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As a unitary quantum walk with infinitely many internal degrees of freedom, the quantum walk in terms of quantum Bernoulli
noise (recently introduced by Wang and Ye) shows a rather classical asymptotic behavior, which is quite different from the case of
the usual quantum walks with a finite number of internal degrees of freedom. In this paper, we further examine the structure of
the walk. By using the Fourier transform on the state space of the walk, we obtain a formula that links the moments of the walk’s
probability distributions directly with annihilation and creation operators on Bernoulli functionals. We also prove some other
results on the structure of the walk. Finally, as an application of these results, we establish a quantum central limit theorem for the
annihilation and creation operators themselves.

1. Introduction

Quantum walks are quantum analogs of the classical ran-
dom walk, which have found wide application in quantum
information, quantum computing, and many other fields [1–
3]. In the past fifteen years, quantum walks with a finite
number of internal degrees of freedom have been intensively
studied and many deep results have been obtained of them
(see, e.g., [2, 4–9] and references therein). One typical result
in this aspect is the finding that those walks have quite
different asymptotic behavior, compared to their classical
counterparts. For example, Konno [10] proved that, for
localized initial states, a discrete-time quantum walk on the
line with a finite number of internal degrees of freedom
usually has a limit distribution with scaling speed 𝑛, which
is far from being Gaussian. Similar properties have also
been found for continuous-time quantum walks with a finite
number of internal degrees of freedom [11]. However, little
attention has been paid to quantum walks with infinitely
many internal degrees of freedom, which are of interest at
least from a theoretical point of view.

Quantum Bernoulli noise is the family of annihilation
and creation operators acting onBernoulli functionals, which
satisfies a canonical anticommutation relation (CAR) in equal

time, and can be viewed as a discrete-time counterpart of
the quantumwhite noise introduced by Huang [12]. Recently,
with the help of quantum Bernoulli noise, Wang and Ye
[13] have constructed a discrete-time quantum walk with
infinitelymany internal degrees of freedom, which we call the
QBN-based walk below.

The QBN-based walk takes 𝑙2(Z,H) as its state space,
where H denotes the space of square integrable Bernoulli
functionals, which is infinitely dimensional. It has been
shown [13] that, for some localized initial states, the QBN-
based walk has a Gaussian limit distribution with scaling
speed √𝑛, which is in striking contrast with the case of the
usual discrete-time quantum walks with a finite number of
internal degrees of freedom. Machida [6] has found that, for
a very particular nonlocalized initial state, a discrete-time
quantum walk on the line with 2 internal degrees of freedom
can generate a Gaussian limit distribution with scaling speed𝑛. And he wondered [6] whether a discrete-time quantum
walk can generate a Gaussian limit distribution with scaling
speed√𝑛.TheQBN-based walk then seems to give an answer
to this question in a way.

In this paper, we would like to further examine the
structure property of the QBN-based walk and show its
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application to quantum probability. Our main work is as
follows.

Let {𝜕𝑘, 𝜕∗𝑘 }𝑘≥0 be quantum Bernoulli noise, namely, anni-
hilation and creation operators onH, and 𝑋 be the position
operator in 𝑙2(Z,H). In the first part of the present paper,
by using the Fourier transform on 𝑙2(Z,H), we obtain a
representation of the QBN-based walk in the momentum
space. In particular, we obtain the following relations:

⟨Φ𝑛, 𝑋𝑟Φ𝑛⟩𝑙2(Z,H) = ⟨𝜑, [𝑛−1∑
𝑘=0

(𝜕∗𝑘 + 𝜕𝑘)]
𝑟 𝜑⟩

H

,
𝑟 ≥ 1,

(1)

where Φ𝑛 ∈ 𝑙2(Z,H) denotes the state of the walk at time𝑛 ≥ 0 and 𝜑 = Φ0(0). Since the quantity ⟨Φ𝑛, 𝑋𝑟Φ𝑛⟩𝑙2(Z,H) is
exactly the 𝑟th moment of the walk’s probability distribution
at time 𝑛 ≥ 0, the above relations actually provide a formula
that links the moments of the walk’s probability distributions
directly with the annihilation and creation operators.

Quantum central limit theorems are quantum analogs of
the classical central limit theorem, which deal with observ-
ables from a quantum probability point of view. Cushen
and Hudson [14] established the quantum central limit
theorem for a pair of conjugate observables 𝑃 and 𝑄 (i.e.,
such that [𝑃, 𝑄] = 𝑖𝐼), which was later generalized to
arbitrary CCR algebras by Quaegebeur [15]. Giri and von
Waldenfels [16] proved an algebraic quantum central limit
theorem in the setting of ∗-algebra by using the method
of noncommutative moments. Voiculescu has developed
a noncommutative probability theory (now known as the
free probability theory), which offers the free central limit
theorem associated with the free independence [17]. There
are many other types of quantum central limit theorems in
the literature (see, e.g., [18–22] and references therein).

