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The conditions for the occurrence of the so-called macroscopic irreversibility property and the related phenomenon of decay to
kinetic equilibrium whichmay characterize the 1-body probability density function (PDF) associated with hard-sphere systems are
investigated. The problem is set in the framework of the axiomatic “ab initio” theory of classical statistical mechanics developed
recently and the related establishment of an exact kinetic equation realized by the Master equation for the same kinetic PDF. As
shown in the paper the task involves the introduction of a suitable functional of the 1-body PDF, identified here with the Master
kinetic information. It is then proved that, provided the same PDF is prescribed in terms of suitably smooth, i.e., stochastic, solution
of the Master kinetic equation, the two properties indicated above are indeed realized.

1. Introduction

The axiomatic theory of classical statistical mechanics (CSM)
recently proposed in a series of papers (see [1–4]) and referred
to as ab initio theory of CSM provides a self-consistent
pathway to the kinetic theory of hard-sphere systems, as well
as in principle also point particles subject to finite-range
interactions [5]. Its theoretical basis and conditions of validity
are indeed founded on a unique physical realization of the
axioms which are set at the foundations of CSM [1–3], a
fact which permits the treatment of phase-space and kinetic
probability density functions (PDF) which are realized by
either stochastic (i.e., ordinary) functions or distributions
such as the 𝑁−body Dirac delta (or certainty function [6]).
This feature is physically based being due to the prescription
of the collision boundary conditions (CBC, [2]), i.e., the
relationship occurring at collision events between incoming
and outgoing multibody probability density functions PDF.
The choice of the appropriate CBC indicated in [2], denoted
as modified collision boundary condition (MCBC), is actu-
ally of crucial importance and departs from the customary

realization/interpretation (of the same axioms) originally
adopted in Boltzmann [7], Enskog [8, 9], and Grad [10]
kinetic approaches (for a review of Grad’s kinetic theory
based on CSM see also Cercignani [11, 12]). The same choice
implies, in fact, a number of theoretical and physically
relevant consequences. In particular, it follows that the new
theory

(i) unlike Enskog theory [3] applies also to finite𝑁−body
hard-sphere systems 𝑆𝑁, namely, systems formed by𝑁
like smooth hard-spheres of diameter 𝜎 and mass 𝑚,
in which the parameters (𝑁, 𝜎,𝑚) remain all constant
and finite [3]. On the other hand, the same particles
are assumed as usual: (A) subject to instantaneous
(unary, binary, and multiple) elastic collisions which
leave unchanged the particles angular momenta and
(B) immersed in a stationary bounded domain Ω of
the Euclidean spaceR3 with finite canonical measure;

(ii) has led to the discovery [3] of an exact kinetic equa-
tion holding globally in time [13] (i.e., for all 𝑡 ∈ 𝐼 ≡
R) for these systems and denoted as Master kinetic
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equation (recalled in Appendix A). In other words
the Master equation is nonasymptotic in character
with respect to the parameters the (finite) parame-
ters (𝑁, 𝜎,𝑚). In addition the same equation holds
under suitable maximal entropy conditions for the
statistical treatment of the so-called Boltzmann-Sinai
classical dynamical system (CDS), which implies that
initial (binary or multibody) phase-space statistical
correlations are assumed identically vanishing, while
at the same time only suitable uniquely prescribed
configuration-space correlations can arise. As such
the equation generalizes and extends the validity of
the Boltzmann and Enskog kinetic equations and
notably applies to arbitrary 1−body PDFs which can
be realized either in terms of stochastic functions or
distributions;

(iii) is time-reversal invariant [4], namely, the Master
kinetic equation is time-reversal (TR−) symmetric.
In other words, the same equation is invariant with
respect to theTR−transformation

𝜏 ≡ 𝑡 − 𝑡𝑜 󳨀→ 𝜏󸀠 ≡ 𝑡󸀠 − 𝑡𝑜 = −𝑡 + 𝑡𝑜 ≡ −𝜏,
r1 󳨀→ r󸀠1 = r1,
k1 󳨀→ k󸀠1 = −k1.

(1)

Thus, representing the absolute time as 𝑡 = 𝜏 + 𝑡𝑜,
with 𝑡𝑜 being a prescribed (arbitrary) initial time, it
follows that theTR−transformation leaves invariant
the initial time 𝑡𝑜 and the instantaneous position r1 =
r1(𝑡 ≡ 𝑡𝑜 + 𝜏) of an arbitrary particle, while reversing
the signature (i.e., versus) of its velocity k1 = k1(𝑡 ≡𝑡𝑜 + 𝜏). Accordingly, thanks to TR−symmetry the
two initial-value problems associated with the Master
kinetic equation in the two cases are related in such a
way that, respectively, the initial 1−body PDF at time𝑡𝑜, 𝜌(𝑁)1 (x1, 𝑡𝑜) ≡ 𝜌(𝑁)1(𝑜)

(r1, k1), and the corresponding
time-evolved PDF 𝜌(𝑁)1 (x1, 𝑡) are carried into the
TR−transformed 1−body PDFs 𝜌(𝑁)

1(𝑜)TR
(r󸀠1, k󸀠1) and𝜌(𝑁)1TR

(r󸀠1, k󸀠1, 𝑡󸀠), respectively, prescribed according to
the law

𝜌(𝑁)1(𝑜) (r1, k1)
𝜌(𝑁)1 (x1, 𝑡) ≡ 𝜌(𝑁)1 (r1, k1, 𝑡𝑜 + 𝜏)

↓
𝜌(𝑁)1(𝑜)TR

(r󸀠1, k󸀠1) ≡ 𝜌(𝑁)1(𝑜) (r1, −k1)
𝜌(𝑁)1TR (r󸀠1, k󸀠1, 𝑡󸀠) ≡ 𝜌(𝑁)1 (r1, −k1, 𝑡𝑜 − 𝜏) ;

(2)

(iv) conserves the corresponding Boltzmann-Shannon
(BS) statistical entropy [4]. This is identified with the
phase-space moment

𝑆 (𝜌(𝑁)1 (𝑡)) − ∫
Γ1

𝑑x1𝜌(𝑁)1 (x1, 𝑡) ln 𝜌
(𝑁)
1 (x1, 𝑡)𝐴1 , (3)

with 𝜌(𝑁)1 (𝑡) ≡ 𝜌(𝑁)1 (x1, 𝑡) being an arbitrary stochastic
PDF solution of the Master kinetic equation and 𝐴1
an arbitrary positive constant such that the initial PDF

𝜌(𝑁)1 (𝑡𝑜) ≡ 𝜌(𝑁)1 (x1, 𝑡𝑜) = 𝜌(𝑁)10 (x1) (4)

is such that the corresponding BS functional𝑆(𝜌(𝑁)1 (𝑡𝑜)) is defined. As a consequence it follows that
an arbitrary smooth solution of the Master kinetic
equation satisfies the constant H-theorem

𝜕𝜕𝑡𝑆 (𝜌(𝑁)1 (𝑡)) = 0 (5)

for all 𝑡 ∈ 𝐼 ≡ R (see again related discussion in [4]).

Based on the ab initio theory of CSM, in this paper the
problem is posed of the existence of two phenomena which
are expected to characterize the statistical description of finite𝑁−body hard-sphere systems and therefore should lay at
the very foundation of CSM and kinetic theory. These are
related to the physical conditions for the possible occurrence
of the so-called property of macroscopic irreversibility (PMI)
and the consequent one represented by the decay to kinetic
equilibrium (DKE) which characterize the 1−body (kinetic)
PDF in these 𝑁−body systems, i.e., when 1−body-factorized
initial conditions are considered for the 𝑁−body Liouville
equation [3].The conjecture is that—in some sense in analogy
with the ubiquitous character of the ergodicity property
which characterizes hard-sphere systems and hence the𝑆𝑁−CDS [14, 15]—the occurrence of such phenomena should
be independent of the number 𝑁 of constituent particles of
the system and therefore apply to actual physical systems for
which the parameters (𝑁,𝜎,𝑚) are obviously all finite.
1.1. Motivations and Background. Both properties indicated
above concern the statistical behavior of an ensemble 𝑆𝑁
of like particles which are advanced in time by a suitable𝑁−body classical dynamical system, identified here with
the 𝑆𝑁−CDS. Specifically they arise in the context of the
kinetic description of the same CDS, i.e., in terms of the
corresponding 1−body (kinetic) probability density function
(PDF) 𝜌(𝑁)1 (𝑡) ≡ 𝜌(𝑁)1 (x1, 𝑡).The latter is required to belong
to the functional class {𝜌(𝑁)1 (x1, 𝑡)} of suitably smooth and
strictly positive ordinary functions which are particular
solutions of the relevant kinetic equation.

In fact, PMI should be realized bymeans of a suitable, but
still possibly nonunique, functional which should be globally
defined in the future (i.e., for all times 𝑡 ≥ 𝑡𝑜, being 𝑡𝑜
the initial time) bounded and nonnegative, and therefore to
be identified with the notion of information measure. Most
importantly, however, the same functional, to be referred
to here as Master kinetic information (MKI), should also
exhibit a continuously differentiable and monotonic, i.e., in
particular decreasing, time-dependence.

Regarding, instead, the second property of DKE this con-
cerns the asymptotic behavior of the 1−body PDF 𝜌(𝑁)1 (𝑡) ≡𝜌(𝑁)1 (x1, 𝑡)which, accordingly, should be globally defined and



Advances in Mathematical Physics 3

decay for 𝑡 󳨀→ +∞ to a stationary and spatially uniform
Maxwellian PDF

𝜌(𝑁)1𝑀 (k1) = 𝑛𝑜
𝜋3/2 (2𝑇𝑜/𝑚)3/2 exp{−

𝑚(k1 − V𝑜)22𝑇𝑜 } , (6)

where {𝑛𝑜 > 0, 𝑇𝑜 > 0,V𝑜} are constant fluid fields.
Both PMI and DKE correspond to physical phenomena

which are actually expected to arise in disparate classical𝑁−body systems. The clue for their realization is represented
by the ubiquitous occurrence of kinetic equilibria and conse-
quently, in principle, also of the corresponding possible man-
ifestation of macroscopic irreversibility and decay processes.
Examples of the former ones are in principle easy to be found,
ranging from neutral fluids [16] to collisional/collisionless
and nonrelativistic/relativistic gases and plasmas [17–19].

However, the most notable example is perhaps provided
by dilute hard-sphere systems (“gases”) characterized by a
large number of particles (𝑁 ≡ 1/𝜀 ≫ 1) and a small (i.e.,
infinitesimal) diameter 𝜎 ∼ 𝑂(𝜀1/2) of the same hard-spheres,
for which the Boltzmann equation applies. Indeed the Boltz-
mann equation is actually specialized to the treatment of
dilute hard-sphere systems in the Boltzmann-Grad limit dis-
cussed in the Lanford theorem [20–22] (for a detailed discus-
sion of the topics in the context of the ab initio theory see also
[4]). In such a case the 1−body PDF can be formally obtained
by introducing the Boltzmann-Grad limit operator [4]

L𝐵𝐺 ≡ lim
𝑁≡1/𝜀󳨀→∞

𝜎∼𝑂(𝜀1/2)

,
(7)

whereby the limit function 𝜌1(x1, 𝑡) is denoted
𝜌1 (x1, 𝑡) =L𝐵𝐺𝜌(𝑁)1 (x1, 𝑡) , (8)

and 𝜌1(x1, 𝑡) identifies a particular solution of the Boltzmann
kinetic equation.

Historically, the property of irreversibility indicated
above is known to be related to the Carnot’s second Law
of Classical Thermodynamics. More precisely, it is related
to the first-principle-proof originally attempted by Ludwig
Boltzmann in 1872 [7]. Actually it is generally agreed that
both phenomena lie at the very heart of Boltzmann and Grad
kinetic theories [7, 10] and the related original construction
of the Boltzmann kinetic equation (1872). In particular, the
goal set by Boltzmann himself in his 1872 paper was the proof
of Carnot’s Law providing at the same time also a possible
identification of thermodynamic entropy. This was achieved
in terms of what is nowadays known as Boltzmann-Shannon
(BS) statistical entropy, which is identified with the phase-
space moment

𝑀𝑋𝐸
(𝜌1 (𝑡)) ≡ ∫

Γ1

𝑑x1𝜌1 (x1, 𝑡) 𝑋𝐸 (x1, 𝑡)
= −∫

Γ1

𝑑x1𝜌1 (x1, 𝑡) ln 𝜌1 (x1, 𝑡)𝐴1
≡ 𝑆 (𝜌1 (𝑡)) .

(9)

Here𝑋𝐸(x1, 𝑡) ≡ −ln (𝜌1(x1, 𝑡)/𝐴1), 𝜌1(x1, 𝑡), and 𝐴1 denote,
respectively, the BS entropy density, an arbitrary particular
solution of the Boltzmann equation for which the same
phase-space integral exists and an arbitrary positive constant.
In fact, according to the Boltzmann H-theorem [7] the same
functional should satisfy the entropic inequality

𝜕𝜕𝑡𝑆 (𝜌1 (𝑡)) ≥ 0, (10)

while, furthermore, the entropic equality condition

𝜕𝜕𝑡𝑆 (𝜌1 (𝑡)) = 0 ⇐⇒
𝜌1 (x1, 𝑡) = 𝜌(𝑁)1𝑀 (k1)

(11)

should hold. The latter equation implies therefore that, pro-
vided 𝜌1(𝑡) and 𝑆(𝜌1(𝑡)) exist globally [23], then necessarily
lim𝑡󳨀→+∞𝜌1(x1, 𝑡) = 𝜌1𝑀(k1), with 𝜌1𝑀(k1) denoting the
stationary and spatially uniform Maxwellian PDF (6).

In this reference, however, the question arises of the
precise characterization of the concept of irreversibility, i.e.,
whether it should be regarded as a purely macroscopic phe-
nomenon (“macroscopic irreversibility”), i.e., affecting only
the BS entropy 𝑆(𝜌1(𝑡)) through the Boltzmann H-theorem
indicated above, or microscopic in the sense that the same
Boltzmann equation should be considered as irreversible
(“microscopic irreversibility”). Thus, in principle, in the
second case the further issue emerges of the possible physical
origin ofmicroscopic irreversibility in special reference to the
Lanford’s derivation of the Boltzmann equation and subse-
quent related comments discussed respectively by Uffink and
Valente and Ardourel in [24, 25] (see also Drory [26]).

However, as shown in [4], the Boltzmann equation is
actually TR−symmetric. Such a conclusion is of basic
importance since it overcomes the so-called Loschmidt
paradox, i.e., the objection raised by Loschmidt in 1876
[27] regarding the original Boltzmann formulation of his
namesake kinetic equation and H-theorem [7]. In fact,
Loschmidt claimed that the BoltzmannH-theorem inequality
should change sign under time-reversal and thus violate the
microscopic time-reversibility of the underlying hard-sphere
classical dynamical system. In his long-pondered reply given
in 1896 [28] Boltzmann himself introduced what was later
referred to as themodified formof theBoltzmannH-theorem
[29].

