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The main goal of this study is to find the solution of initial boundary value problem for the one-dimensional time and space-
fractional diffusion equation which is a very intriguing topic for many researchers. With the aim of newly defined inner product,
which is the main contribution of this study, the analytic solution of the boundary value problem is obtained. The time and space-
fractional derivatives are defined in the Caputo sense which ismore suitable than Riemann-Liouville sense.We apply the separation
of variables method to reduce the problem to two separate fractional ODEs. The generalized solution is constructed/formed in the
form of a Fourier series with respect to the eigenfunctions of a certain eigenvalue problem. In order to obtain the coefficients of the
Fourier series for the solution, we define a new inner product which is the key point of study.

1. Introduction

Since PDE of fractional order contributes to modeling for
the wide range of processes and systems, including past
memories, in various scientific research areas, it has become
very intriguing topic for many scientists. Main reason of this
trend is that using fractional derivative is global in nature
whereas the integer derivative is local in nature.This property
makes fractional DEs the best possible choice in modeling
physical problems involving past memory and/or delay and
attracts growing number of researchers.

The Caputo derivatives are more useful than Riemann-
Liouville derivatives since the analysis of the mathematical
models involving Caputo derivatives gives closer results to
the analysis of ones including integer derivatives. There are
various studies in literature supporting this conclusion [1–
8]. By making use of Mittag–Leffler function, characteristic
equations of fractionalODEs are solved and solutions of them
are constructed efficiently. In this sense, the Mittag–Leffler
function takes the role of the exponential function which is
used in the determination of solutions for ODEs with integer
derivatives.

2. Preliminary Results

In this section, some basic definitions and known results
regarding Caputo fractional derivatives are given.

Definition 1. TheCaputo fractional derivative of 𝑢(𝑡) of order𝑞 where 𝑛 − 1 < 𝑞 < 𝑛 is given by equation

𝑐𝐷𝑞𝑢 (𝑡) = 1Γ (n − q) ∫
𝑡

𝑡0

(𝑡 − 𝑠)𝑛−𝑞−1 𝑢(𝑛) (𝑠) 𝑑𝑠,
𝑡 ∈ [𝑡0, 𝑡0 + 𝑇]

(1)

where 𝑢(𝑛)(𝑡) = 𝑑𝑛𝑢/𝑑𝑡𝑛. If 𝑞 is an integer, then the above
definition of fractional derivative coincides with the integer
derivative.

Definition 2. If 0 < 𝑞 < 1, the Caputo fractional derivative of
order 𝑞 can be defined by equation

𝑐𝐷𝑞𝑢 (𝑡) = 1Γ (1 − q) ∫
𝑡

𝑡0

(𝑡 − 𝑠)−𝑞 𝑢󸀠 (𝑠) 𝑑𝑠 (2)

where 0 < q < 1.
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To determine the solution of eigenvalue problem in the
following section, we use the two-parameter Mittag–Leffler
function defined as

𝐸𝛼,𝛽 (𝜆 (𝑡 − 𝑡0)𝛼) = ∞∑
𝑘=0

(𝜆 (𝑡 − 𝑡0)𝛼)𝑘Γ (𝛼𝑘 + 𝛽) , 𝛼, 𝛽 > 0 (3)

where 𝜆 is a constant. In particular, for 𝑡0 = 0, 𝛼 = 𝛽 = 𝑞 we
obtain

𝐸𝑞,𝑞 (𝜆𝑡𝑞) = ∞∑
𝑘=0

(𝜆𝑡𝑞)𝑘
Γ (𝑞𝑘 + 𝑞) , 𝑞 > 0. (4)

When 𝑞 = 1, Mittag–Leffler function corresponds to usual
exponential function, i.e., 𝐸1,1(𝜆𝑡) = 𝑒𝜆𝑡. For further reading
see [9, 10].