Obviously, operators 𝜕∗𝑘 + 𝜕𝑘, 𝑘 ≥ 0, are observables
on H, which serves as the coin space of the QBN-based
walk. In fact, these operators just play the role of quantum
bias in the construction of the QBN-based walk. In the
second part of the present paper, as application of our results
mentioned above, we prove a quantum central limit theorem
for observables 𝜕∗𝑘 + 𝜕𝑘, 𝑘 ≥ 0.

The paper is organized as follows. In Section 2, we briefly
recall main notions and facts about quantum Bernoulli noise.
Section 3 describes the quantum walk introduced by Wang
and Ye [13], namely, the QBN-based walk. Our main work
then lies in Sections 4 and 5. Finally in Section 6, we make
some conclusion remarks.

Notation and Conventions.Throughout,Z always denotes the
set of all integers, while N means the set of all nonnegative
integers. We denote by Γ the finite power set of N; namely,

Γ = {𝜎 | 𝜎 ⊂ N, #𝜎 < ∞} , (2)

where #𝜎means the cardinality of 𝜎. Unless otherwise stated,
letters like 𝑗, 𝑘, and 𝑛 stand for nonnegative integers, namely,
elements of N.

2. Quantum Bernoulli Noise

In this section, we briefly recall main notions and facts about
quantum Bernoulli noise. We refer to [13, 23, 24] for details.

Let Ω = {−1, 1}N be the set of all mappings 𝜔 : N 󳨃→{−1, 1} and (𝜁𝑛)𝑛≥0 the sequence of canonical projections onΩ given by

𝜁𝑛 (𝜔) = 𝜔 (𝑛) , 𝜔 ∈ Ω. (3)

Let F be the 𝜎-field on Ω generated by the sequence (𝜁𝑛)𝑛≥0
and (𝑝𝑛)𝑛≥0 a given sequence of positive numbers with the
property that 0 < 𝑝𝑛 < 1 for all 𝑛 ≥ 0. It is known [25] that
there exists a unique probability measure P onF such that

P ∘ (𝜁𝑛1 , 𝜁𝑛2 , . . . , 𝜁𝑛𝑘)−1 {(𝜖1, 𝜖2, . . . , 𝜖𝑘)}
= 𝑘∏
𝑗=1

𝑝(1+𝜖𝑗)/2𝑗 (1 − 𝑝𝑗)(1−𝜖𝑗)/2 (4)

for 𝑛𝑗 ∈ N, 𝜖𝑗 ∈ {−1, 1} (1 ≤ 𝑗 ≤ 𝑘) with 𝑛𝑖 ̸= 𝑛𝑗 when𝑖 ̸= 𝑗 and 𝑘 ∈ N with 𝑘 ≥ 1. Thus one has a probability
measure space (Ω,F,P), which is referred to as the Bernoulli
space and random variables on it are known as Bernoulli
functionals.

Let 𝑍 = (𝑍𝑛)𝑛≥0 be the sequence of Bernoulli functionals
defined by

𝑍𝑛 = 𝜁𝑛 + 𝑞𝑛 − 𝑝𝑛2√𝑝𝑛𝑞𝑛 , 𝑛 ≥ 0, (5)

where 𝑞𝑛 = 1 − 𝑝𝑛. Clearly 𝑍 = (𝑍𝑛)𝑛≥0 is an independent
sequence of random variables on the probability measure
space (Ω,F,P).

Let H be the space of square integrable complex-valued
Bernoulli functionals; namely,

H = 𝐿2 (Ω,F,P) . (6)

We denote by ⟨⋅, ⋅⟩ the usual inner product of the spaceH and
by ‖ ⋅ ‖ the corresponding norm. It is known [25] that 𝑍 has
the chaotic representation property. ThusH has {𝑍𝜎 | 𝜎 ∈ Γ}
as its orthonormal basis, where 𝑍0 = 1 and

𝑍𝜎 = ∏
𝑗∈𝜎

𝑍𝑗, 𝜎 ∈ Γ, 𝜎 ̸= 0, (7)

which shows that H is an infinite dimensional complex
Hilbert space.

Lemma 1 (see [23]). For each 𝑘 ∈ N, there exists a bounded
operator 𝜕𝑘 onH such that

𝜕𝑘𝑍𝜎 = 1𝜎 (𝑘) 𝑍𝜎\𝑘, 𝜎 ∈ Γ, (8)

where 𝜎 \ 𝑘 = 𝜎 \ {𝑘} and 1𝜎(𝑘) is the indicator of 𝜎 as a subset
of N.