The key implication is therefore that, in contrast to
Boltzmann’s own statement and the traditional subse-
quent mainstream literature interpretation (see, for example,
by Cercignani, Lebowitz in [30, 31] and more recently
the review given by Gallavotti [32]), the Boltzmann H-
theorem indicated—together with the modified form indi-
cated above—cannot be interpreted as an intrinsic irre-
versibility property occurring at the microscopic level,
namely, holding for the Boltzmann equation itself. On the
contrary, consistent with the physical interpretation of the
Loschmidt paradox provided in [4], this must be regarded
only as property of macroscopic irreversibility (or PMI) of the1−body PDF solution of the Boltzmann equation. In other
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words, the Boltzmann inequality (10) necessarily holds inde-
pendent of the orientation of the time axis (arrow of time) and
therefore cannot represent a true (i.e., microscopic) property
which as such should uniquely determine the arrow of time.

Nevertheless, the possible realization of either PMI or
DKE is more subtle. In fact they actually depend in a critical
way on the prescription of the functional class {𝜌(𝑁)(x1, 𝑡)}, so
that their occurrence is actually nonmandatory. Indeed, both
cannot occur—in principle also for Boltzmann and Grad
kinetic theories—if the𝑁−body probability density function𝜌(𝑁)(x, 𝑡) is identified with the deterministic 𝑁−body PDF
[1], namely, the 𝑁−body phase-space Dirac delta. This is
defined as 𝛿(x − x(𝑡)) ≡ ∏1=1,𝑁 𝛿(x𝑖 − x𝑖(𝑡)), with x ≡{x1, . . . , x𝑁} denoting the state of the 𝑁−body system and
x(𝑡) ≡ {x1(𝑡), . . . , x𝑁(𝑡)} is the image of an arbitrary initial
state x(𝑡𝑜) ≡ x𝑜 generated by the same 𝑁−body CDS. That
such a PDF necessarily must realize an admissible particular
solution of the 𝑁−body Liouville equation follows, in fact,
as a straightforward consequence of the axioms of classical
statistical mechanics [1].

Despite these premises, however, the case of a finite
Boltzmann-Sinai CDS, which is characterized by a finite
number of particles 𝑁 and/or a finite-size of the hard-
spheres and/or a dense or locally dense system, is more
subtle and—as explained below—even unprecedented since
it has actually remained unsolved to date. The reasons are
as follows. First, Boltzmann and Grad kinetic theories are
inapplicable to the finite Boltzmann-Sinai CDS. Second, the
Boltzmann-Shannon entropy associated with an arbitrary
particular solution 𝜌(𝑁)(𝑡) ≡ 𝜌(𝑁)(x1, 𝑡) of the Master kinetic
equation, i.e., the functional 𝑆(𝜌(𝑁)1 (𝑡)) ≡ 𝑀𝑋𝐸

(𝜌(𝑁)1 (𝑡)), in
contrast to 𝑆(𝜌1(𝑡)) ≡ 𝑀𝑋𝐸

(𝜌1(𝑡)), is exactly conserved in the
sense that identically

𝜕𝑆 (𝜌(𝑁)1 (𝑡))
𝜕𝑡 ≡ 0 (12)

must hold. As a consequence the validity itself of Boltzmann
H-theorem breaks down in the case of the Master kinetic
equation. Third, an additional motivation is provided by the
conjecture that both PMI and DKE might occur only if the
Boltzmann-Grad limit is actually performed, i.e., only in
validity of Boltzmann equation and H-theorem.

Hence the question which arises is whether in the case
of a finite Boltzmann-Sinai CDS the phenomenon of DKE
may still arise. Strong indications seem to be hinting at such
a possibility. In this regard the example-case which refers to
the statistical description of a Navier-Stokes fluid described
by the incompressible Navier-Stokes equations (INSE) in
terms of the Master kinetic equation is relevant and suggests
that this may be indeed the case. In fact, thanks also to
comparisons with the mean-field inverse kinetic approach
to INSE [16], in such a case the decay of the fluid velocity
field occurring in a bounded domain necessarily demands
the existence of DKE. In other words, in the limit 𝑡 󳨀→ +∞
the 1−body PDF must decay uniformly to the stationary and
spatially uniform Maxwellian PDF (6).

However, besides the construction of the kinetic equation
appropriate for such a case, a further unsolved issue lies in the

determination of the functional class {𝜌(𝑁)1 (x1, 𝑡)} for which
both PMI and DKE should/might be realized. In particular,
the possible occurrence of both PMI and DKE should corre-
spond to suitably smooth, but nonetheless still arbitrary, ini-
tial conditions {𝜌(𝑁)1 (x1, 𝑡𝑜)}.These should warrant that in the
limit 𝑡 󳨀→ +∞, 𝜌(𝑁)1 (x1, 𝑡) uniformly converges to the spa-
tially homogeneous and stationary Maxwellian PDF 𝜌1𝑀(k1)
(6). Such a result, however, is highly nontrivial since it should
rely on the establishment of a global existence theorem for
the same 1−body PDF 𝜌(𝑁)1 (x1, 𝑡)—namely, holding in the
whole time axis 𝐼 ≡ R, besides the same 1−body phase spaceΓ1—for the involved kinetic equation which is associated with
the 𝑆𝑁−CDS. In the context of the Boltzmann equation in
particular, despite almost-endless efforts this task has actually
not been accomplished yet, the obstacle being intrinsically
related to the asymptotic nature of the Boltzmann equation
[13]. In fact for the same equation it is not known in satis-
factory generality whether smooth enough solutions of the
same equation exist which satisfy the𝐻−theorem inequality
and decay asymptotically to kinetic equilibrium [23, 30].

1.2. Goals and Organization of the Paper. Based on these
premises, the crucial new results that we intend to display in
this paper concern the proof-of-principle of two phenomena
which are expected to characterize the statistical description
of finite 𝑁−body hard-sphere systems and therefore should
lay at the very foundation of classical statistical mechanics
and kinetic theory alike. These are related to the physical
conditions for the possible occurrence of both PMI and the
consequent one represented by the possible occurrence of
DKE which should characterize the kinetic PDF in these
systems. These phenomena are well known to occur in the
case of dilute hard-sphere systems, i.e., in the Boltzmann-
Grad limit. In particular, for an exhaustive treatment of the
related issues which arise in the context of the ab initio
theory we refer to discussions reported in [4]. Nevertheless,
as indicated above, their existence in the case of finite hard-
sphere systems is partly motivated by a previous investigation
dealing with the kinetic description incompressible Navier-
Stokes granular fluids [33].

Therefore, main goal of the paper is to show that these
properties actually emerge as necessary implications of the
ab initio theory of CSM. Incidentally, in doing so, the Master
kinetic equation must be necessarily adopted. In fact, the
finiteness requirement on the 𝑆𝑁−CDS rules out for further
possible consideration either the Boltzmann or the Enskog
kinetic equations, these equations being inapplicable to the
treatment of systems of this type [3]. Specifically, in the
following the case 𝑁 > 2 is considered everywhere, which
is by far the most physically relevant one. In this occurrence,
in fact, nontrivial 2−body occupation coefficients arise (see
related notations which are applicable for 𝑁 > 2 recalled in
Appendices A and B below). For completeness the case𝑁 = 2
is nevertheless briefly discussed in Appendix D.

For this purpose, first, in Section 2, the MKI functional is
explicitly determined. We display in particular its construc-
tion method (see No.#1- #4 MKI Prescriptions). Based on the
theory of the Master kinetic equation earlier developed [3]
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and suitable integral and differential identities (see Appen-
dices A, B, and C), the properties of the MKI functional are
investigated. These concern in particular the establishment
of appropriate inequalities holding for the same functional
(Theorem 1, Section 2.1), the signature of the time derivative
of the same functional (Theorem 2, Section 2.2) and the
property of DKE holding for a suitable class of 1−body
PDFs (Theorem 3, Section 2.3). In the subsequent Sections
3 and 4, the issue of the consistency of the phenomena of
PMI and DKE with microscopic dynamics is posed together
with the physical interpretation and implications of the
theory. The goal is to investigate the relationship of the DKE
theory developed here with the microscopic reversibility
principle and the Poincaré recurrence theorem. Finally in
Section 5 the conclusions of the paper are drawn and possible
applications/developments of the theory are pointed out.

2. Axiomatic Prescription of
the MKI Functional

In view of the considerations given above in this section
the problem is posed of the explicit realization of the MKI
functional in terms of suitable axiomatic prescriptions. The
same functional, denoted 𝐼𝑀(𝜌(𝑁)1 (𝑡)), should depend on the1−body PDF 𝜌(𝑁)1 (𝑡), with 𝜌(𝑁)1 (𝑡) ≡ 𝜌(𝑁)1 (x1, 𝑡) being identi-
fied with a particular solution of the Master kinetic equation
(see (A.4) in Appendix A holding for𝑁 > 2 and Appendix D
for the case𝑁 = 2).

Unlike Boltzmann kinetic equation, the Master kinetic
equation actually deals with the treatment of finite hard-
sphere 𝑁−body systems, i.e., in which both the number
of particles 𝑁 and their diameter 𝜎 remain finite [3]. To
achieve such a goal suitably prescribed physical collision
boundary conditions (CBC) of the 𝑁−body PDF need to
be adopted. More precisely, this concerns the prescription
for arbitrary collision events of the relationship between
incoming (−) and outgoing (+) PDFs, i.e., respectively, the left
and right limits 𝜌(±)(𝑁)(x(±)(𝑡𝑖), 𝑡𝑖) = lim𝑡󳨀→𝑡(±)

𝑖

𝜌(𝑁)(x(𝑡), 𝑡),
with x(±)(𝑡𝑖) = lim𝑡󳨀→𝑡(±)

𝑖

x(𝑡) denoting the corresponding
incoming (−) and outgoing (+) states. In particular, upon
invoking due to causality the assumption of left-continuity,
i.e., the requirement

𝜌(−)(𝑁) (x(−) (𝑡𝑖) , 𝑡𝑖) ≡ 𝜌(𝑁) (x(−) (𝑡𝑖) , 𝑡𝑖) , (13)

the incoming PDF is required to coincide with the same𝑁−body PDF evaluated in terms of the incoming state and
time [1, 3]. Hence, as recalled in Appendix C (see also [2])
from (C.1) it follows that the so-called causal form of the
modified collision boundary condition (MCBC [2])

𝜌(+)(𝑁) (x(+) (𝑡𝑖) , 𝑡𝑖) = 𝜌(𝑁) (x(+) (𝑡𝑖) , 𝑡𝑖) (14)

is mandatory. A further important requirement concerns
precisely setting also the related functional class of admissible
solutions {𝜌(𝑁)1 (x1, 𝑡)} in such a way that, besides 𝜌(𝑁)1 (𝑡), also
the same functional 𝐼𝑀(𝜌(𝑁)1 (𝑡)) exists globally for arbitrary

𝑡 ∈ 𝐼 ≡ R. For definiteness, we shall consider for this purpose
the case of 1−body PDFs which satisfy the initial condition

𝜌(𝑁)1 (𝑡𝑜) ≡ 𝜌(𝑁)1 (x1, 𝑡𝑜) = 𝜌(𝑁)1(𝑜) (x1) , (15)

with 𝜌(𝑁)1(𝑜)(x1) belonging to the functional class of stochastic
1−body PDFs {𝜌(𝑁)1 (𝑡𝑜)}. For a generic 𝑡 ∈ 𝐼 belonging to
the time axis 𝐼 ≡ R this is the ensemble of 1−body PDFs𝜌(𝑁)1 (𝑡) which are, respectively, (A) smoothly differentiable;
(B) strictly positive; (C) summable, in the sense that the
velocity—or phase-space—moments for the same PDF exist
which correspond either to arbitrary monomial functions of
k1 (or its components V1𝑖, for 𝑖 = 1, 2, 3) or to the entropy
density ln 𝜌(𝑁)1 (𝑡), thus yielding the Boltzmann-Shannon (BS)
entropy evaluated in terms of 𝜌(𝑁)1 (𝑡).

Concerning the choice of the setting {𝜌(𝑁)1 (𝑡𝑜)} the fol-
lowing remarks are in order. As a first remark, the previous
requirements (A), (B), and (C) for {𝜌(𝑁)1 (𝑡𝑜)}, together with
validity of MCBC (14), actually should warrant that the
corresponding solution of theMaster kinetic equation 𝜌(𝑁)1 (𝑡)
exists globally in the extended phase-space (x1, 𝑡) ∈ Γ1 × 𝐼
and that for all 𝑡 ∈ 𝐼 the same PDF belongs to the class of
stochastic PDFs {𝜌(𝑁)1 (x1, 𝑡)} indicated above and also fulfills
identically the constant H-theorem (12). Indeed, one can
show [13] that global existence of solutions for the Master
kinetic equation follows in elementary way from the𝑁−body
Liouville equation. Indeed, an arbitrary 1−body PDFwhich is
a particular solution of the Master kinetic equation realizes
by construction also a particular factorized solution of the𝑁−body Liouville equation, i.e., of the N−body PDF [3]. The
same PDF evolves uniquely in time along arbitrary phase-
space Lagrangian trajectories, its Lagrangian time evolution
being determined at arbitrary collision times by MCBC (14)
[13].

As a second remark, the validity of assumptions (A)
and (B) for 𝜌(𝑁)

1(𝑜)
(x1) and 𝜌(𝑁)1 (x1, 𝑡) implies also suitable

assumptions to apply all 𝑡 ∈ 𝐼 for the local characteristic scale
length 𝐿𝜌 which characterize the same PDF 𝜌(𝑁)1 (x1, 𝑡).More
precisely, this is associated with the spatial variations of the1−body PDF prescribed as

𝐿𝜌 (𝑡) = inf
x1∈Γ1

{{{
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕 ln 𝜌(𝑁)1 (x1, 𝑡)𝜕r1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−1}}}

, (16)

which necessarily assumed nonzero at all time 𝑡 ∈ 𝐼. Hence𝜕 ln 𝜌(𝑁)1 (x1, 𝑡)/𝜕r1 is assumed to be bounded for all (x1, 𝑡)
spanning the extended 1−body phase space Γ1(1) × 𝐼.

Finally, as a third remark (see also the further related
discussion in Theorem 2 below), the previous requirements
are expected to warrant also the global existence of the MKI
functional 𝐼𝑀(𝜌(𝑁)1 (𝑡)), so that {𝜌(𝑁)1 (x1, 𝑡)} effectively realizes
the functional class of admissible solutions indicated above.

