𝛼𝑛) (1 + 𝑎𝛼
2

𝑛
)

𝑠 + 𝛼2
𝑛
(1 + 𝑎𝛼2

𝑛
) 𝑔
1
(𝑠)

− 𝑎𝛼𝑛𝐽1 (𝛼𝑛)𝑠 + 𝛼2
𝑛
(1 + 𝑎𝛼2

𝑛
)𝑔2 (𝑠) ,

(30)

where 𝑢𝑛(𝑠) = ∫∞0 𝑢𝑛(𝑡)𝑒−𝑠𝑡𝑑𝑡, V𝑛(𝑠) = ∫∞0 V𝑛(𝑡)𝑒−𝑠𝑡𝑑𝑡, 𝑓1(𝑠),𝑓
2
(𝑠),𝑔
1
(𝑠), and𝑔

2
(𝑠) are the Laplace transforms of functions𝑢𝑛(𝑡), V𝑛(𝑡), 𝑓1(𝑡), 𝑓2(𝑡), 𝑔1(𝑡), and 𝑔2(𝑡), respectively. Equa-

tions (30) can be written in the suitable forms

𝑢𝑛 (𝑠) = −𝐽0 (𝛽𝑛)𝛽𝑛 𝑓
1
(𝑠) + 𝐽0 (𝛽𝑛)𝛽𝑛

𝑠𝑓
1
(𝑠)

𝑠 + 𝛽2
𝑛
(1 + 𝑎𝛽2

𝑛
)

+ 𝐽0 (𝛽𝑛)𝛽3
𝑛

𝑓
2
(𝑠) − 𝐽0 (𝛽𝑛)𝛽3

𝑛
(1 + 𝑎𝛽2

𝑛
)𝑓2 (𝑠)

− 𝑎𝐽0 (𝛽𝑛)𝛽𝑛 (1 + 𝑎𝛽2𝑛)
𝑠𝑓
2
(𝑠)

𝑠 + 𝛽2
𝑛
(1 + 𝑎𝛽2

𝑛
) ,

V𝑛 (𝑠) = 𝐽1 (𝛼𝑛)𝛼𝑛 𝑔
1
(𝑠) − 𝐽1 (𝛼𝑛)𝛼𝑛

𝑠𝑔
1
(𝑠)

𝑠 + 𝛼2
𝑛
(1 + 𝑎𝛼2

𝑛
)

− (4 + 𝛼2𝑛) 𝐽1 (𝛼𝑛)4𝛼3
𝑛

𝑔
2
(𝑠)
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+ 4 + 𝛼2𝑛 (1 + 𝑎𝛼2𝑛)4𝛼3
𝑛
(1 + 𝑎𝛼2

𝑛
) 𝐽1 (𝛼𝑛) 𝑔2 (𝑠)

+ 𝑎𝐽1 (𝛼𝑛)𝛼𝑛 (1 + 𝑎𝛼2𝑛)
𝑠𝑔
2
(𝑠)

𝑠 + 𝛼2
𝑛
(1 + 𝑎𝛼2

𝑛
) .

(31)
Now, using the integrals

∫1
0

𝑟2𝐽1 (𝛽𝑛𝑟) 𝑑𝑟 = −𝐽0 (𝛽𝑛)𝛽𝑛 ,
∫1
0

𝑟3 − 𝑟8 𝑟𝐽1 (𝛽𝑛𝑟) 𝑑𝑟 = 𝐽0 (𝛽𝑛)𝛽3
𝑛

,
∫1
0

𝑟𝐽0 (𝛼𝑛𝑟) 𝑑𝑟 = 𝐽1 (𝛼𝑛)𝛼𝑛 ,
∫1
0

𝑟2 − 14 𝑟𝐽0 (𝛼𝑛𝑟) 𝑑𝑟 = −4 + 𝛼2𝑛4𝛼3
𝑛

𝐽1 (𝛼𝑛) ,

(32)

and applying the inverse Hankel and Laplace transforms, we
obtain closed forms to azimuthal velocity and axial velocities
as