Lemma 2 (see [23]). Let 𝑘 ∈ N. Then 𝜕∗𝑘 , the adjoint of
operator 𝜕𝑘 has the following property:

𝜕∗𝑘𝑍𝜎 = [1 − 1𝜎 (𝑘)] 𝑍𝜎∪𝑘 𝜎 ∈ Γ, (9)

where 𝜎 ∪ 𝑘 = 𝜎 ∪ {𝑘}.



Advances in Mathematical Physics 3

The operator 𝜕𝑘 and its adjoint 𝜕∗𝑘 are usually known as
the annihilation and creation operators acting on Bernoulli
functionals, respectively.

Definition 3 (see [23]). The family {𝜕𝑘, 𝜕∗𝑘 }𝑘≥0 of annihilation
and creation operators is called quantum Bernoulli noise.

The next lemma shows that quantum Bernoulli noise
satisfies the canonical anticommutation relations (CAR) in
equal time.

Lemma 4 (see [23]). Let 𝑘, 𝑙 ∈ N. Then it holds true that
𝜕𝑘𝜕𝑙 = 𝜕𝑙𝜕𝑘,
𝜕∗𝑘 𝜕∗𝑙 = 𝜕∗𝑙 𝜕∗𝑘 ,
𝜕∗𝑘 𝜕𝑙 = 𝜕𝑙𝜕∗𝑘

(𝑘 ̸= 𝑙) ,
𝜕𝑘𝜕𝑘 = 𝜕∗𝑘 𝜕∗𝑘 = 0,

𝜕𝑘𝜕∗𝑘 + 𝜕∗𝑘 𝜕𝑘 = 𝐼,

(10)

where 𝐼 is the identity operator onH.

Lemma 5 (see [13]). For 𝑛 ≥ 0, write 𝑅𝑛 = (1/2)(𝜕∗𝑛 + 𝜕𝑛 + 𝐼)
and 𝐿𝑛 = (1/2)(𝜕∗𝑛 + 𝜕𝑛 − 𝐼). Then both 𝑅𝑛 and 𝐿𝑛 are self-
adjoint operators onH, and moreover

𝑅2𝑛 = 𝑅𝑛,
𝑅𝑛𝐿𝑛 = 𝐿𝑛𝑅𝑛 = 0,
𝐿2𝑛 = −𝐿𝑛.

(11)

It follows easily from Lemma 4 that operators 𝑅𝑛, 𝐿𝑛, 𝑛 ≥0, form a commutative family; namely,
𝑅𝑘𝑅𝑙 = 𝑅𝑙𝑅𝑘,
𝑅𝑘𝐿 𝑙 = 𝐿 𝑙𝑅𝑘,
𝐿𝑘𝐿 𝑙 = 𝐿 𝑙𝐿𝑘

(12)

hold for all 𝑘, 𝑙 ≥ 0.
3. QBN-Based Walk

The present section describes the quantum walk introduced
in [13], namely, the QBN-based walk mentioned above.

Recall that H = 𝐿2(Ω,F,P), the space of square inte-
grable complex-valued Bernoulli functionals. Let 𝑙2(Z,H) be
the space of square summable functions defined on Z and
valued inH; namely,

𝑙2 (Z,H) = {Φ : Z 󳨀→H | ∞∑
𝑥=−∞

‖Φ (𝑥)‖2 < ∞} . (13)

Then 𝑙2(Z,H) remains a complex Hilbert space, whose inner
product ⟨⋅, ⋅⟩𝑙2 is given by

⟨Φ,Ψ⟩𝑙2 = ∞∑
𝑥=−∞

⟨Φ (𝑥) , Ψ (𝑥)⟩ , Φ,Ψ ∈ 𝑙2 (Z,H) , (14)

where ⟨⋅, ⋅⟩ denotes the inner product of H as indicated in
Section 2. By convention,we denote by ‖⋅‖𝑙2 the norm induced
by ⟨⋅, ⋅⟩𝑙2 . Note that 𝑙2(Z,H) has a countable orthonormal
basis {𝜙𝑧,𝜎 | 𝑧 ∈ Z, 𝜎 ∈ Γ}, where 𝜙𝑧,𝜎 : Z→H is defined by

𝜙𝑧,𝜎 (𝑥) = {{{
𝑍𝜎, 𝑥 = 𝑧;
0, 𝑥 ̸= 𝑧, 𝑥 ∈ Z. (15)