Given these premises let us pose now the problem of the
identification of the functional 𝐼𝑀(𝜌(𝑁)1𝑜 (x1)), based on the
introduction of ’ad hoc’ physical requirements, to be referred
to here as MKI Prescriptions No.#1-#4. The prescriptions are
as follows:
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(i) MKI Prescription No.#1: the first one is that the
functional 𝐼𝑀(𝜌(𝑁)1 (𝑡)) should be determined in such
a way that the existence of 𝐼𝑀(𝜌(𝑁)1𝑜 (x1)) at a suitable
initial time 𝑡𝑜 ∈ 𝐼 should warrant also that 𝐼𝑀(𝜌(𝑁)1 (𝑡))
must necessarily exist globally in the future, i.e., for
all 𝑡 ≥ 𝑡𝑜. As a consequence the functional class{𝜌(𝑁)1 (x1, 𝑡)}must be suitably prescribed.

(ii) MKI Prescription No.#2: second, we shall require that𝐼𝑀(𝜌(𝑁)1 (𝑡)) is real, nonnegative, and bounded in the
sense that

0 ≤ 𝐼𝑀 (𝜌(𝑁)1 (𝑡)) ≤ 1. (17)

This implies that 𝐼𝑀(𝜌(𝑁)1 (𝑡)) can be interpreted as
an information measure associated with the 1−body
PDF𝜌(𝑁)1 (𝑡) ≡ 𝜌(𝑁)1 (x1, 𝑡). For this reason the previous
inequalities will be referred to as information-measure
inequalities.

(iii) MKI Prescription No.#3: third, for consistency
with the property of macroscopic irreversibility,𝐼𝑀(𝜌(𝑁)1 (𝑡)) is prescribed in terms of a smoothly time-
differentiable and monotonically time-decreasing
functional in the sense that in the same time-subset
the inequality

𝜕𝜕𝑡 𝐼𝑀 (𝜌(𝑁)1 (𝑡)) ≤ 0 (18)

should identically apply ∀𝑡 ≥ 𝑡𝑜, so that
0 ≤ 𝐼𝑀 (𝜌(𝑁)1 (𝑡)) ≤ 𝐼𝑀 (𝜌(𝑁)1𝑜 (x1)) ≤ 1. (19)

This implies that 𝐼𝑀(𝜌(𝑁)1 (𝑡)) is also globally defined
for all 𝑡 ∈ 𝐼 ≡ R with 𝑡 ≳ 𝑡𝑜. In addition, if(𝜕/𝜕𝑡)𝐼𝑀(𝜌(𝑁)1 (𝑡))|𝑡=𝑡𝑜 ̸= 0, without loss of generality
its initial value 𝐼𝑀(𝜌(𝑁)1𝑜 (x1)), can always be set such
that

𝐼𝑀 (𝜌(𝑁)1𝑜 (x1)) = 1. (20)

(iv) MKI Prescription No.#4: fourth, in order to warrant
the existence of DKE we shall require the functional𝐼𝑀(𝜌(𝑁)1 (𝑡)) to be prescribed in such a way that at an
arbitrary time 𝑡 ∈ 𝐼, with 𝑡 ≳ 𝑡𝑜, the vanishing of both𝐼𝑀(𝜌(𝑁)1 (𝑡)) and its time derivative (𝜕/𝜕𝑡)𝐼𝑀(𝜌(𝑁)1 (𝑡))
should occur if and only if the 1−body PDF solution
of the Master kinetic equation coincides with kinetic
equilibrium. As a consequence, for the functional𝐼𝑀(𝜌(𝑁)1 (𝑡)) the following propositions should be
equivalent:

𝐼𝑀 (𝜌(𝑁)1 (𝑡)) = 0
𝜕𝜕𝑡 𝐼𝑀 (𝜌(𝑁)1 (𝑡)) = 0

⇕
𝜌(𝑁)1 (x1, 𝑡) ≡ 𝜌(𝑁)1𝑀 (k1) ,

(21)

with 𝜌(𝑁)1𝑀 (k1) being a kinetic equilibrium PDF of the
form (6).

The immediate obvious implication of the previous pre-
scriptions is that—provided a nontrivial realization of the
MKI can be found in the functional class {𝜌(𝑁)1𝑜 (x1)}—the
existence of both PMI and DKE for the Master kinetic
equation is actually established. In the sequel the goal is to
show, in particular, that the MKI functional can be identified
by means of the prescription

𝐼𝑀 (𝜌(𝑁)1 (𝑡) , b) ≡ 𝐾𝑀 (𝜌(𝑁)1 (𝑡) , b)
𝐾𝑀𝑜 , (22)

where𝐾𝑀(𝜌(𝑁)1 (𝑡),b) and𝐾𝑀𝑜 denote, respectively, a suitable
(and possibly nonunique) moment-dependent phase-space
functional and an appropriate normalization constant to be
chosen in such a way to satisfy all the MKI prescriptions
indicated above. In particular, as shown below, an admissible
choice for 𝐾𝑀(𝜌(𝑁)1 (𝑡), 𝑏) and 𝐾𝑀𝑜 is provided by

𝐾𝑀 (𝜌(𝑁)1 (𝑡) , b) = −∫
Γ1(1)

𝑑x1Θ(𝜕Ω)1 (r1)𝑀 (k1, b)

⋅ 𝜌(𝑁)1 (x1, 𝑡)𝜌(𝑁)1 (x1, 𝑡)
𝜕2𝜌(𝑁)1 (x1, 𝑡)𝜕r1 ⋅ 𝜕r1 ,

𝐾𝑀𝑜 = sup {1, 𝐾𝑀 (𝜌(𝑁)1𝑜 (x1) , b)} ,

(23)

while 𝑀(k1,b) denotes the directional kinetic energy (along
the unit vector b) carried by particle 1, namely, the dynamical
variable

𝑀(k1, b) ≡ (k1 ⋅ b)2 , (24)

with b denoting a still arbitrary constant unit vector. Hence,

𝑀(k1, k2, b) = 12 [𝑀(k1, b) +𝑀 (k2, b)] (25)

identifies the corresponding total directional kinetic energy
carried by particles 1 and 2. Here the remaining notation is
standard. Thus, 𝜌(𝑁)1 (𝑡) ≡ 𝜌(𝑁)1 (x1, 𝑡), 𝜌(𝑁)1𝑜 (x1), and 𝜌(𝑁)1 (𝑡) ≡𝜌(𝑁)1 (x1, 𝑡) are, respectively, the 1−body PDF solution of the
initial problem associated with the Master kinetic equation
(see (A.4) in Appendix A), the initial PDF, and the renormal-
ized 1−body PDF

𝜌(𝑁)1 (x1, 𝑡) ≡ 𝜌
(𝑁)
1 (x1, 𝑡)𝑘(𝑁)1 (r1, 𝑡) , (26)

while furthermore 𝑘(𝑁)1 (r1, 𝑡) is the 1−body occupation coef-
ficient recalled in Appendix B (see (B.1)). As a consequence in
the previous equation it follows that 𝜌(𝑁)1 (x1, 𝑡)/𝜌(𝑁)1 (x1, 𝑡) ≡𝑘(𝑁)1 (r1, 𝑡). Furthermore, Θ(𝜕Ω)1 (r1) is the boundary theta
function given by (A.10) (see Appendix A). Finally, regarding
the initial value𝐾𝑀(𝜌(𝑁)1𝑜 (x1), b) it follows that if, respectively,𝐾𝑀(𝜌(𝑁)1𝑜 (x1),b) ≥ 1 or

0 ≤ 𝐾𝑀 (𝜌(𝑁)1𝑜 (x1) ,b) < 1, (27)
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then correspondingly one obtains, consistent with (19), that
the initial value of MKI functional 𝐼𝑀(𝜌(𝑁)1𝑜 ,b) is

𝐼𝑀 (𝜌(𝑁)1𝑜 , b) = {{{
1,
𝐾𝑀 (𝜌(𝑁)1𝑜 (x1) , b) . (28)

2.1. Proof of the Nonnegativity of the MKI Information Mea-
sure. The strategy adopted for the proof of the MKI Pre-
scriptions No.#1 and No.#2 is to show initially the validity of
the information-measure left inequality in (17), namely, that𝐼𝑀(𝜌(𝑁)1 (𝑡), b) cannot acquire negative values for arbitrary𝑡 ≥ 𝑡𝑜. The result is established by the following theorem.

�eorem1 (nonnegativity of𝐾𝑀(𝜌(𝑁)1𝑜 (x1),b),𝐾𝑀(𝜌(𝑁)1 (𝑡),b),
and 𝐼𝑀(𝜌(𝑁)1 (𝑡), b)). Let us assume that 𝜌(𝑁)1 (x1, 𝑡) is an arbi-
trary stochastic and suitably smoothly differentiable, particular
solution of the Master kinetic equation (A.4) prescribed so that
the integral (23) expressed in terms of the initial PDF, namely,𝐾𝑀(𝜌(𝑁)1𝑜 (x1), b), is nonvanishing. Then, it follows necessarily
that

(i) Proposition P11:

𝐾𝑀 (𝜌(𝑁)1𝑜 (x1) , b) > 0. (29)

(ii) Proposition P12: the corresponding time-evolved func-
tional 𝐾𝑀(𝜌(𝑁)1 (𝑡), b) for all 𝑡 ∈ 𝐼 with 𝑡 > 𝑡𝑜 is such
that

𝐾𝑀 (𝜌(𝑁)1 (𝑡) ,b) ≥ 0. (30)

(iii) Proposition P13: for all 𝑡 ∈ 𝐼 with 𝑡 > 𝑡𝑜 the functional𝐼𝑀(𝜌(𝑁)1 (𝑡), b) fulfills the inequality
𝐼𝑀 (𝜌(𝑁)1 (𝑡) , b) ≥ 0. (31)

(iv) Proposition P14: the following necessary and sufficient
condition holds at a given time 𝑡 ∈ 𝐼 with 𝑡 ≥ 𝑡𝑜:

𝐾𝑀 (𝜌(𝑁)1 (𝑡) , b) = 0 ⇐⇒
𝜌(𝑁)1 (x1, 𝑡) ≡ 𝜌(𝑁)1𝑀 (k1) .

(32)

Proof. One first notices that 𝐾𝑀(𝜌(𝑁)1 (𝑡), b) can be equiva-
lently written in the form

𝐾𝑀 (𝜌(𝑁)1 (𝑡) , b) ≡ −∫
Γ1(1)

𝑑x1Θ(𝜕Ω)1 (r1)𝑀 (k1, b)

⋅ 𝑘(𝑁)1 (r1, 𝑡) 𝜕
2𝜌(𝑁)1 (x1, 𝑡)𝜕r1 ⋅ 𝜕r1 ,

(33)

where in order that the same functional exists it is obvious
that the renormalized 1−bodyPDF𝜌(𝑁)1 (x1, 𝑡)must be of class𝐶(2). Integrating by parts and noting that the gradient term

𝜕Θ(𝜕Ω)1 (r)/𝜕r1 gives a vanishing contribution to the phase-
space integral, this yields equivalently

𝐾𝑀 (𝜌(𝑁)1 (𝑡) , b)
≡ ∫

Γ1(1)

𝑑x1Θ(𝜕Ω)1 (r1)𝑀(k1, b) 𝜕𝑘
(𝑁)
1 (r1, 𝑡)𝜕r1

⋅ 𝜕𝜌(𝑁)1 (x1, 𝑡)𝜕r1 .
(34)

Therefore, upon invoking (B.9) reported in Appendix B,
direct substitution delivers

𝐾𝑀 (𝜌(𝑁)1 (𝑡) , b) = (𝑁 − 1)∫
Γ1(1)

𝑑x1Θ(𝜕Ω)1 (r1)

⋅ 𝑀 (k1,b) 𝜕𝜌
(𝑁)
1 (x1, 𝑡)𝜕r1 ⋅ ∫

Γ1(2)

𝑑x2n12
× 𝛿 (󵄨󵄨󵄨󵄨r2 − r1󵄨󵄨󵄨󵄨 − 𝜎)Θ(𝜕Ω)2 (r2) 𝜌(𝑁)1 (x2, 𝑡)
⋅ 𝑘(𝑁)2 (r1, r2, 𝑡) .

(35)

Next, invoking the identity n12𝛿(|r2−r1|−𝜎) = −(𝜕/𝜕r2)Θ(|r2−r1|−𝜎) andnoting again that (𝜕/𝜕r2)Θ(𝜕Ω)2 (r) gives vanishing
contribution, one can perform a further integration by parts
with respect to r2. This permits to cast the rhs of previous
equation in the form

𝐾𝑀 (𝜌(𝑁)1 (𝑡) , b) ≡ 𝐾(1)𝑀 (𝜌(𝑁)1 (x1, 𝑡) , b)
+ Δ𝐾(1)𝑀 (𝜌(𝑁)1 (x1, 𝑡) , b) .

(36)

Here the two terms on the rhs of (36) are defined as
follows: (1) the first term 𝐾(1)𝑀 (𝜌(𝑁)1 (𝑡), b) is symmetric and
nonnegative, so that it can be expressed so to carry the total
directional kinetic energy𝑀(k1 , k2,b) of particles 1 and 2 (see
(25)). Hence, it takes the form

𝐾(1)𝑀 (𝜌(𝑁)1 (x1, 𝑡) , b) = (𝑁 − 1)∫
Γ1(1)

𝑑x1
⋅ ∫
Γ1(2)

𝑑x2Θ(𝜕Ω)1 (r1) Θ(𝜕Ω)2 (r2) × 𝜕𝜌
(𝑁)
1 (x1, 𝑡)𝜕r1

⋅ 𝜕𝜌(𝑁)1 (x2, 𝑡)𝜕r2 𝑘(𝑁)2 (r1, r2, 𝑡)𝑀 (k1, k2,b)
⋅ Θ (󵄨󵄨󵄨󵄨r2 − r1󵄨󵄨󵄨󵄨 − 𝜎) .