Let us define the following functions which play an
important role in the representation of solution for the
problem under consideration:

sin𝑞 (𝜇𝑡𝑞) = 𝐸𝑞,1 (𝑖𝜇𝑡𝑞) − 𝐸𝑞,1 (−𝑖𝜇𝑡𝑞)2𝑖
= ∞∑
𝑘=0

(−1)𝑘 (𝜇𝑡𝑞)2𝑘+1
Γ ((2𝑘 + 1) 𝑞 + 1)

(5)

and

cos𝑞 (𝜇𝑡𝑞) = 𝐸𝑞,1 (𝑖𝜇𝑡𝑞) + 𝐸𝑞,1 (−𝑖𝜇𝑡𝑞)2
= ∞∑
𝑘=0

(−1)𝑘 (𝜇𝑡𝑞)2𝑘
Γ (2𝑘𝑞 + 1) .

(6)

Note that for 𝑞 = 1 these functions are usual trigonometric
functions sin(𝜇𝑡) and cos(𝜇𝑡).
3. Novel Inner Product

In this section, we define a new inner product to deter-
mine the solution which satisfies the initial boundary value
problem. The missing of such an inner product makes the
space-time fractional initial and boundary value problems
open problems. This inner product promotes these kinds of
problems to be studied theoretically.Moreover, it provides the
best understanding possible to develop the theoretical study
of space-time fractional initial boundary value problems. By
this inner product, the maximum principle for time-space-
fractional PDE will be discussed and investigated for a wide
range of problems. In the definition of this inner product, we
use the functions which satisfy the initial and boundary value
problems with integer orders which make the calculations
much more easier.

Theorem 3. Let 𝑉 be a vector space, made up of all linear
combinations of sin𝛽(𝜇(𝑥/(𝑏 − 𝑎))𝛽) and cos𝛽(𝜇(𝑥/(𝑏 − 𝑎))𝛽)
for fixed 𝛽 where 0 < 𝛽 ≤ 1, 𝜇 ∈ R on the interval 𝐼 = [𝑎, 𝑏],
i.e., 𝑉 = span{sin𝛽(𝜇(𝑥/(𝑏 − 𝑎))𝛽), cos𝛽(𝜇(𝑥/(𝑏 − 𝑎))𝛽)}.

Let 𝑇 : 𝑉 → span{sin(𝜇𝑥/(𝑏−𝑎)), cos(𝜇𝑥/(𝑏−𝑎))} be a linear
transformation which is one-to-one and onto. Hence it has its
inverse transformation 𝑇−1. The mapping < ⋅, ⋅ >: 𝑉 × 𝑉 → R

is defined as

⟨𝑢 (𝑥; 𝛽) , V (𝑥; 𝛽)⟩
= 𝑇−1 (∫𝑇𝑢 (𝑥; 𝛽) .𝑇V (𝑥; 𝛽) 𝑑𝑥)󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏

𝑥=𝑎

(7)

where 𝑇𝑢(𝑥; 𝛽) = 𝑢(𝑥; 1) and 𝑇V(𝑥; 𝛽) = V(𝑥; 1). In other
words,

⟨𝑢 (𝑥; 𝛽) , V (𝑥; 𝛽)⟩ = ∫𝑢 (𝑥; 1) .V (𝑥; 1) 𝑑𝑥 = 𝑤 (𝑥, 1) . (8)

At this point we transform the function 𝑤(𝑥, 1) to the corre-
sponding function 𝑤(𝑥, 𝛽). Replacing 𝛽 back and substituting
upper and lower values give us the result of the new inner
product.

⟨𝑢 (𝑥; 𝛽) , V (𝑥; 𝛽)⟩ = 𝑤 (𝑥, 𝛽)󵄨󵄨󵄨󵄨𝑥=𝑏𝑥=𝑎
= 𝑤 (𝑏, 𝛽) − 𝑤 (𝑎, 𝛽) . (9)

Proof. Let us show that this mapping satisfies the conditions
of an inner product:

(1) < 𝑢(𝑥; 𝛽), 𝑢(𝑥; 𝛽) > ≥ 0
< 𝑢(𝑥; 𝛽), 𝑢(𝑥; 𝛽) > = ∫ 𝑢2(𝑥; 1)𝑑𝑥 = 𝑤(𝑥, 1)
< 𝑢(𝑥; 𝛽), 𝑢(𝑥; 𝛽) > = 𝑤(𝑥, 𝛽)|𝑥=𝑏𝑥=𝑎 = 𝑤(𝑏, 𝛽) −𝑤(𝑎, 𝛽) ≥ 0
since𝑤(𝑏, 1)−𝑤(𝑎, 1) ≥ 0 and −1 ≤ sin𝑞(𝑥) ≤ 1, −1 ≤
cos𝑞(𝑥) ≤ 1, ∀𝑞 ∈ (0, 1).
Moreover < 𝑢(𝑥; 𝛽), 𝑢(𝑥; 𝛽) > = 0 ⇔ 𝑢(𝑥; 𝛽) = 0.

(2) < 𝑢(𝑥; 𝛽), V(𝑥; 𝛽) > = ∫ 𝑢(𝑥; 1) V(𝑥; 1)𝑑𝑥 =∫ V(𝑥; 1) 𝑢(𝑥; 1)𝑑𝑥 = 𝑤(𝑥, 1)
< 𝑢(𝑥; 𝛽), V(𝑥; 𝛽) > = 𝑤(𝑥, 𝛽)|𝑥=𝑏𝑥=𝑎 = 𝑤(𝑏, 𝛽) −𝑤(𝑎, 𝛽) = < V(𝑥; 𝛽), 𝑢(𝑥; 𝛽) >.

(3) < 𝑢(𝑥; 𝛽) + V(𝑥; 𝛽), 𝑧(𝑥; 𝛽) > = ∫(𝑢(𝑥; 1) +
V(𝑥; 1)) 𝑧(𝑥; 1)𝑑𝑥
= ∫ 𝑢(𝑥; 1) 𝑧(𝑥; 1)𝑑𝑥 + ∫ V(𝑥; 1) 𝑧(𝑥; 1)𝑑𝑥
< 𝑢(𝑥; 𝛽) + V(𝑥; 𝛽), 𝑧(𝑥; 𝛽) > = 𝑤1(𝑥, 𝛽)|𝑏𝑥=𝑎 +𝑤2(𝑥, 𝛽)|𝑏𝑥=𝑎
= 𝑤1(𝑏, 𝛽) − 𝑤1(𝑎, 𝛽) + 𝑤2(𝑏, 𝛽) − 𝑤2(𝑎, 𝛽)
= < 𝑢(𝑥; 𝛽), 𝑧(𝑥; 𝛽) > + < V(𝑥; 𝛽), 𝑧(𝑥; 𝛽) > .

(4) < 𝛼𝑢(𝑥; 𝛽), V(𝑥; 𝛽) > = ∫𝛼𝑢(𝑥; 1)V(𝑥; 1)𝑑𝑥 =𝛼∫ 𝑢(𝑥; 1)V(𝑥; 1)𝑑𝑥 = 𝛼𝑤(𝑥, 1)
< 𝛼𝑢(𝑥; 𝛽), V(𝑥; 𝛽) > = 𝛼𝑤(𝑥, 𝛽)|𝑏𝑥=𝑎 = 𝛼(𝑤(𝑏, 𝛽) −𝑤(𝑎, 𝛽)) = 𝛼 < 𝑢(𝑥; 𝛽), V(𝑥; 𝛽) >.
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Example 4. Let us illustrate this inner product by an example
in which we take the inner product of Mittag–Leffler func-
tions 𝐸𝛽(𝜆1(𝛽)𝑥𝛽) and 𝐸𝛽(𝜆2(𝛽)𝑥𝛽):
⟨𝐸𝛽 (𝜆1 (𝛽) 𝑥𝛽) , 𝐸𝛽 (𝜆2 (𝛽) 𝑥𝛽)⟩
= ∫ 𝑒𝜆1(1)𝑥𝑒𝜆2(1)𝑥𝑑𝑥 = ∫ 𝑒(𝜆1(1)+𝜆2(1))𝑥𝑑𝑥
= 𝑒(𝜆1(1)+𝜆2(1))𝑥𝜆1 (1) +𝜆2 (1)
⟨𝐸𝛽 (𝜆1 (𝛽) 𝑥𝛽) , 𝐸𝛽 (𝜆2 (𝛽) 𝑥𝛽)⟩
= 𝐸𝛽 (𝜆1 (𝛽) + 𝜆2 (𝛽) 𝑥𝛽)𝜆1 (𝛽) + 𝜆2 (𝛽)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑏

𝑥=𝑎

= 𝐸𝛽 (𝜆1 (𝛽) + 𝜆2 (𝛽) 𝑏𝛽) − 𝐸𝛽 (𝜆1 (𝛽) + 𝜆2 (𝛽) 𝑎𝛽)𝜆1 (𝛽) +𝜆2 (𝛽)

(10)

Note that this inner product extends orthogonality property
between the functions 𝑢(𝑥; 1) and V(𝑥; 1) to the functions𝑢(𝑥; 𝛽) and V(𝑥; 𝛽).
4. Main Results

In this section, we deal with the following initial boundary
value problem involving time and space-fractional PDE:

𝐷𝛼𝑡 𝑢 (𝑥, 𝑡) = 𝑎𝐷2𝛽𝑥 , 0 < 𝛼 < 1, 1 < 2𝛽 < 2, 𝑎 > 0 (11)

𝑢 (𝑥, 0) = 𝑢𝑜 (𝑥) , 0 ≤ 𝑥 ≤ 𝑙 (12)

𝑢 (0, 𝑡) = 0,
𝑢 (𝑙, 𝑡) = 0

0 ≤ 𝑡 ≤ 𝑇.
(13)

The generalized solution of this problem can be obtained
in an analytical form by using the separation of variables
method. Let a particular solution of (11)-(13) be in the
following form:

𝑢 (𝑥, 𝑡; 𝛼, 𝛽) = 𝑋 (𝑥; 𝛽) 𝑇 (𝑡; 𝛼, 𝛽) (14)

where 0 ≤ 𝑥 ≤ 𝑙, 0 ≤ 𝑡 ≤ 𝑇.
Note that the function 𝑋 depends on order of fractional

derivative with respect to 𝑥 and function𝑇 depends on orders
of fractional derivatives with respect to 𝑥 and 𝑡. Substituting
(14) into (11) and applying separation of the variables lead to
the equation

(𝐷𝛼𝑇) (𝑡; 𝛼, 𝛽)
𝑎𝑇 (𝑡; 𝛼, 𝛽) = (𝐷2𝛽𝑋) (𝑥; 𝛽)

𝑋 (𝑥; 𝛽) = −𝜆 (𝛽) (15)

where 𝜆 depends on order of the fractional derivative with
respect to 𝑥. The equations in (15) reduce the problem
to two separate ODEs including fractional derivatives with

respect to both time and space. The equation on the right
with boundary conditions (13) gives the following fractional
differential equation:

(𝐷2𝛽𝑋) (𝑥; 𝛽) + 𝜆 (𝛽)𝑋 (𝑥; 𝛽) = 0 (16)

𝑋(0; 𝛽) = 0, 𝑋 (𝑙; 𝛽) = 0 (17)

In order to determine the solution of the eigenvalue problem
((16)-(17)) we use the following Mittag–Leffler function:

𝑋(𝑥; 𝛽) = 𝐸𝛽,1 (𝑟𝑥𝛽) (18)

which leads to the following characteristic equation for the
eigenvalue problem ((16)-(17)):

𝑟2 + 𝜆 (𝛽) = 0. (19)

Case 1. If 𝜆 < 0, we have two real and distinct solutions 𝑟 =±√−𝜆(𝛽), and the general solution of the eigenvalue problem
((16)-(17)) is represented by