Thus 𝑙2(Z,H) is separable.
As usual, a vector Φ ∈ 𝑙2(Z,H) is called a state if it

satisfies the normalized condition ‖Φ‖𝑙2 = 1.
Definition 6 (see [13]). The QBN-based walk is such a
quantum walk whose state space is 𝑙2(Z,H) and whose time
evolution is governed by

Φ𝑛+1 (𝑥) = 𝑅𝑛Φ𝑛 (𝑥 − 1) + 𝐿𝑛Φ𝑛 (𝑥 + 1) ,
𝑥 ∈ Z, 𝑛 ≥ 0, (16)

where Φ𝑛 ∈ 𝑙2(Z,H) denotes the state of the walk at time𝑛 ≥ 0.
Let (Φ𝑛)𝑛≥0 be the state sequence of the QBN-based

walk. Then the function 𝑥 󳨃→ ‖Φ𝑛(𝑥)‖2 makes a probability
distribution onZ, which is called the probability distribution
of the walk at time 𝑛 ≥ 0. In particular, ‖Φ𝑛(𝑥)‖2 is the
probability that the quantum walker is found at position 𝑥 ∈
Z at time 𝑛 ≥ 0. As usual, the QBN-based walk is assumed to
start at position 𝑥 = 0, which implies that its initial state Φ0
satisfies ‖Φ0(0)‖2 = 1 andΦ(𝑥) = 0 for 𝑥 ∈ Z with 𝑥 ̸= 0.
Remark 7. It is well known that 𝑙2(Z,H) ≅ 𝑙2(Z) ⊗H. Thus,𝑙2(Z) describes the position of the QBN-based walk, while
H describes the internal degrees of freedom of the walk. As
shown in Section 2, the dimension of H is infinite, which
means that the QBN-based walk has infinitely many internal
degrees of freedom.

Lemma 8 (see [13]). For each 𝑛 ≥ 0, there exists a unitary
operatorU𝑛 on 𝑙2(Z,H) such that
[U𝑛Φ] (𝑥) = 𝑅𝑛Φ (𝑥 − 1) + 𝐿𝑛Φ (𝑥 + 1) ,

𝑥 ∈ Z, Φ ∈ 𝑙2 (Z,H) ,
[U∗𝑛Φ] (𝑥) = 𝑅𝑛Φ (𝑥 + 1) + 𝐿𝑛Φ (𝑥 − 1) ,

𝑥 ∈ Z, Φ ∈ 𝑙2 (Z,H) ,
(17)

whereU∗𝑛 denotes the adjoint ofU𝑛.

One can verify that unitary operatorsU𝑛, 𝑛 ≥ 0, commute
mutually; namely, U𝑚U𝑛 = U𝑛U𝑚 for all 𝑚, 𝑛 ≥ 0. The
next lemma shows that the QBN-based walk belongs to the
category of unitary quantum walks.
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Lemma 9 (see [13]). The QBN-based walk has a unitary
representation; more precisely,

Φ𝑛+1 = U𝑛Φ𝑛 = ( 𝑛∏
𝑘=0

U𝑘)Φ0, 𝑛 ≥ 0, (18)

whereΦ𝑛 is the state of the walk at time 𝑛 ≥ 0.
4. Structure Property of QBN-Based Walk

In this section, we apply the Fourier transform theory to
the QBN-based walk and examine its structure property. We
continue to use the notation made in previous sections.

4.1. Fourier Transform on State Space. Consider𝐿2([0, 2𝜋],H), the space of all functions 𝑓 : [0, 2𝜋] → H
that are Bochner integrable [26] with respect to Lebesgue
measure and satisfy condition ∫2𝜋

0
‖𝑓(𝑡)‖2𝑑𝑡 < ∞. It is

known that 𝐿2([0, 2𝜋],H) is a Hilbert space with the inner
product ⟨⋅, ⋅⟩𝐿2 given by

⟨𝑓, 𝑔⟩𝐿2 = 12𝜋 ∫
2𝜋

0
⟨𝑓 (𝑡) , 𝑔 (𝑡)⟩ 𝑑𝑡,

𝑓, 𝑔 ∈ 𝐿2 ([0, 2𝜋] ,H) ,
(19)

where ⟨⋅, ⋅⟩ denotes the inner product of H as indicated in
Section 2.