(37)

(2)The second term Δ𝐾(1)𝑀 (𝜌(𝑁)1 (x1, 𝑡),b) reads instead
Δ𝐾(1)𝑀 (𝜌(𝑁)1 (x1, 𝑡) ,b) ≡ (𝑁 − 1)
⋅ ∫
Γ1(1)

𝑑x1Θ(𝜕Ω)1 (r1) 𝜕𝜌
(𝑁)
1 (x1, 𝑡)𝜕r1 ⋅ ∫

Γ1(2)

𝑑x2
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× Θ(𝜕Ω)2 (r2)𝑀(k1, b)Θ (󵄨󵄨󵄨󵄨r2 − r1󵄨󵄨󵄨󵄨 − 𝜎) 𝜌(𝑁)1 (x2,
𝑡) 𝜕𝜕r2 𝑘

(𝑁)
2 (r1, r2, 𝑡) ,

(38)

where (𝜕/𝜕r2)𝑘(𝑁)2 (r1, r2, 𝑡) is given by the differential identity
(B.10) reported in Appendix B. Thus, upon invoking the
identity n23𝛿(|r3 − r2| − 𝜎) = −(𝜕/𝜕r3)Θ(|r3 − r2| −𝜎), one notices that an integration by parts can be per-
formed also with respect to r3. This means that a pro-
cedure analogous to the one used for the calculation of𝜕𝑘(𝑁)1 (r1, 𝑡)/𝜕r1 can be invoked and iterated at all orders, i.e.,
up to the (𝑁 − 1)−body occupation coefficient (see (B.11) in
Appendix B). As a consequence the functional𝐾𝑀(𝜌(𝑁)1 (𝑡),b)
can be represented in terms of a finite sum of the form𝐾𝑀(𝜌(𝑁)1 (𝑡), b) ≡ ∑𝑗=1,𝑁−1𝐾(𝑗)𝑀 (𝜌(𝑁)1 (x1, 𝑡), b) in which each
term of the sum 𝐾(𝑗)𝑀 (𝜌(𝑁)1 (x1, 𝑡), b) is nonnegative and
symmetric. This implies therefore that the same functional𝐾𝑀(𝜌(𝑁)1 (𝑡), b) can be cast in the form

𝐾𝑀 (𝜌(𝑁)1 (𝑡) , b) = ∫
Γ1(1)

𝑑x1
⋅ ∫
Γ1(2)

𝑑x2Θ(𝜕Ω)1 (r1) Θ(𝜕Ω)2 (r2)𝑀 (k1, k2, b)
× 𝐹 (r1, r2, 𝑡) 𝜕𝜌

(𝑁)
1 (x1, 𝑡)𝜕r1

⋅ 𝜕𝜌(𝑁)1 (x2, 𝑡)𝜕r2 Θ (󵄨󵄨󵄨󵄨r2 − r1󵄨󵄨󵄨󵄨 − 𝜎) ,

(39)

with 𝑀(k1, k2, b) ≥ 0 being the total directional kinetic
energy (25) and 𝐹(r1, r2, 𝑡) a suitable real scalar kernel which
is symmetric in the variables r1 and r2.Hence𝐾𝑀(𝜌(𝑁)1 (𝑡),b)
actually defines a nonnegative functional. This proves the
validity of the inequality (31) (Proposition P11).

In a similar way also the remaining propositions can
be established. In fact, invoking (28) it follows that the
inequalities (30) and (31)—and hence also Propositions P12
and P13—manifestly hold too. Finally, regarding the proof of
Proposition P14, one notices that 𝐾𝑀(𝜌(𝑁)1 (𝑡), b) ≡ 0 if and
only if identically (𝜕/𝜕r1)𝜌(𝑁)1 (x1, 𝑡) ≡ 0. Since 𝜌(𝑁)1 (x1, 𝑡)
is by construction a solution of the Master kinetic equation
it follows that this requires necessarily that 𝜌(𝑁)1 (x1, 𝑡) must
coincide with the local Maxwellian 𝜌(𝑁)1𝑀 (k1) (see (6)) and
hence (32) must hold too under the same realization (Propo-
sition P14).

The conclusion is therefore that the definition of the
MKI functional (22) given above in terms of 𝐾𝑀(𝜌(𝑁)1 (𝑡),b)
and 𝐾𝑀𝑜 (see (23)) is indeed consistent with the physical
prerequisites represented by theMKI Prescriptions No.#1 and
No.#2.

2.2. Proof of PMI for the Master Kinetic Equation. The next
step is to prove that the functional 𝐼𝑀(𝜌(𝑁)1𝑜 , b) defined

above (see (28)) indeed exhibits amonotonic time-decreasing
behavior which is consistent with the MKI Prescriptions
No.#3 and No.#4, which are realized respectively by

(i) the time derivative inequality (18) and the conditions
of existence of kinetic equilibrium (21);

(ii) the validity of the inequality 𝐼𝑀(𝜌(𝑁)1 (𝑡)) ≤ 1.
In order to reach the proofs of these properties let

us preliminarily determine the variation across a binary
collision occurring between particles 1 and 2 of the total
directional kinetic energy𝑀(k1, k2, b) (see (25)), namely, the
phase-space scalar functionΔ𝑀(k1 , k2,b) ≡ 𝑀(k(+)1 , k(+)2 , b)−𝑀(k1k2, b). One obtains

Δ𝑀(k1, k2, b) = b ⋅ n12 󵄨󵄨󵄨󵄨󵄨n12 ⋅ k(+)12 󵄨󵄨󵄨󵄨󵄨 k(+)12 ⋅ b
− (b ⋅ n12)2 (n12 ⋅ k(+)12 )2 ,

(40)

the rhs being expressed in terms of the outgoing particle
velocities (k(+)1 , k(+)2 ) only. Then, the following proposition
holds.

�eorem 2 (property of macroscopic irreversibility (master
equation PMI theorem)). Let us assume that 𝜌(𝑁)1 (x1, 𝑡) ≡𝜌(𝑁)1 (r1, k1, 𝑡) is an arbitrary stochastic particular solution
of the Master kinetic equation (A.4) with initial condition𝜌(𝑁)1𝑜 (x1) such that the integral 𝐾𝑀(𝜌(𝑁)1𝑜 (x1),b) exists and is
nonvanishing. Then it follows that

(i) Proposition P21: one finds that for all 𝑡 ≥ 𝑡𝑜𝜕𝜕𝑡𝐾𝑀 (𝜌(𝑁)1 (𝑡) , b) = − (𝑁 − 1) 𝜎2 ∫
𝑈1(1)

𝑑k1 ∫
𝑈1(2)

𝑑k2
⋅ ∫
Ω
𝑑r1Θ(𝜕Ω)1 (r1) ∫(−) 𝑑Σ21 󵄨󵄨󵄨󵄨󵄨k(+)12 ⋅ n12󵄨󵄨󵄨󵄨󵄨 (b ⋅ n12)2

⋅ (n12 ⋅ k(+)12 )2 𝜕𝜌
(𝑁)
1 (r1, k(+)1 , 𝑡)𝜕r1 ⋅ 𝜕𝜕r2

⋅ 𝜌(𝑁)1 (r2 = r1 + 𝜎n21, k(+)2 𝑡)
⋅ 𝑘(𝑁)2 (r1, r2 = r1 + 𝜎n21, 𝑡) ≤ 0.

(41)

(ii) Proposition P22: the inequality𝜕𝜕𝑡 𝐼𝑀 (𝜌(𝑁)1 (𝑡) , b) ≤ 0 (42)

holds globally (i.e., identically for all 𝑡 ≥ 𝑡𝑜) so that
necessarily 𝐼𝑀(𝜌(𝑁)1 (𝑡), b) is globally defined too, being
also prescribed so that

𝐼𝑀 (𝜌(𝑁)1 (𝑡) , b) ≤ 1. (43)

(iii) Proposition P23: one finds that a given time 𝑡 ∈ 𝐼 with𝑡 ≥ 𝑡𝑜 𝜕𝜕𝑡𝐾𝑀 (𝜌(𝑁)1 (𝑡) , b) = 0 ⇐⇒
𝜌(𝑁)1 (x1, 𝑡) ≡ 𝜌(𝑁)1𝑀 (k1) .

(44)



Advances in Mathematical Physics 9

Proof. Consider first the proof of Proposition P21 which
requires evaluation of the partial time derivative (𝜕/𝜕𝑡)𝐾𝑀(𝜌(𝑁)1 (𝑡),b).Upon invoking the first form of theMaster
kinetic equation (see (A.1) in Appendix A), explicit differen-
tiation of 𝐾𝑀(𝜌(𝑁)1 (𝑡),b) delivers

𝜕𝜕𝑡𝐾𝑀 (𝜌(𝑁)1 (𝑡) , b) = −∫
Γ1(1)

𝑑x1𝑀(k1, b)Θ(𝜕Ω)1 (r1)

⋅ 𝑘(𝑁)1 (r1, 𝑡) (−k1 ⋅ 𝜕𝜕r1)
𝜕2𝜌(𝑁)1 (x1, 𝑡)𝜕r1 ⋅ 𝜕r1

− ∫
Γ1(1)

𝑑x1𝑀(k1,b) Θ(𝜕Ω)1

𝜕2𝜌(𝑁)1 (x1, 𝑡)𝜕r1 ⋅ 𝜕r1 ( 𝜕𝜕𝑡)

⋅ 𝑘(𝑁)1 (r1, 𝑡) ,
(45)

namely, upon integration by parts in the first integral on the
rhs,

𝜕𝜕𝑡𝐾𝑀 (𝜌(𝑁)1 (𝑡) , b) = −∫
Γ1(1)

𝑑x1𝑀(k1, b)

⋅ Θ(𝜕Ω)1

𝜕2𝜌(𝑁)1 (x1, 𝑡)𝜕r1 ⋅ 𝜕r1 ( 𝜕𝜕𝑡 + k1 ⋅ 𝜕𝜕r1) 𝑘
(𝑁)
1 (r1, 𝑡) .

(46)

Hence, thanks to the differential identity (B.12) it follows

𝜕𝜕𝑡𝐾𝑀 (𝜌(𝑁)1 (𝑡) ,b)
= − (𝑁 − 1) ∫

Γ1(1)

𝑑x1𝑀(k1, b)Θ(𝜕Ω)1 (r1) 𝜕
2𝜌(𝑁)1 (x1, 𝑡)𝜕r1 ⋅ 𝜕r1 ∫

Γ1(2)

𝑑x2k12 ⋅ n12 × 𝛿 (󵄨󵄨󵄨󵄨r1 − r2󵄨󵄨󵄨󵄨 − 𝜎) 𝑘(𝑁)2 (r1, r2, 𝑡) 𝜌(𝑁)1 (x2, 𝑡) .
(47)

Performing an integration by parts with respect to r1 and
upon invoking the first differential identity (B.14) reported in
Appendix B one obtains therefore

𝜕𝜕𝑡𝐾𝑀 (𝜌(𝑁)1 (𝑡) , b) = 𝑊𝑀 (𝜌(𝑁)1 (𝑡) , b) , (48)

𝑊𝑀 (𝜌(𝑁)1 (𝑡) , b) ≡ ∫
Γ1(1)

𝑑x1𝑀(k1, b)

⋅ Θ(𝜕Ω)1 (r1) 𝜕𝜌
(𝑁)
1 (x1, 𝑡)𝜕r1 (𝑁 − 1)

× ∫
Γ1(2)

𝑑x2k12 ⋅ n12 𝜕𝜕r1 [𝛿 (
󵄨󵄨󵄨󵄨r1 − r2󵄨󵄨󵄨󵄨 − 𝜎)]

⋅ 𝑘(𝑁)2 (r1, r2, 𝑡) 𝜌(𝑁)1 (x2, 𝑡) ,

(49)

where (𝜕/𝜕r1)[𝛿(|r1 − r2| − 𝜎)] = −(𝜕/𝜕r2)[𝛿(|r1 − r2| − 𝜎)].
Hence performing a further integration by parts with respect
to r2 and using the second differential identity on (B.14) (see
Appendix B) the previous equation finally yields

𝑊𝑀 (𝜌(𝑁)1 (𝑡) , b) = (𝑁 − 1)∫
Γ1(1)

𝑑x1Θ(𝜕Ω)1 (r1)
⋅ ∫
Γ1(2)

𝑑x2k12 ⋅ n12𝑀(k1, k2,b)
× 𝛿 (󵄨󵄨󵄨󵄨r1 − r2󵄨󵄨󵄨󵄨 − 𝜎)
⋅ 𝑘(𝑁)2 (r1, r2, 𝑡) 𝜕𝜌

(𝑁)
1 (x1, 𝑡)𝜕r1

⋅ 𝜕𝜌(𝑁)1 (x2, 𝑡)𝜕r2 ,

(50)

where the symmetry property with respect to the exchange
of states (x1, x2) has been invoked. In the previous equation
the integration on the Dirac delta can be performed at once
letting

∫
Γ1(1)

𝑑x1Θ(𝜕Ω)1 ∫
Γ1(2)

𝑑x2𝛿 (󵄨󵄨󵄨󵄨r1 − r2󵄨󵄨󵄨󵄨 − 𝜎) = 𝜎2 ∫
𝑈1(1)

𝑑k1
⋅ ∫
𝑈1(2)

𝑑k2 ∫
Ω
𝑑r1Θ(𝜕Ω)1 (r1)

⋅ [∫(+) 𝑑Σ21 󵄨󵄨󵄨󵄨k12 ⋅ n12󵄨󵄨󵄨󵄨 − ∫(−) 𝑑Σ21 󵄨󵄨󵄨󵄨k12 ⋅ n12󵄨󵄨󵄨󵄨] ,

(51)

where the solid-angle integrations in the two integrals on
the rhs are performed, respectively, on the outgoing (+) and
incoming (−) particles. Furthermore, it is obvious that thanks
to the causal form of MCBC (see (C.3) in Appendix C) the
integral on outgoing particles ∫(+) 𝑑Σ21 can be transformed
to a corresponding integration on incoming ones, namely,
∫(−) 𝑑Σ21. Thus, the contributions in the two phase-space
integrals only differ because of the variation Δ𝑀(k1, k2, b) of
the total directional kinetic energy of particles 1 and 2.This
implies that

𝑊𝑀 (𝜌(𝑁)1 (𝑡) , b) = (𝑁 − 1) 𝜎2 ∫
𝑈1(1)

𝑑k1 ∫
𝑈1(2)

𝑑k2

⋅ ∫
Ω
𝑑r1Θ(𝜕Ω)1 (r1) ∫(−) 𝑑Σ21 × 󵄨󵄨󵄨󵄨k12 ⋅ n12󵄨󵄨󵄨󵄨

⋅ Δ𝑀 (k1, k2,b) 𝜕𝜌
(𝑁)
1 (r1, k(+)1 , 𝑡)𝜕r1
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⋅ 𝜕𝜌(𝑁)1 (r2 = r1 + 𝜎n21, k(+)2 , 𝑡)𝜕r2
× 𝑘(𝑁)2 (r1, r2 = r1 + 𝜎n21, 𝑡) ,

(52)

where the solid-angle integration is performed on the incom-
ing particles whereas Δ𝑀(k1, k2,b) is evaluated in terms of
the outgoing particles (+) and therefore must be identified
with the second equation on the rhs of (40). Consider now
the dependence in terms of the outgoing particle velocities
k(+)1 and k(+)2 in the previous phase-space integral. The
velocity dependence contained in the factors |k12 ⋅ n12| and𝜕𝜌(𝑁)1 (r1, k(+)1 , 𝑡)/𝜕r1 ⋅ 𝜕𝜌(𝑁)1 (r2, k(+)2 𝑡)/𝜕r2 is symmetric with
respect to the variables k(+)1 and k(+)2 . On the other hand, as
a whole, the same integral should remain unaffected with
respect to the exchange of the outgoing particle velocities
k(+)1 ⇐⇒ k(+)2 .This means that the only term in Δ𝑀(k1, k2, b)
which gives a (possibly) nonvanishing contribution is −(b ⋅
n12)2(n12 ⋅ k(+)12 )2. As a consequence it is found that

𝜕𝜕𝑡𝐾𝑀 (𝜌(𝑁)1 (𝑡) , b) ≡ 𝑊𝑀 (𝜌(𝑁)1 (𝑡) ,b) = − (𝑁 − 1)
⋅ 𝜎2 ∫

𝑈1(1)

𝑑k1 ∫
𝑈1(2)

𝑑k2 × ∫
Ω
𝑑r1Θ(𝜕Ω)1 (r1)

⋅ ∫(−) 𝑑Σ21 𝜕𝜌
(𝑁)
1 (r1, k(+)1 , 𝑡)𝜕r1

⋅ 𝜕𝜌(𝑁)1 (r2 = r1 + 𝜎n21, k(+)2 , 𝑡)𝜕r2 × 󵄨󵄨󵄨󵄨󵄨k(+)12 ⋅ n12󵄨󵄨󵄨󵄨󵄨
⋅ (b ⋅ n12)2 (n12 ⋅ k(+)12 )2 𝑘(𝑁)2 (r1, r2 = r1 + 𝜎n21, 𝑡)
≤ 0,

(53)

and hence (𝜕/𝜕𝑡)𝐾𝑀(𝜌(𝑁)1 (𝑡),b) is necessarily negative or
null, the second case occurring only if 𝜕𝜌(𝑁)1 (r1, k(+)1 , 𝑡)/𝜕r1 ≡0 and consequently 𝜕𝜌(𝑁)1 (r2 = r1 + 𝜎n21, k(+)2 𝑡)/𝜕r2 ≡ 0 too.