𝑋(𝑥; 𝛽) = 𝑐1𝐸𝛽,1 (√−𝜆𝑥𝛽) + 𝑐2𝐸𝛽,1 (−√−𝜆𝑥𝛽)
𝑋 (0; 𝛽) = 0 󳨐⇒ 𝑐1𝐸𝛽,1 (0) + 𝑐2𝐸𝛽,1 (0) = 0 󳨐⇒ 𝑐2

= −𝑐1
(20)

which leads to the following solution:

𝑋(𝑥; 𝛽) = 𝑐1 (𝐸𝛽,1 (√−𝜆𝑥𝛽) − 𝐸𝛽,1 (−√−𝜆𝑥𝛽)) . (21)

From the second boundary condition we have

𝑋(𝑙; 𝛽) = 0 󳨐⇒ 𝑋(𝑙; 𝛽)
= 𝑐1 (𝐸𝛽,1 (√−𝜆𝑙𝛽) − 𝐸𝛽,1 (−√−𝜆𝑙𝛽)) = 0 (22)

which implies that

𝐸𝛽,1 (√−𝜆𝑙𝛽) = 𝐸𝛽,1 (−√−𝜆𝑙𝛽) . (23)

Thus

√−𝜆𝑙𝛽 = 0 󳨐⇒
𝜆 = 0

𝑋 (𝑥; 𝛽) = 𝑐1 (𝐸𝛽,1 (0) − 𝐸𝛽,1 (0)) = 0
(24)

which means that there is no solution for the case 𝜆 < 0.
Case 2. If 𝜆 = 0, the characteristic equation becomes

𝑟2 = 0 󳨐⇒
𝑟1,2 = 0. (25)

Hence the general solution of the eigenvalue problem ((16)-
(17)) is represented by

𝑋(𝑥; 𝛽) = 𝑐1 + 𝑐2 𝑥𝛽𝛽 (26)
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From the first boundary condition we have

𝑋(0; 𝛽) = 0 󳨐⇒
𝑐1 = 0 (27)

which leads to the following solution:

𝑋(𝑥; 𝛽) = 𝑐2 𝑥𝛽𝛽 . (28)

From the last boundary condition we have

𝑋(𝑙; 𝛽) = 0 󳨐⇒
𝑐2 𝑥𝛽𝛽 = 0 󳨐⇒

𝑐2 = 0
(29)

which leads to 𝑋(𝑥; 𝛽) = 0 which means that there is no
solution for 𝜆 = 0.
Case 3. If𝜆 > 0, we obtain two complex roots 𝑟 = ∓𝑖√𝜆.Then
the general solution of the eigenvalue problem ((16)-(17)) is
represented by

𝑋(𝑥; 𝛽) = 𝑐1sin𝛽 (√𝜆𝑥𝛽) + 𝑐2cos𝛽 (√𝜆𝑥𝛽) . (30)

Let us check if the boundary conditions are satisfied by the
solution. From the first boundary condition we have

𝑋(0; 𝛽) = 0 󳨐⇒
𝑐1sin𝛽 (0) + 𝑐2cos𝛽 (0) = 0 󳨐⇒

𝑐2 = 0
(31)

which gives the following solution:

𝑋(𝑥; 𝛽) = 𝑐1sin𝛽 (√𝜆𝑥𝛽) (32)

From the second boundary condition we have

𝑋(𝑙; 𝛽) = 0 󳨐⇒
𝑋 (𝑙) = 𝑐1sin𝛽 (√𝜆𝑙𝛽) = 0 (33)

which implies that

sin𝛽 (√𝜆𝑙𝛽) = 0. (34)

Let 𝑤𝑛(𝛽) = √𝜆𝑛(𝛽)𝑙𝛽. Hence the eigenvalues can be
represented in terms of 𝑤𝑛(𝛽) as follows:

𝜆𝑛 (𝛽) = 𝑤2𝑛 (𝛽)𝑙2𝛽 , 0 < 𝑤1 (𝛽) < 𝑤2 (𝛽) < ⋅ ⋅ ⋅ (35)

Thus the solution of the eigenvalue problem is represented in
the following form:

𝑋𝑛 (𝑥; 𝛽) = 𝑐𝑛sin𝛽 (𝑤𝑛 (𝛽) (𝑥𝑙 )
𝛽) . (36)