𝑢 (𝑟, 𝑡) = 𝑟𝑓1 (𝑡) + 𝑟3 − 𝑟8 𝑓2 (𝑡) − 2𝑓2 (𝑡)
⋅ ∞∑
𝑛=1

𝐽1 (𝛽𝑛𝑟)𝛽3
𝑛
(1 + 𝑎𝛽2

𝑛
) 𝐽0 (𝛽𝑛) + 2

∞∑
𝑛=1

𝐽1 (𝛽𝑛𝑟)𝛽𝑛𝐽0 (𝛽𝑛)
⋅ ∫𝑡
0

̇𝑓1 (𝜏) exp [−𝛽2𝑛 (1 + 𝑎𝛽2𝑛) (𝑡 − 𝜏)] 𝑑𝜏
− 2𝑎∞∑
𝑛=1

𝐽1 (𝛽𝑛𝑟)𝛽𝑛 (1 + 𝑎𝛽2𝑛) 𝐽0 (𝛽𝑛)
⋅ ∫𝑡
0

̇𝑓2 (𝜏) exp [−𝛽2𝑛 (1 + 𝑎𝛽2𝑛) (𝑡 − 𝜏)] 𝑑𝜏,
V (𝑟, 𝑡) = 𝑔1 (𝑡) + 𝑟2 − 14 𝑔2 (𝑡) + 2𝑔2 (𝑡)
⋅ ∞∑
𝑛=1

4 + 𝛼2
𝑛
(1 + 𝑎𝛼2

𝑛
) 𝐽0 (𝛼𝑛𝑟)4𝛼3

𝑛
(1 + 𝑎𝛼2

𝑛
) 𝐽1 (𝛼𝑛) − 2∞∑

𝑛=1

𝐽0 (𝛼𝑛𝑟)𝛼𝑛𝐽1 (𝛼𝑛)
⋅ ∫𝑡
0

̇𝑔1 (𝜏) exp [−𝛼2𝑛 (1 + 𝑎𝛼2𝑛) (𝑡 − 𝜏)] 𝑑𝜏
+ 2𝑎∞∑
𝑛=1

𝐽0 (𝛼𝑛𝑟)𝛼𝑛 (1 + 𝑎𝛼2𝑛) 𝐽1 (𝛼𝑛)
⋅ ∫𝑡
0

̇𝑔2 (𝜏) exp [−𝛼2𝑛 (1 + 𝑎𝛼2𝑛) (𝑡 − 𝜏)] 𝑑𝜏.

(33)

In the above relations we have used the notation ̇𝑓(𝑡) =𝑑𝑓(𝑡)/𝑑𝑡.
By introducing notations

𝐴𝑛 (𝑡) = −2𝑓2 (𝑡)𝛽3
𝑛
(1 + 𝑎𝛽2

𝑛
) 𝐽0 (𝛽𝑛) +

2𝛽𝑛𝐽0 (𝛽𝑛)
⋅ ∫𝑡
0

̇𝑓1 (𝜏) exp [−𝛽2𝑛 (1 + 𝑎𝛽2𝑛) (𝑡 − 𝜏)] 𝑑𝜏

− 2𝑎𝛽𝑛 (1 + 𝑎𝛽2𝑛) 𝐽0 (𝛽𝑛)
⋅ ∫𝑡
0

̇𝑓2 (𝜏) exp [−𝛽2𝑛 (1 + 𝑎𝛽2𝑛) (𝑡 − 𝜏)] 𝑑𝜏,
𝐵𝑛 (𝑡) = 2𝑔2 (𝑡) (4 + 𝛼

2

𝑛
(1 + 𝑎𝛼2

𝑛
))

4𝛼3
𝑛
(1 + 𝑎𝛼2

𝑛
) 𝐽1 (𝛼𝑛) − 2𝛼𝑛𝐽1 (𝛼𝑛)

⋅ ∫𝑡
0

̇𝑔1 (𝜏) exp [−𝛼2𝑛 (1 + 𝑎𝛼2𝑛) (𝑡 − 𝜏)] 𝑑𝜏
+ 2𝑎𝛼𝑛 (1 + 𝑎𝛼2𝑛) 𝐽1 (𝛼𝑛)
⋅ ∫𝑡
0

̇𝑔2 (𝜏) exp [−𝛼2𝑛 (1 + 𝑎𝛼2𝑛) (𝑡 − 𝜏)] 𝑑𝜏,
(34)

(33) are written as

𝑢 (𝑟, 𝑡) = 𝑟𝑓1 (𝑡) + 𝑟3 − 𝑟8 𝑓2 (𝑡) + ∞∑
𝑛=1

𝐴𝑛 (𝑡) 𝐽1 (𝛽𝑛𝑟) ,

V (𝑟, 𝑡) = 𝑔1 (𝑡) + 𝑟2 − 14 𝑔2 (𝑡) + ∞∑
𝑛=1

𝐵𝑛 (𝑡) 𝐽0 (𝛼𝑛𝑟) .
(35)

It is observed that functions 𝐴𝑛(𝑡) and 𝐵𝑛(𝑡) have the
property 𝐴𝑛(0) = 𝐵𝑛(0) = 0.