A direct verification shows that the system {𝑒𝑧,𝜎 | 𝑧 ∈
Z, 𝜎 ∈ Γ} is orthonormal in 𝐿2([0, 2𝜋],H), where 𝑒𝑧,𝜎 :[0, 2𝜋] →H is defined by

𝑒𝑧,𝜎 (𝑡) = 𝑒𝑖𝑧𝑡𝑍𝜎, 𝑡 ∈ [0, 2𝜋] . (20)

We denote by 𝐿2(S,H) the closed subspace of 𝐿2([0, 2𝜋],H)
spanned by the system {𝑒𝑧,𝜎 | 𝑧 ∈ Z, 𝜎 ∈ Γ}. Then 𝐿2(S,H)
together with ⟨⋅, ⋅⟩𝐿2 forms a separable complexHilbert space.

Clearly {𝑒𝑧,𝜎 | 𝑧 ∈ Z, 𝜎 ∈ Γ} is a countable orthonormal
basis of 𝐿2(S,H). This, together with the fact that the family{𝜙𝑧,𝜎 | 𝑧 ∈ Z, 𝜎 ∈ Γ} is a countable orthonormal basis of𝑙2(Z,H), yields that there exists an isometric isomorphism
F : 𝑙2(Z,H) → 𝐿2(S,H) such that

F𝜙𝑧,𝜎 = 𝑒𝑧,𝜎, 𝑧 ∈ Z, 𝜎 ∈ Γ. (21)

The mapping F is then called the Fourier transform on𝑙2(Z,H).
It is easy to see that F−1 = F∗; namely, F is a unitary

operator from 𝑙2(Z,H) to 𝐿2(S,H). Let Φ ∈ 𝑙2(Z,H) andΦ̂ = FΦ. Then one can prove that

lim
𝑚,𝑛→∞

∫2𝜋
0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ̂ (𝑡) −
𝑛∑
𝑥=−𝑚

𝑒𝑖𝑥𝑡Φ (𝑥)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2 𝑑𝑡 = 0, (22)

which justifies the name of F. As usual, FΦ is called the
Fourier transform ofΦ. It can also be proven that the inverse
F−1 of F admits the following representation:

[F−1𝑓] (𝑥) = 12𝜋 ∫
2𝜋

0
𝑒−𝑖𝑥𝑡𝑓 (𝑡) 𝑑𝑡,

𝑥 ∈ Z, 𝑓 ∈ 𝐿2 (S,H) ,
(23)

where the integral on the righthand side means the Bochner
integral.

Just as in the scalar case, the position operator 𝑋 in𝑙2(Z,H) is defined by

[𝑋Φ] (𝑥) = 𝑥Φ (𝑥) , 𝑥 ∈ Z, Φ ∈ dom𝑋, (24)

where dom𝑋, the domain of𝑋, is given by

dom𝑋
= {Φ ∈ 𝑙2 (Z,H) | ∞∑

𝑥=−∞

|𝑥|2 ‖Φ (𝑥)‖2 < ∞} . (25)

It can be verified that 𝑋 is self-adjoint, and every integer 𝑥 ∈
Z is its eigenvalue with

𝑋𝜙𝑥,𝜎 = 𝑥𝜙𝑥,𝜎, ∀𝜎 ∈ Γ. (26)

Let 𝑟 ≥ 1 be a positive integer. Then, by the theory of
spectral resolution for self-adjoint operators [27], 𝑋𝑟 is well
defined and remains a self-adjoint operator in 𝑙2(Z,H), and
moreover, its domain is determined by

dom𝑋𝑟
= {Φ ∈ 𝑙2 (Z,H) | ∞∑

𝑥=−∞

|𝑥|2𝑟 ‖Φ (𝑥)‖2 < ∞} (27)

and its action is given by

[𝑋𝑟Φ] (𝑥) = 𝑥𝑟Φ (𝑥) , 𝑥 ∈ Z, Φ ∈ dom𝑋𝑟. (28)

Remark 10. Let 𝑟 ≥ 1 be a positive integer and 𝑓 : [0, 2𝜋] →
H a continuous function that has continuous derivatives up
to order 𝑟. Suppose that 𝑓(𝑗) ∈ 𝐿2(S,H) for all 0 ≤ 𝑗 ≤ 𝑟.
Then F−1𝑓 ∈ dom𝑋𝑟, and moreover

F𝑋𝑟F−1𝑓 = (−i)𝑟 𝑓(𝑟). (29)

4.2. Structure Property. This subsection focuses on exploring
the structure property of the QBN-based walk. Recall that the
QBN-based walk takes 𝑙2(Z,H) as its state space. Thus we
may call 𝐿2(S,H) the momentum space of the walk.