The equation on the left of (15) for each eigenvalue 𝜆𝑛 gives
the following fractional differential equation:

(𝐷𝛼𝑇𝑛) (𝑡; 𝛼, 𝛽) + (𝑎𝑤
2
𝑛 (𝛽)𝑙2𝛽 )𝑇𝑛 (𝑡; 𝛼, 𝛽) = 0 (37)

By using the similar calculations the solution of (37) is
determined in the following form:

𝑇𝑛 (𝑡; 𝛼, 𝛽) = 𝑐𝑛𝐸𝛼 (−(𝑎𝑤
2
𝑛 (𝛽)𝑙2𝛽 ) 𝑡𝛼) . (38)

For each eigenvalue 𝜆𝑛 we obtain the following function:

𝑢𝑛 (𝑥, 𝑡; 𝛼, 𝛽) = 𝑋𝑛 (𝑥; 𝛽) 𝑇𝑛 (𝑡; 𝛼, 𝛽)
= 𝑐𝑛sin𝛽 (𝑤𝑛 (𝛽) (𝑥𝑙 )

𝛽)𝐸𝛼 (−(𝑎𝑤
2
𝑛 (𝛽)𝑙2𝛽 ) 𝑡𝛼) (39)

and hence we have the following sum:

𝑢 (𝑥, 𝑡; 𝛼, 𝛽) = ∞∑
𝑛=1

𝑢𝑛 (𝑥, 𝑡; 𝛼, 𝛽)

= ∞∑
𝑛=1

𝑐𝑛sin𝛽 (𝑤𝑛 (𝛽) (𝑥𝑙 )
𝛽)𝐸𝛼 (−(𝑎𝑤

2
𝑛 (𝛽)𝑙2𝛽 ) 𝑡𝛼)

(40)

which satisfy both the fractional equation (11) and boundary
condition (13).

In order to determine the solution which satisfies the
initial condition (12) we use the inner product defined in (7).

In (38), replacing 𝑡 by 0 and using the initial condition
(12) we have

𝑢 (𝑥, 0; 𝛼, 𝛽) = 𝑢0 (𝑥; 𝛼, 𝛽) = ∞∑
𝑛=1

𝑢𝑛 (𝑥, 0; 𝛼, 𝛽)

= ∞∑
𝑛=1

𝑐𝑛sin𝛽 (𝑤𝑛 (𝛽) (𝑥𝑙 )
𝛽) .

(41)

Via the inner product (7) we will obtain the coefficients 𝑐𝑛 for𝑛 = 1, 2, 3, . . . as follows:
𝑐𝑛 = ⟨𝑢0 (𝑥; 𝛼, 𝛽) , sin𝛽 (𝑤𝑛 (𝛽) (𝑥𝑙 )

𝛽)⟩ ,
𝑛 = 1, 2, 3, . . .

(42)

5. Illustrative Example

Before solving fractional heat-like problem we first solve the
following problem for 𝛼 = 𝛽 = 1 in order to compare the
solutions of these two problems:

𝐷𝑡𝑢 (𝑥, 𝑡) = 14𝐷2𝑥𝑢 (𝑥, 𝑡) , 0 ≤ 𝑥 ≤ 2, 𝑡 > 0
𝑢 (𝑥, 0) = − sin (𝜋𝑥) , 0 ≤ 𝑥 ≤ 2
𝑢 (0, 𝑡) = 0,
𝑢 (2, 𝑡) = 0

0 ≤ 𝑡 ≤ 𝑇

(43)
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The solution of this problem is obtained as follows:

𝑢 (𝑥, 𝑡) = − sin (𝜋𝑥) exp(−𝜋24 𝑡) . (44)

Let us consider the following fractional heat-like problem:

𝐷𝛼𝑡 𝑢 (𝑥, 𝑡) = 14𝐷2𝛽𝑥 𝑢 (𝑥, 𝑡) , 0 < 𝛼 < 1, 1 < 2𝛽 < 2, (45)