The axial angular velocity (the spin vector) is given by

𝜔⃗ = 12∇ × V⃗ = −12 𝜕V𝜕𝑟 ⃗𝑒𝜃 + (𝜕𝑢𝜕𝑟 + 𝑢𝑟 ) ⃗𝑒𝑧
= 12 (

∞∑
𝑛=1

𝛼𝑛𝐵𝑛 (𝑡) 𝐽1 (𝛼𝑛𝑟) − 𝑟2𝑔2 (𝑡)) ⃗𝑒𝜃
+ 12 (2𝑓1 (𝑡) + 2𝑟

2 − 14 𝑓2 (𝑡)

+ ∞∑
𝑛=1

𝛽𝑛𝐴𝑛 (𝑡) 𝐽0 (𝛽𝑛𝑟)) ⃗𝑒𝑧,

(36)

and the flow rate is

𝑄 (𝑡) = ∫1
0

2𝜋𝑟V (𝑟, 𝑡) 𝑑𝑟
= 𝜋𝑔1 (𝑡) − 𝜋8 𝑔2 (𝑡) + 2𝜋

∞∑
𝑛=1

𝐵𝑛 (𝑡)𝛼𝑛 𝐽1 (𝛼𝑛) .
(37)

3.2. Force-Stress Tensor and Couple-Stress Vector. Replacing
(35) in (18)–(21) and performing calculations, we get the
following expressions for the force-stresses and couple-stress
vector:

𝜏𝑟𝜃 = (𝑟24 − 2𝑎)𝑓2 (𝑡)
+ ∞∑
𝑛=1

𝛽𝑛𝐴𝑛 (𝑡) (1 + 2𝑎𝛽2𝑛) 𝐽0 (𝛽𝑛𝑟)
− 2𝑟
∞∑
𝑛=1

𝐴𝑛 (𝑡) 𝐽1 (𝛽𝑛𝑟) ,
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𝜏𝜃𝑟 = (𝑟24 + 2𝑎)𝑓2 (𝑡)
+ ∞∑
𝑛=1

𝛽𝑛𝐴𝑛 (𝑡) (1 − 2𝑎𝛽2𝑛) 𝐽0 (𝛽𝑛𝑟)

− 2𝑟
∞∑
𝑛=1

𝐴𝑛 (𝑡) 𝐽1 (𝛽𝑛𝑟) ,

𝜏𝑟𝑧 = 𝑟2 − 𝑎2𝑟 𝑔2 (𝑡)
− ∞∑
𝑛=1

𝛼𝑛𝐵𝑛 (𝑡) [1 + 𝑎 (𝛼2𝑛 − 1𝑟2 )] 𝐽1 (𝛼𝑛𝑟) ,

𝜏𝑧𝑟 = 𝑟2 + 𝑎2𝑟 𝑔2 (𝑡)
− ∞∑
𝑛=1

𝛼𝑛𝐵𝑛 (𝑡) [1 − 𝑎 (𝛼2𝑛 − 1𝑟2 )] 𝐽1 (𝛼𝑛𝑟) ,
𝜏𝑟𝑟 = 𝜏𝜃𝜃 = 𝜏𝜃𝑧 = 𝜏𝑧𝜃 = 𝜏𝑧𝑧 = 0,
𝑀𝑟 = 0,
𝑀𝜃 = 2𝑎 [𝑟𝑓2 (𝑡) − ∞∑

𝑛=1

𝛽2
𝑛
𝐴𝑛 (𝑡) 𝐽1 (𝛽𝑛𝑟)] ,

𝑀𝑧 = 2𝑎 [𝑔2 (𝑡) − ∞∑
𝑛=1

𝛼2
𝑛
𝐵𝑛 (𝑡) 𝐽0 (𝛼𝑛𝑟)] .

(38)

It is easy to see that, for 𝑎 = 0 (the ordinary Newtonian
fluid), the force-stress tensor becomes a symmetric tensor
and the couple-stress vector is zero.