Theorem 11. Let 𝑛 ≥ 0 and V𝑛 = FU𝑛F
−1. Then V𝑛 is a

unitary operator on 𝐿2(S,H), and moreover V𝑛 admits the
following representation:

[V𝑛𝑓] (𝑡) = [𝑒𝑖𝑡𝑅𝑛 + 𝑒−𝑖𝑡𝐿𝑛] 𝑓 (𝑡) 𝑎.𝑒. 𝑖𝑛 [0, 2𝜋] , (30)

where 𝑓 ∈ 𝐿2(S,H).
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Proof. It is easy to verify that V𝑛 is a unitary operator on𝐿2(S,H). Now define

𝑔 (𝑡) = [𝑒𝑖𝑡𝑅𝑛 + 𝑒−𝑖𝑡𝐿𝑛] 𝑓 (𝑡) , 𝑡 ∈ [0, 2𝜋] . (31)

Then𝑔 ∈ 𝐿2(S,H).Thus, to prove (30), we need only to verify
V𝑛𝑓 = 𝑔.

Let 𝑧 ∈ Z, 𝜎 ∈ Γ. Then, by writing Φ = F−1𝑓, we have
⟨𝑒𝑧,𝜎,V𝑛𝑓⟩𝐿2 = ⟨𝜙𝑧,𝜎,U𝑛F−1𝑓⟩𝑙2

= ⟨𝑍𝜎, [U𝑛Φ] (𝑧)⟩
= ⟨𝑍𝜎, 𝑅𝑛Φ (𝑧 − 1) + 𝐿𝑛Φ (𝑧 + 1)⟩ .

(32)

On the other hand, by using properties of the Bochner
integrals as well as the representation of F−1, we can work out

⟨𝑒𝑧,𝜎, 𝑔⟩𝐿2
= 12𝜋 ∫

2𝜋

0
⟨𝑒𝑖𝑧𝑡𝑍𝜎, {𝑒𝑖𝑡𝑅𝑛 + 𝑒−𝑖𝑡𝐿𝑛} 𝑓 (𝑡)⟩ 𝑑𝑡

= ⟨𝑅𝑛𝑍𝜎, 12𝜋 ∫
2𝜋

0
𝑒−𝑖(𝑧−1)𝑡𝑓 (𝑡) 𝑑𝑡⟩

+ ⟨𝐿𝑛𝑍𝜎, 12𝜋 ∫
2𝜋

0
𝑒−𝑖(𝑧+1)𝑡𝑓 (𝑡) 𝑑𝑡⟩

= ⟨𝑅𝑛𝑍𝜎, [F−1𝑓] (𝑧 − 1)⟩
+ ⟨𝐿𝑛𝑍𝜎, [F−1𝑓] (𝑧 + 1)⟩

= ⟨𝑍𝜎, 𝑅𝑛Φ (𝑧 − 1) + 𝐿𝑛Φ (𝑧 + 1)⟩ .

(33)

Thus

⟨𝑒𝑧,𝜎,V𝑛𝑓⟩𝐿2 = ⟨𝑒𝑧,𝜎, 𝑔⟩𝐿2 , ∀𝑧 ∈ Z, ∀𝜎 ∈ Γ, (34)

which impliesV𝑛𝑓 = 𝑔.
Theorem 11 allows us to deal with the QBN-based walk in

the momentum space 𝐿2(S,H). In the following, we set

V𝑛 = FU𝑛F−1, 𝑛 ≥ 0. (35)

Clearly {V𝑛 | 𝑛 ≥ 0} is a commutative family of unitary
operators. The next theorem then offers a representation of
the QBN-based walk in the momentum space 𝐿2(S,H).
Theorem 12. Let (Φ𝑛)𝑛≥0 ⊂ 𝑙2(Z,H) be the state sequence of
the QBN-based walk, and 𝑓𝑛 = FΦ𝑛, 𝑛 ≥ 0. Then ‖𝑓0‖𝐿2 = 1
and

𝑓𝑛+1 =V𝑛𝑓𝑛 = ( 𝑛∏
𝑘=0

V𝑘)𝑓0, 𝑛 ≥ 0. (36)

Proof. This is an immediate consequence of Lemma 9 and
Theorem 11 together with properties of the Fourier transform
F.