𝑢 (𝑥, 0) = − sin (𝜋𝑥) , 0 ≤ 𝑥 ≤ 2 (46)

𝑢 (0, 𝑡) = 0,
𝑢 (2, 𝑡) = 0

0 ≤ 𝑡 ≤ 𝑇
(47)

Applying separation of the variables to (45) leads to the
equation

4 (𝐷𝛼𝑇) (𝑡; 𝛼, 𝛽)
𝑇 (𝑡; 𝛼, 𝛽) = (𝐷2𝛽𝑋) (𝑥; 𝛽)

𝑋 (𝑥; 𝛽) = −𝜆 (𝛽) (48)

where 𝜆 depends on 𝛽. Hence we get two ODEs having frac-
tional derivatives with respect to time and space separately.
The equation on the right of (48) with boundary conditions
(47) gives the fractional differential equation

(𝐷2𝛽𝑋) (𝑥; 𝛽) + 𝜆𝑋 (𝑥; 𝛽) = 0 (49)

𝑋(0; 𝛽) = 0,
𝑋 (2; 𝛽) = 0. (50)

Using the Mittag–Leffler function 𝑋(𝑥; 𝛽) = 𝐸𝛽,1(𝑟𝑥𝛽) we
obtain the following characteristic equation 𝑟2 + 𝜇2(𝛽) = 0
where we take 𝜆 = 𝜇2.Hence the solution becomes

𝑋(𝑥; 𝛽) = 𝑐1sin𝛽 (𝜇𝑥𝛽) + 𝑐2cos𝛽 (𝜇𝑥𝛽) . (51)

Using boundary conditions

𝑋(0; 𝛽) = 0 󳨐⇒
𝑐1sin𝛽 (0) + 𝑐2cos𝛽 (0) = 0 󳨐⇒

𝑐2 = 0
(52)

which gives the following solution:

𝑋(𝑥; 𝛽) = 𝑐1sin𝛽 (𝜇𝑥𝛽) . (53)

From the second boundary condition we have

𝑋(2; 𝛽) = 0 󳨐⇒
𝑋(2; 𝛽) = 𝑐1sin𝛽 (𝜇2𝛽) = 0 (54)

which implies that

sin𝛽 (𝜇2𝛽) = 0. (55)

Let 𝑤𝑛(𝛽) = 𝜇𝑛2𝛽, i.e., sin𝛽(𝑤𝑛) = 0. Hence the eigenvalues
can be represented in terms of 𝑤𝑛(𝛽) as follows:

𝜆𝑛 (𝛽) = 𝑤2𝑛 (𝛽)22𝛽 , 0 < 𝑤1 (𝛽) < 𝑤2 (𝛽) < ⋅ ⋅ ⋅ (56)

Thus the solution of the eigenvalue problem is represented in
the following form:

𝑋𝑛 (𝑥; 𝛽) = 𝑐𝑛sin𝛽 (𝑤𝑛 (𝛽) (𝑥2)
𝛽) . (57)

The equation on the left of (48) for each eigenvalue 𝜆𝑛(𝛽)
gives the following fractional differential equation:

(𝐷𝛼𝑇𝑛) (𝑡; 𝛼, 𝛽) + (𝑤
2
𝑛 (𝛽)22𝛽+2 )𝑇𝑛 (𝑡; 𝛼, 𝛽) = 0. (58)

By using the similar calculations the solution of (58) is
determined in the following form:

𝑇𝑛 (𝑡; 𝛼, 𝛽) = 𝐸𝛼(−(𝑤𝑛 (𝛽)2𝛽+1 )
2 𝑡𝛼) . (59)

For each eigenvalue 𝜆𝑛 we obtain the following function:

𝑢𝑛 (𝑥, 𝑡; 𝛼, 𝛽) = 𝑋𝑛 (𝑥; 𝛽) 𝑇𝑛 (𝑡; 𝛼, 𝛽)
= 𝑐𝑛sin𝛽 (𝑤𝑛 (𝛽) (𝑥2 )