3.3. Particular Case (Constant Velocity and Couple Stress
on the Boundary). Let us consider the following boundary
conditions:

𝑓1 (𝑡) = 𝑝1𝐻(𝑡) ,
𝑓2 (𝑡) = 𝑝2𝐻(𝑡) ,
𝑔1 (𝑡) = 𝑞1𝐻(𝑡) ,
𝑔2 (𝑡) = 𝑞2𝐻(𝑡) ,

(39)

where 𝑝1 ≥ 0, 𝑝2 ≥ 0, 𝑞1 ≥ 0, and 𝑞2 ≥ 0 are constants and𝐻(𝑡) = (1/2)sign(𝑡)(1 + sign(𝑡)) is the Heaviside unit step
function. In this case, the derivatives of functions given by
(39) are

̇𝑓1 (𝑡) = 𝑝1𝛿 (𝑡) ,
̇𝑓2 (𝑡) = 𝑝2𝛿 (𝑡) ,
̇𝑔1 (𝑡) = 𝑞1𝛿 (𝑡) ,
̇𝑔2 (𝑡) = 𝑞2𝛿 (𝑡) ,

(40)

𝛿(𝑡) being the Dirac distribution. Functions 𝐴𝑛(𝑡) and 𝐵𝑛(𝑡)
are written in simpler forms, as

𝐴𝑛 (𝑡) = −2𝑝2𝐻(𝑡)𝛽3
𝑛
(1 + 𝑎𝛽2

𝑛
) 𝐽0 (𝛽𝑛)

+ 2𝐻 (𝑡)𝛽𝑛𝐽0 (𝛽𝑛) [𝑝1 −
𝑎𝑝21 + 𝑎𝛽2
𝑛

]
⋅ exp [−𝛽2

𝑛
(1 + 𝑎𝛽2

𝑛
) 𝑡] ,

𝐵𝑛 (𝑡) = 2𝑞2𝐻(𝑡) (4 + 𝛼
2

𝑛
(1 + 𝑎𝛼2

𝑛
))

4𝛼3
𝑛
(1 + 𝑎𝛼2

𝑛
) 𝐽1 (𝛼𝑛)

− 2𝐻 (𝑡)𝛼𝑛𝐽1 (𝛼𝑛) [𝑞1 −
𝑎𝑞21 + 𝑎𝛼2
𝑛

] exp [−𝛼2
𝑛
(1 + 𝑎𝛼2

𝑛
) 𝑡] .

(41)

4. Numerical Results and Discussion

Unsteady helical flows in the consistent theory of couple-
stress fluids were considered, under general boundary con-
ditions. By using suitable nondimensional variables, the
governing flow equations are obtained in the dimensionless
form. It is important to note that these equations contain as
parameter the dimensionless scale flow parameter 𝑎, defined
as the square of the rate between the characteristic material
length and the radius of circular cylinder. As a result from
the studied particular problems, the scale parameter has a
significant influence on the fluid behavior. Obviously, if the
scale parameter equals zero, results corresponding to the
Newtonian fluid are obtained. Solutions for fluid velocity,
nonsymmetric force-stress tensor, and couple-stress vector
were obtained using integral transforms method (Laplace
transform with respect to the time variable and finite Hankel
transform with respect to the radial coordinate). The axial
angular velocity and the flow rate are also determined.

The obtained solutions contain in their expressions the
positive roots of the Bessel functions 𝐽0(𝑥) and 𝐽1(𝑥), denoted
by 𝛼𝑛 and 𝛽𝑛, roots which were generated by means of
Mathcad subroutine “root(𝑓(𝑥), 𝑥, 𝑎, 𝑏).” In the numerical
simulations, we have used 𝑛 ∈ [500, 1000], values for which
the numerical approximation accuracy is very good.

In our study, the azimuthal velocity, axial velocity, and
the components of the couple-stress vector are given on
the cylinder surface as arbitrary functions of the time 𝑡;
therefore, the obtained solutions can generate solutions to
various problems with practical applications.

The numerical results for Figures 1–3 and for Table 1 were
generated under conditions 𝑓1(𝑡) = 𝑓2(𝑡) = 𝑔1(𝑡) = 𝑔2(𝑡) =𝐻(𝑡) = (1/2)sign(𝑡)(1 + sign(𝑡)).

Figures 4 and 5 were plotted under conditions

𝑓1 (𝑡) = 𝑔1 (𝑡) = 0.2𝐻 (𝑡) = 0.1 sign (𝑡) (1 + sign (𝑡)) ,
𝑓2 (𝑡) = 0,
𝑔2 (𝑡) = 0.

(42)
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Figure 1: Profiles of azimuthal velocity 𝑢(𝑟, 𝑡) and axial velocity V(𝑟, 𝑡) for small time and different values of scale parameter 𝑎.
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Figure 2: Profiles of azimuthal velocity 𝑢(𝑟, 𝑡) and axial velocity V(𝑟, 𝑡) for 𝑡 = 1 and different values of the scale parameter 𝑎.
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Figure 3: Variation of flow rate with the scale parameter 𝑎, respectively, with the time 𝑡.
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Figure 4: The variation of shear stresses with the scale parameter 𝑎.
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Figure 5: Variation of the couple stress with the scale parameter 𝑎.