The proof of Proposition P22 follows in a similar way.
In fact, first, one notices that thanks to the global validity
of the 1−body PDF [13] the 1−body PDF 𝜌(𝑁)1 (𝑡) neces-
sarily belongs to the functional class of stochastic PDFs{𝜌(𝑁)1 (x1, 𝑡)} prescribed so that also the local characteristic
scale length defined above 𝐿𝜌(𝑡) (see (16)) is larger than
zero and finite. As a consequence it follows that both the
functional 𝐾𝑀(𝜌(𝑁)1 (𝑡),b) and 𝐼𝑀(𝜌(𝑁)1 (𝑡), b) (see (22)) are
globally defined too. Consider in fact the representation of𝐾𝑀(𝜌(𝑁)1 (𝑡), b) achieved in Theorem 1 and given by (35).
Next, let us notice that thanks to (16) the characteristic scale
length

𝐿𝜇,min ≡ inf
{{{
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕𝜌(𝑁)1 (x1, 𝑡)𝜕r1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−1}}}

(54)

is necessarily strictly positive.Then, upon noting that 𝑘(𝑁)2 (r1,
r2, 𝑡) ≤ 1 and ∫Γ1(2) 𝑑x2𝛿(|r2− r1|−𝜎)𝜌(𝑁)1 (x2, 𝑡) ≤ sup(𝑛(𝑁)1 (r2,
𝑡)) < +∞, with 𝑛(𝑁)1 (r2, 𝑡) being the velocity moment 𝑛(𝑁)1 (r2,𝑡) = ∫

𝑈1(2)
𝑑k2𝜌(𝑁)1 (r2, k2, 𝑡), it follows that

𝐾𝑀 (𝜌(𝑁)1 (𝑡) , b) ≤ (𝑁 − 1)𝐿𝜇,min
sup (𝑛(𝑁)1 (r2, 𝑡))

⋅ ∫
Γ1(1)

𝑑x1Θ(𝜕Ω)1 (r1)𝑀 (k1,b)
⋅ 𝜌(𝑁)1 (x1, 𝑡) ,

(55)

where the integral on the rhs is necessarily bounded. This
happens because 𝜌(𝑁)1 (x1, 𝑡) belongs to the functional class{𝜌(𝑁)1 (𝑡)} and therefore 𝑛(𝑁)1 (r2, 𝑡) is bounded, while, at
the same time, the phase-space moments indicated above
necessarily exist. Furthermore, since (𝜕/𝜕𝑡)𝐼𝑀(𝜌(𝑁)1 (𝑡), b) ≡(1/𝐾𝑀𝑜)(𝜕/𝜕𝑡)𝐾𝑀(𝜌(𝑁)1 (𝑡), b), the inequality (53) implies (42)
and (43) too. Finally, since 𝜌(𝑁)1 (r1, k1, 𝑡) is a solution of the
Master kinetic equation (𝜕/𝜕r1)𝜌(𝑁)1 (x1, 𝑡) ≡ 0 occurs if
and only if 𝜌(𝑁)1 (x1, 𝑡) coincides with a Maxwellian kinetic
equilibrium of the type (6). This result proves therefore also
Proposition P23.

The implication of Theorem 2 is therefore that provided
the initial value 𝐾𝑀(𝜌(𝑁)1𝑜 (x1), b) is nonvanishing then neces-
sarily:

(i) the functional 𝐾𝑀(𝜌(𝑁)1 (𝑡), b) is monotonically de-
creasing and thus 𝐾𝑀(𝜌(𝑁)1 (𝑡),b) ≤ 𝐾𝑀(𝜌(𝑁)1𝑜 (x1), b);

(ii) similarly the MKI functional 𝐼𝑀(𝜌(𝑁)1 (𝑡), b) is
monotonically decreasing too, i.e., 𝐼𝑀(𝜌(𝑁)1 (𝑡),b) ≤𝐼𝑀(𝜌(𝑁)1𝑜 (x1),b);

(iii) both 𝐾𝑀(𝜌(𝑁)1 (𝑡), b) and 𝐼𝑀(𝜌(𝑁)1 (𝑡),b) are nonnega-
tive.

2.3. Proof of the DKE Property for the Master Kinetic Equation.
Let us now show that in validity ofTheorems 1 and 2 the time-
evolved 𝜌(𝑁)1 (x1, 𝑡) necessarily must decay asymptotically for𝜏 ≡ 𝑡 − 𝑡𝑜 󳨀→ +∞ to kinetic equilibrium, i.e., that the
limit function lim𝜏󳨀→+∞𝜌(𝑁)1 (x1, 𝑡) ≡ 𝜌(𝑁)1∞ (x1) exists and it
necessarily coincides with a Maxwellian kinetic equilibrium
of the type (6). In this regard the following proposition holds.

�eorem 3 (asymptotic behavior of 𝐼𝑀(𝜌(𝑁)1 (𝑡), b) (master
equation-DKE theorem)). Let us assume that the initial
condition 𝜌(𝑁)1𝑜 (x1) ∈ {𝜌(𝑁)1𝑜 (x1)} is such that the corresponding
functional 𝐾𝑀(𝜌(𝑁)1𝑜 (x1),b) is nonvanishing, i.e., in view of
Theorem 1 necessarily > 0. Then it follows that the corre-
sponding time-evolved solution of the Master kinetic equation𝜌(𝑁)1 (x1, 𝑡) in the limit 𝜏 ≡ 𝑡 − 𝑡𝑜 󳨀→ +∞ necessarily must
decay to kinetic equilibrium, i.e.,

lim
𝜏󳨀→+∞

𝜌(𝑁)1 (x1, 𝑡) = 𝜌(𝑁)1𝑀 (k1) . (56)
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Proof. In order to reach the thesis it is sufficient to prove that
necessarily

lim
𝜏󳨀→+∞

𝜕𝜕𝑡𝐼𝑀 (𝜌(𝑁)1 (𝑡) ,b) = 0. (57)

In fact, let us assume “ad absurdum” that (𝜕/𝜕𝑡)𝐼𝑀(𝜌(𝑁)1 (𝑡),
b) ≤ −𝑘2 with 𝑘2 > 0 being a real constant. Then Theorem 2
(Proposition P22) requires that

lim
𝜏󳨀→+∞

𝐼𝑀 (𝜌(𝑁)1 (𝑡) , b) ≤ − lim
𝜏󳨀→+∞

(𝑡 − 𝑡𝑜) 𝑘2 = −∞, (58)

a result which contradicts Theorem 1. This proves the valid-
ity of (57). Furthermore, by construction (𝜕/𝜕𝑡)𝐼𝑀 ≡(1/𝐾𝑀𝑜)(𝜕/𝜕𝑡)𝐾𝑀 and furthermore (𝜕/𝜕𝑡)𝐾𝑀 is identified
with the functional𝑊𝑀(𝜌(𝑁)1 (𝑡), b) ≤ 0 which is determined
by (53). At this point one notices that, thanks to continuity of
the functional𝑊𝑀(𝜌(𝑁)1 (𝑡), b), the identity

lim
𝜏󳨀→+∞

𝜕𝜕𝑡𝐼𝑀 (𝜌(𝑁)1 (x1, 𝑡) ,b) = 𝑊𝑀 (𝜌(𝑁)1∞ (x1) , b) (59)

holds, where, thanks to global existence of the 1−body PDF
(see [13]), the limit function

lim
𝜏󳨀→+∞

𝜌(𝑁)1 (x1, 𝑡) ≡ 𝜌(𝑁)1∞ (x1) (60)

necessarily exists. As a consequence (57) requires also the
equation

𝑊𝑀 (𝜌(𝑁)1∞ (x1) , b) = 0 (61)

to hold. Upon invoking Proposition P23 of Theorem 2 this
implies that necessarily 𝜌(𝑁)1∞ (x1) = 𝜌(𝑁)1𝑀 (k1) so the thesis (56)
is proved. Incidentally, thanks toTheorem 1, this requires also
that

lim
𝜏󳨀→+∞

𝐼𝑀 (𝜌(𝑁)1 (𝑡) , b) = 𝐼𝑀 (𝜌(𝑁)1∞ (x1) ,b) = 0. (62)

2.4. Remarks. A few remarks are worth being pointed out
regarding the results presented above.

(1) Remark #1.The choice of the MKI functional consid-
ered here (see (22)) is just one of the infinite particular
admissible realizationswhichmeet the complete set of
MKI prescriptions indicated above. In particular, the
choice of the velocity moment 𝑀(k1, b) considered
here (see (24)) remains in principle arbitrary, since|k1 ⋅ b|2 can be equivalently replaced, for example, by
any factor of the form |k1 ⋅ b|2𝑛, with 𝑛 ≥ 1. Fur-
thermore it is obvious that 𝑀(k1, b) can be replaced
by any function of the form 𝑀(k1, b) + Δ𝑀(k1,b),
being Δ𝑀(k1, b) prescribed in such a way that its
contribution to (𝜕/𝜕𝑡)𝐼𝑀 vanishes identically so that
the validity of the inequality (42) in Theorem 2 is
preserved.This implies in turn that the prescription of
the MKI functional 𝐼𝑀(𝜌(𝑁)1 (𝑡)) remains in principle
nonunique.

(2) Remark #2. A possible issue is related to the require-
ment that the renormalized 1−body PDF, as the1−body PDF itself, are strictly positive at all times and
are nonvanishing. Here it is sufficient to state that an
elementary consequence of the theory of the Master
kinetic equation developed in [3] is that, provided the
corresponding initial𝑁−body PDF set at a prescribed
initial time 𝑡𝑜 is strictly positive in the whole𝑁−body
phase-space, both the corresponding renormalized1−body PDF as the 1−body PDF remain necessarily
strictly positive globally in time too and everywhere
in the 1−body phase-space.

(3) Remark #3. Itmust be stressed that the signature of the
time derivative (𝜕/𝜕𝑡)𝐼𝑀(𝜌(𝑁)1 (𝑡), b) actually depends
crucially on the adoption of the causal form of
MCBC (i.e., see (C.1) or (C.3) in Appendix C) rather
than the anticausal one (given instead by (C.2)). The
first choice is mandatory in view of the causality
principle. Indeed, it is immediate to prove that (𝜕/𝜕𝑡)𝐼𝑀(𝜌(𝑁)1 (𝑡), b) changes signature if the anticausal
MCBC (C.2) is invoked.

(4) Remark #4.Theorem 2 warrants that macroscopic ir-
reversibility, namely, the inequality (𝜕/𝜕𝑡)𝐼𝑀(𝜌(𝑁)1 (𝑡),
b) ≤ 0, occurs specifically because of (a) the time-
variation of the b−directional total kinetic energy
which occurs at arbitrary binary-collision events; (b)
the occurrence of a velocity-space anisotropy in the1−body PDF, i.e., the fact that the same PDF may not
coincide with a local Maxwellian PDF.

(5) Remark #5. The existence of the limit function
lim𝑡󳨀→+∞𝜌(𝑁)1 (x1, 𝑡) = 𝜌(𝑁)1∞ (x1) follows uniquely as a
consequence of the global existence theorem holding
for the Master kinetic equation [13].

(6) Remark #6. Last but not least, the fact that the
same limit function may coincide or not with the
Maxwellian kinetic equilibrium (6) depends crucially
on the functional setting prescribed for the same
PDF 𝜌(𝑁)1 (x1, 𝑡).More precisely, DKE can only occur
provided 𝜌(𝑁)1 (x1, 𝑡) is a suitably smooth stochastic
PDF such that the MKI functional exists for the cor-
responding initial PDF at time 𝑡𝑜, i.e., 𝜌(𝑁)1 (x1, 𝑡𝑜) =𝜌(𝑁)1𝑜 (x1).

Theorems 1–3 represent the main results reached in the
paper of what may be referred to as the PMI/DKE theory
for finite hard-sphere systems and which have concerned the
axiomatic formulation in such a context of the notion of
macroscopic irreversibility and the related one of decay to
kinetic equilibrium.

3. Consistency of MPI/DKE Theory with
Microscopic Dynamics

The crucial problem which arises in the context of the ab
initio theory is in some sense analogous to that occurring
in the Boltzmann and Grad kinetic theories. The question
is in fact whether these phenomena are actually consistent
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with the fundamental symmetry properties of the underlying
Boltzmann-Sinai CDS. The problem posed in the present
section concerns, more precisely, the consistency with the
time-reversible, energy-conserving, evolution of the under-
lying 𝑁−body Boltzmann-Sinai classical dynamical system𝑆𝑁−CDS.