𝛽)𝐸𝛼(−(𝑤𝑛 (𝛽)2𝛽+1 )
2 𝑡𝛼) (60)

and thus we have the following sum:

𝑢 (𝑥, 𝑡; 𝛼, 𝛽) = ∞∑
𝑛=1

𝑢𝑛 (𝑥, 𝑡; 𝛼, 𝛽)

= ∞∑
𝑛=1

𝑐𝑛sin𝛽 (𝑤𝑛 (𝛽) (𝑥2 )
𝛽)𝐸𝛼(−(𝑤𝑛 (𝛽)2𝛽+1 )

2 𝑡𝛼)
(61)

which satisfy both (45) and boundary condition (47). In order
to determine the solution which satisfies the initial condition
(46),

𝑢 (𝑥, 0; 𝛼, 𝛽) = ∞∑
𝑛=1

𝑢𝑛 (𝑥, 0; 𝛼, 𝛽)

= ∞∑
𝑛=1

𝑐𝑛sin𝛽 (𝑤𝑛 (𝛽) (𝑥2 )
𝛽)

= −sin (𝜋𝑥) .

(62)

Via the inner product we obtain the coefficients 𝑐𝑛 for 𝑛 =1, 2, 3, . . . as follows:
𝑐𝑛 = ⟨−sin (𝜋𝑥) , sin𝛽 (𝑤𝑛 (𝛽) (𝑥2 )

𝛽)⟩ ,
𝑛 = 1, 2, 3, . . .

(63)
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𝑐𝑛 = −∫ sin (𝜋𝑥) sin(𝑛𝜋𝑥2 ) 𝑑𝑥, 𝑛 ̸= 2
= 1(𝑛 − 2) 𝜋 sin((𝑛 − 2) 𝜋𝑥2 )
− 1(𝑛 + 2) 𝜋 sin((𝑛 + 2) 𝜋𝑥2 ) .

(64)

Replacing𝛽 back and substituting upper and lower limits give
us the result of the new inner product.

𝑐𝑛 = 1𝑤𝑛−2 sin𝛽 (𝑤𝑛−2 (𝛽) (
𝑥2)
𝛽)

− 1𝑤𝑛+2 sin𝛽 (𝑤𝑛+2 (𝛽) (
𝑥2 )
𝛽)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑥=2

𝑥=0

= 1𝑤𝑛−2 sin𝛽 (𝑤𝑛−2 (𝛽)) −
1𝑤𝑛+2 sin𝛽 (𝑤𝑛+2 (𝛽))

(65)

Thus 𝑐𝑛 = 0, 𝑛 ̸= 2.
For 𝑛 = 2 we get

𝑐2 = ⟨− sin (𝜋𝑥) , sin𝛽 (𝑤2 (𝛽) (𝑥2 )
𝛽)⟩ ,

𝑛 = 1, 2, 3, . . .
= −∫ sin2 (𝜋𝑥) 𝑑𝑥 = −12 (𝑥 + sin 2𝜋𝑥4𝜋 )

= −12𝑥𝛽 +
sin𝛽 (𝑤4 (𝛽) (𝑥/2)𝛽)𝑤4 (𝛽)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑥=2

𝑥=0

= −2𝛽−1.

(66)

Thus

𝑢 (𝑥, 𝑡; 𝛼, 𝛽) = ∞∑
𝑛=1

𝑢𝑛 (𝑥, 𝑡; 𝛼, 𝛽)

= −2𝛽−1sin𝛽 (𝑤2 (𝛽) (𝑥2 )
𝛽)

⋅ 𝐸𝛼(−(𝑤2 (𝛽)2𝛽+1 )
2 𝑡𝛼) .

(67)

Notice that as 𝛽 and 𝛼 go to 1, solution (67) goes to the
solution (44).

6. Conclusion

In this paper, we establish a new inner product which plays
the remarkable role in the determination of the solution
for the one-dimensional time and space-fractional diffusion
problem which is an open problem. Moreover this inner
product can be applied in many related problems and brings
new insights into the understanding of time and space-
fractional problems.
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