Table 1: The influence of time values on fluid velocity components.

(a)

𝑎 = 0.1𝑟 𝑢(𝑟, 𝑡), 𝑡 = 1 𝑢(𝑟, 𝑡), 𝑡 = 5 𝑢(𝑟, 𝑡), 𝑡 = 10
0 0 0 0
0.1 0.093499 0.093499 0.093499
0.2 0.187262 0.187262 0.187262
0.3 0.281577 0.281577 0.281577
0.4 0.376776 0.376776 0.376776
0.5 0.473268 0.473268 0.473268
0.6 0.57157 0.57157 0.57157
0.7 0.672355 0.672355 0.672355
0.8 0.776506 0.776506 0.776506
0.9 0.885198 0.885198 0.885198
1 1 1 1

(b)

𝑎 = 0.1𝑟 V(𝑟, 𝑡), 𝑡 = 1 V(𝑟, 𝑡), 𝑡 = 5 V(𝑟, 𝑡), 𝑡 = 10
0 1.158949 1.159123 1.159112
0.1 1.167755 1.167927 1.167916
0.2 1.169256 1.169421 1.16941
0.3 1.171729 1.171882 1.171872
0.4 1.175404 1.17554 1.175532
0.5 1.180568 1.180685 1.180677
0.6 1.187616 1.187711 1.187705
0.7 1.197082 1.197153 1.197149
0.8 1.209657 1.209704 1.209701
0.9 1.226044 1.226067 1.226065
1 1 1 1

Figure 1 shows profiles of both azimuthal and axial velocities,
versus radial coordinate 𝑟 for different values of the scale
parameter 𝑎 and for three small values of the time 𝑡.

The influence of the scale parameter 𝑎 on rotational
velocity is significant only for very small values of the time 𝑡. It

is observed from Figure 1(a) that azimuthal velocity increases
with the scale parameter 𝑎. The rotational velocity of couple-
stress fluid is bigger than the velocity of classical fluid, except
the case of very small values of time 𝑡. In this particular case,
there are values of the scale parameter, for which the couple-
stress fluid flows more slowly than the Newtonian fluid in the
central area of the flow domain. The influence of the scale
parameter on the axial velocity is more significant than on
the azimuthal velocity. It is seen fromFigure 1(b) that the axial
velocity increases with the scale parameter.

As is apparent from Figure 2 and values of Table 1, the
fluid azimutal velocity is almost steady and the axial velocity
has a small time-variation, for 𝑡 > 1. These properties are
due to the exponential terms in (34) which tend fast to zero,
because,

𝛼2
𝑛
(1 + 𝑎𝛼2

𝑛
) ≥ 5.783 (1 + 5.783𝑎) ,

𝑛 ≥ 1, 𝛼1 ≃ 2.405,
𝛽2
𝑛
(1 + 𝑎𝛽2

𝑛
) ≥ 14.682 (1 + 14.682𝑎) ,

𝑛 ≥ 1, 𝛽1 ≃ 3.832
(43)

(For 𝑡 > 1 and 𝑎 ≥ 0 the exponential terms in (34) are
negligible).

The influence of the scale parameter 𝑎 on the flow rate𝑄(𝑡) in axial direction is presented in Figure 3. Obviously, the
significant variation of the flow rate is for small values of the
time 𝑡. It is important to note that, for large values of the scale
parameter 𝑎 or for large values of the time 𝑡, the flow rate in
the axial direction becomes constant.

The influence of the scale parameter 𝑎 on the components𝜏𝑟𝜃, 𝜏𝜃𝑟, 𝜏𝑟𝑧, and 𝜏𝑧𝑟 of the force-stress tensor and on
the components 𝑀𝜃 and 𝑀𝑧 of the couple-stress vector is
analyzed in Figures 4 and 5.

The significant influence occurs for small values of the
scale parameter. For these values the shear stresses 𝜏𝑟𝜃 and𝜏𝜃𝑟 and the couple-stress component 𝑀𝜃 have an extreme
value and tend to approach zero for large values of the scale
parameter.
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Shear stresses 𝜏𝑟𝑧 and 𝜏𝑧𝑟 and the couple-stress com-
ponent 𝑀𝑧 are monotone increasing/decreasing for small
values of the parameter 𝑎 and tend to a constant value if the
parameter values are large.
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