Remark 13. Let 𝑛 ≥ 0 and𝑓𝑛 the same as inTheorem 12.Then,
on interval [0, 2𝜋], one has

𝑓𝑛+1 (𝑡) = [ 𝑛∏
𝑘=0

(𝑒𝑖𝑡𝑅𝑘 + 𝑒−𝑖𝑡𝐿𝑘)]𝑓0 (𝑡) a.e. (37)

Recall that 𝑋 denotes the position operator in the state
space 𝑙2(Z,H) of the QBN-based walk. The next theorem
then interprets the meaning of the quantity ⟨Φ𝑛, 𝑋𝑟Φ𝑛⟩𝑙2 .
Theorem 14. Let (Φ𝑛)𝑛≥0 ⊂ 𝑙2(Z,H) be the state sequence
of the QBN-based walk, where the initial state Φ0 satisfiesΦ0(𝑥) = 0, 𝑥 ̸= 0, 𝑥 ∈ Z. Then

Φ𝑛 ∈ dom𝑋𝑟, 𝑛 ≥ 0, 𝑟 ≥ 1, (38)

and moreover, for all 𝑛 ≥ 0, 𝑟 ≥ 1, the quantity ⟨Φ𝑛, 𝑋𝑟Φ𝑛⟩𝑙2
is exactly the 𝑟th moment of the probability distribution of the
walk at time 𝑛; namely,

⟨Φ𝑛, 𝑋𝑟Φ𝑛⟩𝑙2 = ∞∑
𝑥=−∞

𝑥𝑟 󵄩󵄩󵄩󵄩Φ𝑛 (𝑥)󵄩󵄩󵄩󵄩2 . (39)

Proof. Let 𝑛 ≥ 0, 𝑟 ≥ 1. Since Φ0(𝑥) = 0, 𝑥 ̸= 0, 𝑥 ∈ Z, it
follows from Definition 6 that

Φ𝑛 (𝑥) = 0, |𝑥| > 𝑛, 𝑥 ∈ Z, (40)

which gives
∞∑
𝑥=−∞

|𝑥|2𝑟 󵄩󵄩󵄩󵄩Φ𝑛 (𝑥)󵄩󵄩󵄩󵄩2 = 𝑛∑
𝑥=−𝑛

|𝑥|2𝑟 󵄩󵄩󵄩󵄩Φ𝑛 (𝑥)󵄩󵄩󵄩󵄩2 < ∞, (41)

which together with (27) impliesΦ𝑛 ∈ dom𝑋𝑟. By using (28),
we immediately get

⟨Φ𝑛, 𝑋𝑟Φ𝑛⟩𝑙2 = ∞∑
𝑥=−∞

⟨Φ𝑛 (𝑥) , 𝑥𝑟Φ𝑛 (𝑥)⟩
= ∞∑
𝑥=−∞

𝑥𝑟 󵄩󵄩󵄩󵄩Φ𝑛 (𝑥)󵄩󵄩󵄩󵄩2 .
(42)

This competes the proof.

It is easy to verify that {𝑒𝑖𝑡𝑅𝑛 + 𝑒−𝑖𝑡𝐿𝑛 | 𝑡 ∈ R, 𝑛 ≥ 0}
makes a commutative family of unitary operators onH. Here,
by convention, R denotes the set of all real numbers. In the
following, for 𝑛 ≥ 0, we define operator-valued function𝑉𝑛(𝑡)
as

𝑉𝑛 (𝑡) = 𝑒𝑖𝑡𝑅𝑛 + 𝑒−𝑖𝑡𝐿𝑛, 𝑡 ∈ R, (43)

which is continuous and has continuous derivatives up to
order 𝑟 with the operator norm for any positive integer 𝑟.
Proposition 15. Let 𝑛 ≥ 0 and 𝑟 ≥ 1 be integers. Then the 𝑟th
derivative of the operator-valued function 𝑉𝑛(𝑡) satisfies

𝑑𝑟𝑉𝑛 (𝑡)𝑑𝑡𝑟 = 𝑖𝑟 [𝑉𝑛 (0)]𝑟 𝑉𝑛 (𝑡) , (44)

where 𝑖 denotes the imaginary unit.
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Proof. A direct calculation gives

𝑑𝑉𝑛 (𝑡)𝑑𝑡 = (𝑒𝑖𝑡𝑅𝑛 + 𝑒−𝑖𝑡𝐿𝑛)󸀠 = 𝑖 (𝑒𝑖𝑡𝑅𝑛 − 𝑒−𝑖𝑡𝐿𝑛) . (45)

On the other hand, by using Lemma 5, we find

𝑉𝑛 (0) 𝑉𝑛 (𝑡) = (𝑅𝑛 + 𝐿𝑛) (𝑒𝑖𝑡𝑅𝑛 + 𝑒−𝑖𝑡𝐿𝑛)
= 𝑒𝑖𝑡𝑅𝑛 − 𝑒−𝑖𝑡𝐿𝑛. (46)

Thus 𝑑𝑉𝑛(𝑡)/𝑑𝑡 = 𝑖𝑉𝑛(0)𝑉𝑛(𝑡). By induction, formula (44)
follows.