(1) First issue: consistency with the microscopic reversibil-
ity principle. This is related to the famous objection
raised by Loschmidt to the Boltzmann equation and
Boltzmann H-theorem: i.e., whether and possibly
also how it may be possible to reconcile the validity
of the reversibility principle for the 𝑆𝑁−CDS with
the manifestation of a decay of the 1−body PDF to
kinetic equilibrium, i.e., the uniformMaxwellian PDF
of the form (6), as predicted by the above Master
equation-DKE Theorem. That a satisfactory answer
to this question is actually possible follows from
considerations which are based on the axiomatic (ab
initio) statistical description realized by the Master
kinetic equation. In this regard it is worth recalling
the discussion reported above concerning the role of
MCBC regarding the functional (𝜕/𝜕𝑡)𝐼𝑀(𝜌(𝑁)1 (𝑡)). In
particular, it is obvious that the signature depends
on whether the causal (or anticausal) form of MCBC
is invoked (see Appendix C). Such a choice is not
arbitrary since, for consistency with the causality
principle, it must depend on the microscopic arrow
of time, i.e., the orientation of the time axis chosen
for the reference frame. Based on these premises,
consistency between the occurrence of macroscopic
irreversibility associated with the DKE phenomenon
and the principle of microscopic reversibility can
immediately be established. Indeed, it is sufficient
to notice that when a time-reversal or a velocity-
reversal is performed on the 𝑆𝑁−CDS the form of the
collision boundary conditions (i.e., in the present case
the MCBC provided by (C.1) in Appendix C) must
be changed, replacing them with the corresponding
anticausal ones, i.e., (C.2). This implies that MKI
functional decreases in both cases, i.e., after perform-
ing the time-reversal, so that no contradiction can
possibly arise in this case betweenTheorem 3 and the
microscopic reversibility principle.

(2) Second issue: consistency with Poincaré recurrence the-
orem. Similar considerations concern the consistency
with the recurrence theorem due to Poincaré as well
as the conservation of total (kinetic) energy for the𝑆𝑁−CDS. In fact, first, as it follows from [3], by
construction the Master collision operator admits the
customary Boltzmann collisional invariants, includ-
ing total kinetic energy of colliding particles. Hence,
total energy conservation is again warranted for𝑆𝑁−CDS. Second, regarding Poincaré recurrence the-
orem, it concerns the Lagrangian phase-space tra-
jectories of the 𝑆𝑁−CDS, i.e., the fact that almost
all of these trajectories return arbitrarily close—in a
suitable sense to be prescribed in terms of a distance
defined on the 𝑁−body phase-space—to their initial

condition after a suitably large “recurrence time”.
Incidentally, its magnitude depends strongly both on
the same initial condition and the notion of distance
to be established on the same phase-space. Never-
theless, such a “recurrence effect” influences only the
Lagrangian time evolution of the𝑁−body PDFwhich
occurs along the same Lagrangian 𝑁−body phase-
space trajectories. Instead, the same recurrence effect
has manifestly no influence on the time evolution of
the Eulerian 1−body PDF which is advanced in time
in terms of the Eulerian kinetic equation represented
by the Master kinetic equation. Therefore the mutual
consistency of DKE and Poincaré recurrence theorem
remains obvious.

Hence, in the framework of the axiomatic ab initio theory
based on the Master kinetic equation the full consistency is
warranted with the microscopic dynamics of the underlying
Boltzmann-Sinai CDS.

4. Physical Implications

Let us now investigate the physical interpretation and main
implications emerging from the PMI/DKE theory developed
here. The first issue is related to the physical mechanism at
the basis of the PMI/DKE phenomenology.

It is well known that in the context of Boltzmann kinetic
theory the property of macroscopic irreversibility and the
occurrence of the DKE phenomenon are both ascribed to the
Boltzmann H-theorem, both in its original formulation [7]
and in its modified form introduced by Boltzmann himself
while attempting to reply [28] to Loschmidt objection [27]
(see also [30, 31] together with different views on the matter
given in [24, 26]). As recalled above, this is expressed in
terms of the production rate for the Boltzmann-Shannon
entropy (𝜕/𝜕𝑡)𝑆(𝜌1(𝑡)), with 𝑆(𝜌1(𝑡)) being interpreted as a
measure of the ignorance associated with a solution of the
Boltzmann equation. In fact the customary interpretation
is that they arise specifically because of the validity of
the entropic inequality (10), i.e., the monotonic increase of𝑆(𝜌1(𝑡)), and the corresponding entropic equality (11) stating
a necessary and sufficient condition for kinetic equilibrium.
Such a theorem is actually intimately related to the equation
itself. In fact both the theorem and the equation generally
hold only for stochastic PDFs 𝜌1(𝑡) = 𝜌1(x1, 𝑡) which are
suitably smooth and not for distributions [1]. According
to Boltzmann’s original interpretation, however, both the
Boltzmann equation and Boltzmann H-theorem should only
hold when the so-called Boltzmann-Grad limit is invoked,
i.e., based on the limit operator 𝐿𝐵𝐺 ≡ lim 𝑁󳨀→+∞

𝑁𝜎2∼𝑂(1)

(see [4]).

In striking departure from such a picture, one has the
following:

(i) The axiomatic ab initio theory based on the Master
kinetic equation and the present PMI/DKE theory
are applicable to an arbitrary finite Boltzmann-Sinai
CDS. This means that they hold for hard-sphere
systems having a finite number of particles and with
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finite diameter and mass, i.e., without the need of
invoking validity of asymptotic conditions.

(ii) The main departure with respect to Boltzmann
kinetic theory arises because, as earlier discovered
(see in particular the related discussion reported
in [4]), the Boltzmann-Shannon entropy associated
with an arbitrary stochastic 1−body PDF 𝜌(𝑁)1 (𝑡) =𝜌(𝑁)1 (x1, 𝑡) solution of the Master kinetic equation
is identically conserved. Thus both PMI and DKE
are essentially unrelated to the Boltzmann-Shannon
entropy.

(iii) In the case of the Master kinetic equation the phys-
ical mechanism responsible for the occurrence of
both PMI and DKE is unrelated to the Boltzmann-
Shannon entropy. In fact, as shown here, it arises
because of the properties of the MKI functional𝐼𝑀(𝜌(𝑁)1 (𝑡), b) when it is expressed in terms of an
arbitrary stochastic PDF 𝜌(𝑁)1 (𝑡) = 𝜌(𝑁)1 (x1, 𝑡) solution
of the Master kinetic equation. The only requirement
is that the initial PDF 𝜌(𝑁)1𝑜 (x1) is prescribed so that the
corresponding MKI functional 𝐼𝑀(𝜌(𝑁)1𝑜 (x1),b) exists.

(iv) As shown here the MKI functional is a suitably
weighted phase-space moment of 𝜌(𝑁)1 (x1, 𝑡) which
can be interpreted as an information measure for the
same PDF, namely, belongs to the interval [0, 1], and
exhibits a monotonic-decreasing time-dependence,
i.e., the property of macroscopic irreversibility.

(v) In addition both 𝐼𝑀(𝜌(𝑁)1 (𝑡), b) and its time derivative(𝜕/𝜕𝑡)𝐼𝑀(𝜌(𝑁)1 (𝑡),b) vanish identically if and only if
the 1−body PDF coincides with a Maxwellian kinetic
equilibrium of the type (6). This warrants in turn
also the occurrence of the DKE phenomenon for𝜌(𝑁)1 (x1, 𝑡), i.e., that for 𝑡 − 𝑡𝑜 󳨀→ +∞ the same PDF
must decay to a Maxwellian kinetic equilibrium of
this type.

(vi) Finally, it is interesting to point out the peculiar
behavior of the MKI functional 𝐼𝑀(𝜌(𝑁)1 (𝑡),b) and
its time derivative (𝜕/𝜕𝑡)𝐼𝑀(𝜌(𝑁)1 (𝑡), b) when the
Boltzmann-Grad limit is considered. In particular
the 1− and 2−body occupation coefficients 𝑘(𝑁)1 (r1, 𝑡)
and 𝑘(𝑁)2 (r1, r2, 𝑡) which appear in the Master kinetic
equation (see Appendix B, (B.1) and (B.2)) become
respectively

𝐿𝐵𝐺𝑘(𝑁)1 (r1, 𝑡) = 1
𝐿𝐵𝐺𝑘(𝑁)2 (r1, r2, 𝑡) = 1.

(63)

As a consequence the limit functionals𝐿𝐵𝐺𝐼𝑀(𝜌(𝑁)1 (𝑡), b) and 𝐿𝐵𝐺(𝜕/𝜕𝑡)𝐼𝑀(𝜌(𝑁)1 (𝑡),b),
are necessarily identically vanishing. This means
that the present theory applies properly when the
exact Master kinetic equation is considered and
not to its asymptotic approximation obtained in

the Boltzmann-Grad limit, namely the Boltzmann
kinetic equation (see [3, 13]).

An interesting issue, in the context of the PMI/DKE
theory for the Master kinetic equation, is the role of MCBC
in giving rise to the phenomena ofmacroscopic irreversibility
and decay to kinetic equilibrium. Let us analyze for this
purpose the two cases represented by unary and binary hard-
sphere elastic collisions.

First, let us recall the customary treatment of collision
boundary conditions for unary collision events (also referred
to as the so-called mirror reflection CBC; see for example
Cercignani [6, 11]).This refers to the occurrence at a collision
time 𝑡𝑖 of a single unary elastic collision for particle 1 at the
boundary 𝜕Ω. Let us denote by n1 the inward normal to the
stationary rigid boundary 𝜕Ω at the point of contact with
the same particle and respectively x(−)1 (𝑡1) = (r1(𝑡1), k(−)1 (𝑡1))
and x(+)1 (𝑡1) = (r1(𝑡1), k(+)1 (𝑡1)) the incoming and outgoing
particle states while k(+)1 is determined by the elastic collision
law for unary collisions, namely,

k(+)1 = k(−)1 − 2n1n1 ⋅ k(−)1 . (64)

Then, the PDF-conserving CBC for the 1−body PDF requires
that the following identity holds:

𝜌(𝑁)1 (x(+)1 (𝑡1) , 𝑡𝑖) = 𝜌(𝑁) (x(−)1 (𝑡𝑖) , 𝑡𝑖) , (65)

with 𝜌(𝑁)1 (x(+)1 (𝑡1), 𝑡𝑖) ≡ 𝜌(𝑁)(+)1 (x(+)1 (𝑡1), 𝑡𝑖) and 𝜌(𝑁)(x(−)1 (𝑡𝑖),𝑡𝑖) ≡ 𝜌(𝑁)(−)(x(−)1 (𝑡𝑖), 𝑡𝑖) denoting the outgoing and incoming1−body PDF, respectively.This identifies the PDF-conserving
CBC usually adopted in Boltzmann kinetic theory [7] (Grad
[10]; see also [2, 3]). The obvious physical implication of
(65) is that 𝜌(𝑁)1 (x(+)1 (𝑡1), 𝑡𝑖) (and 𝜌(𝑁)(x(−)1 (𝑡𝑖), 𝑡𝑖)) should be
necessarily an even function of the velocity component n1 ⋅
k(−)1 . Indeed as shown in [2, 3] the PDF-conserving CBC (65)
should be replaced with a suitable CBC identified with the
MCBC condition (see also Appendix C). When realized in
terms of its causal form (predicting the outgoing PDF in
terms of the incoming one) the MCBC for unary collisions
is just

𝜌(𝑁)(+)1 (x(+)1 (𝑡1) , 𝑡𝑖) = 𝜌(𝑁)(−) (x(+)1 (𝑡𝑖) , 𝑡𝑖) , (66)

with 𝜌(𝑁)(−)(x(+)1 (𝑡𝑖), 𝑡𝑖) denoting the incoming 1−body PDF
evaluated in terms of the outgoing state x(+)1 (𝑡𝑖). Assuming
left-continuity (see related discussion in [2]), this can then
be identified with 𝜌(𝑁)(−)(x(+)1 (𝑡𝑖), 𝑡𝑖) ≡ 𝜌(𝑁)(x(+)1 (𝑡𝑖), 𝑡𝑖), thus
yielding

𝜌(𝑁)(+)1 (x(+)1 (𝑡1) , 𝑡𝑖) = 𝜌(𝑁) (x(+)1 (𝑡𝑖) , 𝑡𝑖) . (67)

Equation (67) provides the physical prescription for the
collision boundary condition, which is referred to as MCBC,
holding for the 1−body PDF at arbitrary unary colli-
sion events. It is immediate to realize that the function𝜌(𝑁)(x(+)1 (𝑡𝑖), 𝑡𝑖) needs not generally be even with respect to
the velocity component n1 ⋅ k(−)1 . In addition (67), just as
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(65), also permits the existence of the customary collisional
invariants which in the case of unary collisions are 𝑋 =1, |n1 ⋅k(−)1 |, k1 ⋅ [1−n1n1], V21.As a consequence, one can show
that (67) warrants at the same time also the validity of the so-
called no-slip boundary conditions for the fluid velocity field
V(r1, 𝑡) carried by the 1−body PDF 𝜌(𝑁)1 (x1, 𝑡).

The treatment of MCBC holding for the 2−body PDF in
case of binary-collision events is analogous and is recalled for
convenience in (C.2) of Appendix C.

Let us briefly analyze the qualitative physical implications
of (67) and (C.2) as far as the DKE theory is concerned. First,
we notice that unary collisions cannot produce in a proper
sense a velocity-isotropization effect since, as shown by (67),
in such a caseMCBCgives rise only to a change in the velocity
distribution occurring during a unary collision due to a single
component of the particle velocity, namely, n1 ⋅ k(−)1 . As a
consequence, this explains why unary collisions do not affect
the rate of change of the MKI functional (see Theorem 2).
Second, (C.2) shows—on the contrary—that binary collisions
actually do affect by means of MCBC a velocity-spreading for
the 1− and 2−body PDF. In particular, since the spreading
effect occurs in principle for all components of particle
velocities affecting both particles 1 and 2, this explains why
binary collisions are actually responsible for the irreversible
time evolution of the MKI functional (seeTheorems 2 and 3).

In turn, as implied by Theorem 3, DKE arises because of
the phenomenon of macroscopic irreversibility (Theorem 2).
The latter arises due specifically to the possible occurrence of
a velocity-space anisotropy which characterizes the 1−body
PDF when the same PDF differs locally from kinetic equi-
librium. In turn, this requires also that the 1−body PDF
belongs to the functional class of admissible stochastic
PDFs {𝜌(𝑁)1 (x1, 𝑡)}. In difference to Boltzmann kinetic theory,
however, the key physical role is actually ascribed to the
MKI functional 𝐼𝑀(𝜌(𝑁)1 (𝑡)) rather than the Boltzmann-
Shannon entropy 𝑆1(𝜌(𝑁)1 (𝑡)). In fact, recalled above, the
same functional remains constant in time once the Master
kinetic equation is adopted. Rather, as shown by Theorem 2,
it is actually the Master kinetic information 𝐼𝑀(𝜌(𝑁)1 (𝑡))
which exhibits the characteristic signatures of macroscopic
irreversibility.

The key differences arising between the two theories,
i.e., the Boltzmann equation-DKE and the Master equation-
DKE, are of course related to the different and peculiar
intrinsic properties of the Boltzmann and Master kinetic
equations. In particular, as discussed at length elsewhere (see
[1, 3]), precisely because the Boltzmann equation is only
an asymptotic approximation of the Master kinetic equation
explains why a loss of information occurs in Boltzmann
kinetic theory and consequently the related Boltzmann-
Shannon entropy is not conserved.

The present investigation shows that in the context of
the Master kinetic equation, the macroscopic irreversibility
property, i.e., the monotonic time-decay behavior of the MKI
functional, can be explained at a more fundamental level, i.e.,
based specifically on the time-variation of the b−directional
total kinetic energy which occurs at arbitrary binary-collision
events.

The Master equation-DKE theorem (Theorem 3) given
above provides a first-principle proof of the existence of the
phenomenon of DKE occurring for the kinetic description
of a finite number of extended hard-spheres, i.e., described
by means of the Master kinetic equation. More precisely,
the DKE phenomenon affects the 1−body PDFs belonging
to the admissible functional class {𝜌(𝑁)1 (x1, 𝑡)} determined
according to Theorem 1 and requiring also that the local
characteristic scale length 𝐿𝜌(𝑡) associated with 𝜌(𝑁)1 (x1, 𝑡) is
nonzero at all times.

5. Conclusions

In this paper the problem of the property of microscopic
irreversibility (PMI) and decay to kinetic equilibrium (DKE)
of the 1−body PDF has been addressed. In doing so original
ideas and methods are adopted of the new ab initio theory
for hard-sphere systems recently developed in the context of
classical statistical mechanics [1, 2].

These are not just small deviations from standard litera-
ture approaches. Such developments, in fact, have opened up
a host of exciting new subjects of investigation and theoretical
challenges in kinetic theory which arise thanks to, or in
the context of, the ab initio approach to kinetic theory.
Both are based in particular on the discovery of the Master
kinetic equation first reported in [3], equationwhich has been
adopted also in the present paper.

The ab initio theory and specifically the present paper
represent the attempt to reach a new foundational basis
and axiomatic physical description of the classical statistical
mechanics for hard-sphere systems.The topic which has been
pursued here—which represents also a challenging test of
the ab initio theory itself—concerns the investigation of the
physical origins of PMI and the related DKE phenomenon
arising in finite 𝑁−body hard-sphere systems. These issues
refer in particular to

(i) the proof of the nonnegativity of Master kinetic infor-
mation (Theorem 1, Section 2.1) together with the prop-
erty of macroscopic irreversibility (PMI; Theorem 2,
Section 2.2);

(ii) the establishment of Theorem 3 (Section 2.3) and the
related proof of the property of decay to kinetic equi-
librium (DKE);

(iii) the consistency of PMI and DKE with microscopic
dynamics (Section 3);

(iv) the analysis of the main physical implications of DKE
(Section 4).

The theory presented here departs in several respects
from previous literature and notably from Boltzmann kinetic
theory. The main differences actually arise because of the
nonasymptotic character of the new theory, i.e., the fact
that it applies to arbitrary dense or rarefied systems for
which the finite number and size of the constituent particles
is accounted for [3]. In this paper basic consequences of
the new theory have been investigated which concern the
phenomenon of decay to global kinetic equilibrium.
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The present results are believed to be crucial, besides
in mathematical research, for the physical applications of
the ab initio theory statistical theory, i.e., the Master kinetic
equation. Indeed, regarding challenging future developments
of the theory one shouldmention among others the following
examples of possible (and mutually related) routes worth to
be explored. One is related to the investigation of the possible
effects due to arbitrarily prescribed, i.e., nonvanishing, initial
(binary or multibody) phase-space statistical correlations. As
recalled above, in fact, the Master equation is appropriate
only when suitably prescribed configuration-space statistical
correlations are taken into account.The second goal concerns
the investigation of the time-asymptotic properties of the
same kinetic equation, for which the present paper may
represent a useful basis. The third goal refers to the possible
extension of the theory to mixtures formed by hard-spheres
of different masses and diameter which possibly undergo
both elastic and anelastic collisions. Finally, the fourth one
concerns the investigation of hydrodynamic regimes for
which a key prerequisite is provided by the DKE theory
established here.

Appendix

A. Realizations of the Master Kinetic Equation

For completeness we recall here the two equivalent forms of
the Master kinetic equation [3]. In terms of the renormalized1−body PDF 𝜌(𝑁)1 (x1, 𝑡) (see (26)) the first form of the same
equation reads

𝐿1(1)𝜌(𝑁)1 (x1, 𝑡) = 0, (A.1)

with 𝐿1(1) = 𝜕/𝜕𝑡 + k1 ⋅ 𝜕/𝜕r1 denoting the 1−body free-
streaming operator. Hence it follows

𝐿1(1)𝜌(𝑁)1 (x1, 𝑡) = 𝜌(𝑁)1 (x1, 𝑡) 𝐿1(1)𝑘(𝑁)1 (r1, 𝑡) , (A.2)

where explicit evaluation of the rhs the last equation (see also
(B.12) below) yields

𝜌(𝑁)1 (x1, 𝑡) 𝐿1(1)𝑘(𝑁)1 (r1, 𝑡) = (𝑁 − 1) 𝜎2 ∫
𝑈1(2)

𝑑k2
⋅ ∫ 𝑑Σ21k21 ⋅ n21Θ∗ (r2) 𝑘(𝑁)2 (r1, r2, 𝑡) 𝜌(𝑁)1 (x1, 𝑡)
⋅ 𝜌(𝑁)1 (x2, 𝑡) ,

(A.3)

with Θ∗(r2) ≡ Θ(𝜕Ω)𝑖 (r) and 𝑘(𝑁)2 (r1, r2, 𝑡) being identified
with the definitions given respectively by (A.6) and (B.1) in
Appendix B.Then, consistent with [3] and upon invoking the
causal form of MCBC (see (C.3) in Appendix C) the same
equation can be written in the equivalent second form of the
Master kinetic equation [3]. The corresponding initial-value
problem, taking the form

𝐿1(1)𝜌(𝑁)1 (x1, 𝑡) −C1 (𝜌(𝑁)1 | 𝜌(𝑁)1 ) = 0,
𝜌(𝑁)1 (x1, 𝑡𝑜) = 𝜌(𝑁)1𝑜 (x1) ,

(A.4)

can be shown to admit a unique global solution [13]. Here the
notation is standard [3]. Thus

C1 (𝜌(𝑁)1 | 𝜌(𝑁)1 ) ≡ (𝑁 − 1) 𝜎2 ∫
𝑈1(2)

𝑑k2 ∫(−) 𝑑Σ21
⋅ [𝜌(𝑁)1 (r1, k(+)1 , 𝑡) 𝜌(𝑁)1 (r2, k(+)2 , 𝑡)
− 𝜌(𝑁)1 (r1, k1, 𝑡) 𝜌(𝑁)1 (r2, k2, 𝑡)] × 󵄨󵄨󵄨󵄨k21 ⋅ n21󵄨󵄨󵄨󵄨
⋅ 𝑘(𝑁)2 (r1, r2, 𝑡) Θ∗ (r2)

(A.5)

identifies the Master collision operator, while 𝜌(𝑁)1𝑜 (x1) is
the initial 1−body PDF which belongs to the functional
class {𝜌(𝑁)1𝑜 (x1)} of stochastic, i.e., strictly positive, smooth
ordinary functions, 1−body PDFs. Furthermore, the solid-
angle integral on the rhs of (A.5) is now evaluated on the
subset in which k12 ⋅n12 < 0, while r2 identifies r2 = r1+𝜎n21,
while 𝑘(𝑁)1 (r1, 𝑡) and 𝑘(𝑁)2 (r1, r2, 𝑡) coincide, respectively, with
the 1− and 2−body occupation coefficients [3] and Θ∗ ≡Θ∗(r𝑖) is prescribed by

Θ∗ (r𝑖) ≡ Θ(𝜕Ω)𝑖 (r) ≡ Θ (󵄨󵄨󵄨󵄨󵄨󵄨󵄨r𝑖 − 𝜎2n𝑖
󵄨󵄨󵄨󵄨󵄨󵄨󵄨 − 𝜎2 ) , (A.6)

with Θ(𝑥) being the strong Heaviside theta function
Θ (𝑥) = {{{

1 𝑦 > 0
0 𝑦 ≤ 0. (A.7)

Regarding the specific identification of the occupation
coefficients (recalled in Appendix B) let us preliminarily
recall the notion of 𝑆𝑁− ensemble strong theta function Θ(𝑁).
The latter is prescribed, according to [3], by requiring that

Θ(𝑁) (r) = 1 (A.8)

for all configuration vectors r ≡ {r1, . . . , r𝑁} belonging to the
collisionless subset of Ω(𝑁). This is identified with the open
subset of the𝑁−body configuration domainΩ(𝑁) ≡ ∏𝑖=1,𝑁Ω
in which each of the particles of 𝑆𝑁 is not in mutual contact
with any other particle of 𝑆𝑁 or with the boundary 𝜕Ω of
Ω. This means that, at any configuration r, Θ(𝑁)(r) can be
prescribed as

Θ(𝑁) (r) ≡ ∏
𝑖=1,𝑁

Θ𝑖 (r) Θ(𝜕Ω)𝑖 (r) . (A.9)

Here Θ(𝜕Ω)𝑖 (r) identifies the 𝑖−th particle “boundary” theta
function

Θ(𝜕Ω)𝑖 (r) ≡ Θ(𝜕Ω)𝑖 (r𝑖) = Θ(󵄨󵄨󵄨󵄨r𝑖 − r𝑊𝑖󵄨󵄨󵄨󵄨 − 𝜎2 ) , (A.10)

with r𝑊𝑖 = r𝑖 − 𝜌n𝑖 and 𝜌n𝑖 being the inward vector normal
to the boundary belonging to the center of the 𝑖−th particle
having a distance 𝜌/2 from the same boundary. Furthermore
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Θ𝑖(r) is the “binary-collision” theta function. A possible
identification of Θ𝑖(r) which warrants validity of (A.8) is
given by the expression

Θ𝑖 (r) ≡ ∏
𝑗=1,𝑁;

𝑖<𝑗

Θ(󵄨󵄨󵄨󵄨󵄨r𝑖 − r𝑗󵄨󵄨󵄨󵄨󵄨 − 𝜎) , (A.11)

Namely,

Θ𝑖 (r) ≡ ∏
𝑗=1,𝑁;

𝑖<𝑗

Θ𝑖𝑗 (r) ,

Θ𝑖𝑗 (r) ≡ Θ (󵄨󵄨󵄨󵄨󵄨r𝑖 − r𝑗󵄨󵄨󵄨󵄨󵄨 − 𝜎) .
(A.12)

However, an equivalent possible prescription of Θ𝑖(r) is also
provided by the alternative realization obtained letting

Θ𝑖 (r) ≡ ∏
𝑗=1,𝑁;

𝑖<𝑗

∏
𝑚,𝑛=1,𝑁

𝑖<𝑚<𝑛

Θ𝑚𝑛𝑖𝑗 (r) ,

Θ𝑚𝑛𝑖𝑗 (r) ≡ Θ (󵄨󵄨󵄨󵄨󵄨r𝑖 − r𝑗󵄨󵄨󵄨󵄨󵄨 − 𝜎)
× Θ (󵄨󵄨󵄨󵄨r𝑖 − r𝑚󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨r𝑖 − r𝑛󵄨󵄨󵄨󵄨 − 2𝜎)
⋅ Θ (󵄨󵄨󵄨󵄨r𝑚 − r𝑛󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨r𝑖 − r𝑚󵄨󵄨󵄨󵄨 − 2𝜎) .

(A.13)

Indeed, in the subset ofΩ(𝑁) inwhich for all 𝑖 = 1,𝑁 the rhs of
(A.11) is identically equal to unity, the factor∏𝑚,𝑛=1,𝑁

𝑖<𝑚<𝑛

Θ(|r𝑖 −
r𝑚| + |r𝑖 − r𝑛| − 2𝜎)Θ(|r𝑚 − r𝑛| + |r𝑖 − r𝑚| − 2𝜎) is necessarily
equal to unity too. Incidentally, we notice in fact that the latter
factor carries the contributions due to triple collisions which
are ruled out in the domain of validity of (A.8).

B. Integral and Differential Identities for
the Occupation Coefficients

One notices that although the definitions (A.13) and (A.11)
given in Appendix A for Θ𝑖(r) coincide in the collisionless
subset of Ω(𝑁), only the first one is applicable in the com-
plementary collision subset. Based on these premises in this
appendix a number of integral and differential identities
holding for the 1− and 2−body occupation coefficients are
displayed.

First, recalling [3], one notices that the realizations
of the 1− and 𝑠−body occupation coefficients 𝑘(𝑁)1 (r𝑖, 𝑡),𝑘(𝑁)2 (r1, r2, 𝑡),. . ., 𝑘(𝑁)𝑠 (r1, r2, . . . r𝑠, 𝑡) remain uniquely pre-
scribed by the 1−body PDF, being given by

𝑘(𝑁)1 (r1, 𝑡) ≡ 𝐹1{{{
∏
𝑗=2,𝑁

𝜌(𝑁)1 (x𝑗, 𝑡)
𝑘(𝑁)1 (r𝑗, 𝑡)

}}}
, (B.1)

𝑘(𝑁)2 (r1, r2, 𝑡) ≡ 𝐹2{{{
∏

𝑗=𝑠+1,𝑁

𝜌(𝑁)1 (x𝑗, 𝑡)
𝑘(𝑁)1 (r𝑗, 𝑡)

}}}
, (B.2)

⋅ ⋅ ⋅ (B.3)

𝑘(𝑁)𝑠 (r1, r2, . . . r𝑠, 𝑡) ≡ 𝐹𝑠{{{
∏

𝑗=𝑠+1,𝑁

𝜌(𝑁)1 (x𝑗, 𝑡)
𝑘(𝑁)1 (r𝑗, 𝑡)

}}}
, (B.4)

where 𝐹𝑠 denotes the integral operator
𝐹𝑠 ≡ ∫

Γ𝑁

𝑑xΘ(𝑁) (r) ∏
𝑖=1,𝑠

𝛿 (x𝑖 − x𝑖) . (B.5)

Therefore, since in the collisionless subset of Ω(𝑁) the pre-
scriptions (A.11) and (A.13) are equivalent, in the same subset
the 1− and 2−body occupation coefficients, written in terms
of (A.11), become explicitly

𝑘(𝑁)1 (r1, 𝑡) = ∫
Γ1(2)

𝑑x2 𝜌
(𝑁)
1 (x2, 𝑡)𝑘(𝑁)1 (r2, 𝑡) Θ

(𝜕Ω)
2 (r)

⋅ Θ (󵄨󵄨󵄨󵄨r2 − r1󵄨󵄨󵄨󵄨 − 𝜎) × ∫
Γ1(3)

𝑑x3 𝜌
(𝑁)
1 (x3, 𝑡)𝑘(𝑁)1 (r3, 𝑡) Θ

(𝜕Ω)
3 (r)

⋅ ∏
𝑗=1,2

Θ(󵄨󵄨󵄨󵄨󵄨r3 − r𝑗󵄨󵄨󵄨󵄨󵄨 − 𝜎)

⋅ ⋅ ⋅ ∫
Γ1(𝑁)

𝑑x𝑁𝜌
(𝑁)
1 (x𝑁, 𝑡)𝑘(𝑁)1 (r𝑁, 𝑡) Θ

(𝜕Ω)
𝑁 (r)

⋅ ∏
𝑗=1,𝑁−1

Θ(󵄨󵄨󵄨󵄨󵄨r𝑁 − r𝑗󵄨󵄨󵄨󵄨󵄨 − 𝜎) ,

(B.6)

and

𝑘(𝑁)2 (r1, r2, 𝑡) = ∫
Γ1(3)

𝑑x3 𝜌
(𝑁)
1 (x3, 𝑡)𝑘(𝑁)1 (r3, 𝑡) Θ

(𝜕Ω)

3 (r)
⋅ ∏
𝑗=1,2

Θ(󵄨󵄨󵄨󵄨󵄨r3 − r𝑗󵄨󵄨󵄨󵄨󵄨 − 𝜎)

× ∫
Γ1(4)

𝑑x4 𝜌
(𝑁)
1 (x4, 𝑡)𝑘(𝑁)1 (r4, 𝑡) Θ

(𝜕Ω)
4 (r)

⋅ ∏
𝑗=1,3

Θ(󵄨󵄨󵄨󵄨󵄨r4 − r𝑗󵄨󵄨󵄨󵄨󵄨 − 𝜎)

(B.7)

⋅ ⋅ ⋅ ∫
Γ1(𝑁)

𝑑x𝑁𝜌
(𝑁)
1 (x𝑁, 𝑡)𝑘(𝑁)1 (r𝑁, 𝑡) Θ

(𝜕Ω)
𝑁 (r)

⋅ ∏
𝑗=1,𝑁−1

Θ(󵄨󵄨󵄨󵄨󵄨r𝑁 − r𝑗󵄨󵄨󵄨󵄨󵄨 − 𝜎) .
(B.8)

Accordingly letting n𝑗𝑗 = r𝑢𝑖𝑗/|r𝑖𝑗| with r𝑖𝑗 = r𝑖 − r𝑗, one
notices that in the collisionless subset of Ω(𝑁) the following
differential identities hold for all 𝑠 = 1,𝑁 − 1:

𝜕𝜕r1 𝑘
(𝑁)
1 (r1, 𝑡) = (𝑁 − 1)∫

Γ1(2)

𝑑x2n12𝛿
⋅ (󵄨󵄨󵄨󵄨r2 − r1󵄨󵄨󵄨󵄨 − 𝜎) × 𝑘(𝑁)2 (r1, r2, 𝑡) Θ(𝜕Ω)2 (r)
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⋅ 𝜌(𝑁)1 (x2, 𝑡) ,
(B.9)

𝜕𝜕r1 𝑘
(𝑁)
2 (r1, r2, 𝑡) = (𝑁 − 2)
⋅ ∫
Γ1(3)

𝑑x3n13𝛿 (󵄨󵄨󵄨󵄨r3 − r1󵄨󵄨󵄨󵄨 − 𝜎)
× ∏
𝑗=1,2;𝑗 ̸=1

Θ(󵄨󵄨󵄨󵄨󵄨r3 − r𝑗󵄨󵄨󵄨󵄨󵄨 − 𝜎)Θ(𝜕Ω)3 (r)
⋅ 𝑘(𝑁)3 (r1, r2, r3, 𝑡) 𝜌(𝑁)1 (x3, 𝑡) ,
𝜕𝜕r2 𝑘

(𝑁)
2 (r1, r2, 𝑡) = (𝑁 − 2) ∫

Γ1(3)

𝑑x3n23𝛿
⋅ (󵄨󵄨󵄨󵄨r3 − r2󵄨󵄨󵄨󵄨 − 𝜎) × ∏

𝑗=1,2;𝑗 ̸=2

Θ(󵄨󵄨󵄨󵄨󵄨r3 − r𝑗󵄨󵄨󵄨󵄨󵄨 − 𝜎)Θ(𝜕Ω)3

⋅ (r) 𝑘(𝑁)3 (r1, r2, r3, 𝑡) 𝜌(𝑁)1 (x3, 𝑡) ,

(B.10)

⋅ ⋅ ⋅
𝜕𝜕r1 𝑘

(𝑁)
𝑠 (r1, r2, . . . , r𝑠, 𝑡) = (𝑁 − 𝑠) ∫

Γ1(𝑠+1)

𝑑x𝑠+1n1𝑠+1
⋅ 𝛿 (󵄨󵄨󵄨󵄨r𝑠+1 − r1󵄨󵄨󵄨󵄨 − 𝜎) × ∏

𝑗=1,𝑠;𝑗 ̸=1

Θ(󵄨󵄨󵄨󵄨󵄨r𝑠+1 − r𝑗󵄨󵄨󵄨󵄨󵄨 − 𝜎)
⋅ Θ(𝜕Ω)3 (r) 𝑘(𝑁)𝑠+1 (r1, r2, . . . , r𝑠+1, 𝑡) 𝜌(𝑁)1 (x𝑠+1, 𝑡)
𝜕𝜕r2 𝑘

(𝑁)
𝑠 (r1, r2, . . . , r𝑠, 𝑡) = (𝑁 − 𝑠) ∫

Γ1(2)

𝑑x𝑠+1n2𝑠+1𝛿
⋅ (󵄨󵄨󵄨󵄨r𝑠+1 − r2󵄨󵄨󵄨󵄨 − 𝜎)
× ∏
𝑗=1,𝑠;𝑗 ̸=2

Θ(󵄨󵄨󵄨󵄨󵄨r𝑠+1 − r𝑗󵄨󵄨󵄨󵄨󵄨 − 𝜎)Θ(𝜕Ω)3 (r)
⋅ 𝑘(𝑁)𝑠+1 (r1, r2, . . . , r𝑠+1, 𝑡) 𝜌(𝑁)1 (x𝑠+1, 𝑡)

⋅ ⋅ ⋅
𝜕𝜕r𝑠 𝑘

(𝑁)
𝑠 (r1, r2, . . . , r𝑠, 𝑡) = (𝑁 − 𝑠)
⋅ ∫
Γ1(𝑠+1)

𝑑x𝑠+1n𝑠𝑠+1𝛿 (󵄨󵄨󵄨󵄨r𝑠+1 − r𝑠󵄨󵄨󵄨󵄨 − 𝜎)
× ∏
𝑗=1,𝑠;𝑗 ̸=𝑠

Θ(󵄨󵄨󵄨󵄨󵄨r𝑠+1 − r𝑗󵄨󵄨󵄨󵄨󵄨 − 𝜎)Θ(𝜕Ω)3 (r)
⋅ 𝑘(𝑁)𝑠+1 (r1, r2, . . . , r𝑠+1, 𝑡) 𝜌(𝑁)1 (x𝑠+1, 𝑡)

(B.11)

As a consequence the following identities (the first one
needed to evaluate the rhs of (A.2) in Appendix A)

𝐿1(1)𝑘(𝑁)1 (r1, 𝑡) = (𝑁 − 1)∫
Γ1(2)

𝑑x2k21
⋅ n21𝛿 (󵄨󵄨󵄨󵄨r2 − r1󵄨󵄨󵄨󵄨 − 𝜎)Θ∗ (r2) 𝑘(𝑁)2 (r1, r2, 𝑡)
⋅ 𝜌(𝑁)1 (x2, 𝑡) ,

(B.12)

𝜕2𝑘(𝑁)1 (r1, 𝑡)𝜕r1 ⋅ 𝜕r1 = − (𝑁 − 1)∫
Γ1(2)

𝑑x2𝑘(𝑁)2 (r1, r2, 𝑡)
⋅ 𝛿 (󵄨󵄨󵄨󵄨r2 − r1󵄨󵄨󵄨󵄨 − 𝜎)Θ(𝜕Ω)2 (r) n21 ⋅ 𝜕𝜕r2 𝜌

(𝑁)
1 (x2, 𝑡) ,

(B.13)

hold too. However, the alternative realization of the factorΘ𝑖(r) given by (A.13) (see Appendix A) has the virtue of
excluding explicitly multiple collisions. The consequence
is that when such a definition is adopted the differential
identities

𝛿 (󵄨󵄨󵄨󵄨r2 − r1󵄨󵄨󵄨󵄨 − 𝜎) 𝜕𝜕r1 𝑘
(𝑁)
2 (r1, r2, 𝑡) = 0,

𝛿 (󵄨󵄨󵄨󵄨r2 − r1󵄨󵄨󵄨󵄨 − 𝜎) 𝜕𝜕r2 𝑘
(𝑁)
2 (r1, r2, 𝑡) = 0,

(B.14)

both hold identically. The latter equations, in fact, manifestly
hold also in the collision subset where 𝛿(|r2 − r1| − 𝜎) ̸= 0.
C. Causal and Anticausal Forms of Collisional

Boundary Conditions

For definiteness, let us denote, respectively, the outgoing
and incoming 𝑁−body PDFs 𝜌(−)(𝑁)(x(−)(𝑡𝑖), 𝑡𝑖)
and 𝜌(+)(𝑁)(x(+)(𝑡𝑖), 𝑡𝑖), with 𝜌(±)(𝑁)(x(±)(𝑡𝑖), 𝑡𝑖) =
lim𝑡󳨀→𝑡(±)

𝑖

𝜌(𝑁)(x(𝑡), 𝑡), where x(−)(𝑡𝑖) and x(+)(𝑡𝑖), with x(±)(𝑡𝑖)= lim𝑡󳨀→𝑡(±)
𝑖

x(𝑡), are the incoming and outgoing Lagrangian𝑁−body states, their mutual relationship being again
determined by the collision laws holding for the 𝑆𝑁−CDS.
Here it is understood that

(i) the 𝑆𝑁−CDS is referred to a reference frame 𝑂(r, 𝜏 ≡𝑡− 𝑡𝑜), having, respectively, spatial and time origins at
the point 𝑂 which belongs to the Euclidean space R3
and at time 𝑡𝑜 ∈ 𝐼;

(ii) in addition, by assumption the time axis is oriented.
Such an orientation is referred to asmicroscopic arrow
of time.

For an arbitrary 𝑁−body PDF 𝜌(𝑁)(x, 𝑡) belonging to the
extended functional setting and an arbitrary collision event
occurring at time 𝑡𝑖 two possible realizations of the MCBC
can in principle be given, both yielding a relationship between
the PDFs 𝜌(+)(𝑁) and 𝜌(−)(𝑁). In the context of the ab initio
statistical approach based on the Master kinetic equation
[1–3] these are provided by the two possible realizations of
the so-called modified CBC (MCBC). When expressed in
Lagrangian form they are realized, respectively, by either the
causal and anticausal MCBC, namely,

𝜌(+)(𝑁) (x(+) (𝑡𝑖) , 𝑡𝑖) = 𝜌(−)(𝑁) (x(+) (𝑡𝑖) , 𝑡𝑖) , (C.1)

or

𝜌(−)(𝑁) (x(−) (𝑡𝑖) , 𝑡𝑖) = 𝜌(+)(𝑁) (x(−) (𝑡𝑖) , 𝑡𝑖) . (C.2)
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The corresponding Eulerian forms of the MCBC can easily
be determined (see [2]). The one corresponding to (C.1) is,
for example, provided by the condition

𝜌(+)(𝑁) (x(+), 𝑡) = 𝜌(−)(𝑁) (x(+), 𝑡) , (C.3)

where now x(+) denotes again an arbitrary outgoing collision
state.

Once the time axis is oriented, i.e., the microscopic arrow
of time is prescribed, the validity of the causality principle in
the reference frame (r, 𝜏 ≡ 𝑡−𝑡𝑜)manifestly requires invoking
(C.1). Indeed, (C.1) predicts the future (i.e., outgoing) PDF
from the past (incoming) one. Therefore the choice (C.1)
is the one which is manifestly consistent with the causality
principle. On the other hand, if the arrow of time is changed,
i.e., the time-reversal transformation with respect to the
initial time (or time-origin) 𝑡𝑜, i.e., the map between the two
reference frames

𝑂 (r, 𝜏 ≡ 𝑡 − 𝑡𝑜) 󳨀→ 𝑂(r, 𝜏󸀠) , (C.4)

with 𝜏󸀠 = −𝜏 is performed, it is obvious that for the
transformed reference frame 𝑂(r, 𝜏󸀠) the form of CBC
consistent with causality principle becomes that given by
(C.2). Analogous conclusions hold if a velocity-reversal is
performed, implying the incoming states and corresponding
PDF must be exchanged with corresponding outgoing ones
and vice versa.

D. Treatment of Case𝑁 = 2
For completeness let us briefly comment on the particular
realization of MPI/DKE theory which is achieved in the spe-
cial case 𝑁 = 2. For this purpose, one notices that—thanks
to (B.2) recalled in Appendix B (see also [3])—in this case by
construction 𝑘(𝑁)2 (r1, r2, 𝑡) simply reduces to

𝑘(𝑁)2 (r1, r2, 𝑡) ≡ 1. (D.1)

Accordingly, once the same prescription is invoked, both the
Master kinetic equation (A.4) and the corresponding Master
collision operator (A.5) remain formally unchanged. In a
similar way it is important to remark that the expression of
the functional (𝜕/𝜕𝑡)𝐾𝑀(𝜌(𝑁)1 (𝑡), b) ≡ 𝑊𝑀(𝜌(𝑁)1 (𝑡),b) given
by (53) is still correct also in such a case, being now given by

𝜕𝜕𝑡𝐾𝑀 (𝜌(𝑁)1 (𝑡) , b) ≡ 𝑊𝑀 (𝜌(𝑁)1 (𝑡) ,b)
= − (𝑁 − 1) 𝜎2 ∫

𝑈1(1)

𝑑k1 ∫
𝑈1(2)

𝑑k2

× ∫
Ω
𝑑r1 ∫(−) 𝑑Σ21 𝜕𝜌

(𝑁)
1 (r1, k(+)1 , 𝑡)𝜕r1

⋅ 𝜕𝜌(𝑁)1 (r2 = r1 + 𝜎n21, k(+)2 𝑡)𝜕r2
× 󵄨󵄨󵄨󵄨󵄨k(+)12 ⋅ n12󵄨󵄨󵄨󵄨󵄨 (b ⋅ n12)2 (n12 ⋅ k(+)12 )2 ≤ 0.

(D.2)

It is then immediate to infer the validity of both the
PMI theorem (Theorem 2) and the DKE property for the
Master kinetic equation (Theorem 3). As a consequence one
concludes that MPI/DKE theory holds also in the special
case 𝑁 = 2. This conclusion is not unexpected. In fact,
binary collisions, as indicated above, are responsible for the
MPI/DKE phenomenology and in such a case can only occur
between particles 1 and 2.
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