Proposition 16. Let 𝑛 ≥ 0 and 𝑟 ≥ 1 be integers. Then it holds
that

𝑑𝑟𝑑𝑡𝑟 [
𝑛∏
𝑘=0

𝑉𝑘 (𝑡)] = [𝑖 𝑛∑
𝑘=0

𝑉𝑘 (0)]
𝑟 𝑛∏
𝑘=0

𝑉𝑘 (𝑡) . (47)

Proof. By using Proposition 15 and induction, we can get the
desired result easily.

As an immediate consequence of Propositions 15 and 16,
we have the next proposition.

Proposition 17. Let 𝜑 ∈ H, and 𝑛 ≥ 0. Define function 𝑓 :[0, 2𝜋] →H as

𝑓 (𝑡) = [ 𝑛∏
𝑘=0

𝑉𝑘 (𝑡)] 𝜑, 𝑡 ∈ [0, 2𝜋] . (48)

Then, for any integer 𝑟 ≥ 1, 𝑓 is a continuous function
on [0, 2𝜋] that has continuous derivatives up to order 𝑟, and
moreover

𝑓(𝑟) (𝑡) = [𝑖 𝑛∑
𝑘=0

𝑉𝑘 (0)]
𝑟 𝑓 (𝑡) , 𝑡 ∈ [0, 2𝜋] . (49)

Proposition 18. Let 𝜑 ∈ H, and 𝑛 ≥ 0. Let 𝑓 be the same as
in Proposition 17. Then 𝑓(𝑟) ∈ 𝐿2(S,H) for all integers 𝑟 ≥ 0.
Proof. We first fix some notation. Let Γ𝑛] = {𝜎 ∈ Γ | max𝜎 ≤𝑛}. For 𝜎 ∈ Γ𝑛], we put

𝑅𝜎 = ∏
𝑘∈𝜎

𝑅𝑘, (50)

where 𝑅𝜎 = 𝐼 when 𝜎 = 0. Similarly, we use 𝐿𝜎 for 𝜎 ∈ Γ𝑛].
Now, by a direct calculation, we can get

𝑓 (𝑡) = ∑
𝜎∈Γ𝑛]

𝑒𝑖(2#𝜎−𝑛−1)𝑡𝑅𝜎𝐿𝜎𝑐𝜑, 𝑡 ∈ [0, 2𝜋] , (51)

where 𝜎𝑐 = {0, 1, . . . , 𝑛} \ 𝜎. Clearly, for each 𝜎 ∈ Γ𝑛], the
function

𝑡 󳨃󳨀→ 𝑒𝑖(2#𝜎−𝑛−1)𝑡𝑅𝜎𝐿𝜎𝑐𝜑 (52)

belongs to 𝐿2(S,H), which implies 𝑓 ∈ 𝐿2(S,H). Using
formula (49) and formula (51), we can similarly show that𝑓(𝑟) ∈ 𝐿2(S,H) holds for all integers 𝑟 ≥ 0.

Recall that 𝜕𝑘 and 𝜕∗𝑘 denote the annihilation and creation
operators, respectively, which are members of quantum
Bernoulli noise. The next theorem then offers a formula
that links the moments of the QBN-based walk’s probability
distributions directly with the annihilation and creation
operators.

Theorem 19. Let (Φ𝑛)𝑛≥0 ⊂ 𝑙2(Z,H) be the state sequence
of the QBN-based walk. Suppose the initial state Φ0 takes the
following form:

Φ0 (𝑥) = {{{
𝜑, 𝑥 = 0;
0, 𝑥 ̸= 0, 𝑥 ∈ Z, (53)

where 𝜑 ∈ H with ‖𝜑‖ = 1. Then, the 𝑟th moment ⟨Φ𝑛,𝑋𝑟Φ𝑛⟩𝑙2 of the walk’s probability distribution at time 𝑛 ≥ 1
satisfies

⟨Φ𝑛, 𝑋𝑟Φ𝑛⟩𝑙2 = ⟨𝜑, [𝑛−1∑
𝑘=0

(𝜕∗𝑘 + 𝜕𝑘)]
𝑟 𝜑⟩ , (54)

where 𝑟 ≥ 1 is a positive integer.
Proof. By Theorem 14, we know Φ𝑛 ∈ dom𝑋𝑟 for all 𝑛 ≥ 0
and 𝑟 ≥ 1. Let 𝑓𝑛 = FΦ𝑛 for 𝑛 ≥ 0.Then 𝑓0(𝑡) = 𝜑, 𝑡 ∈ [0, 2𝜋],
and byTheorems 12 and 11,

𝑓𝑛 (𝑡) = [𝑛−1∏
𝑘=0

𝑉𝑘 (𝑡)] 𝜑, 𝑡 ∈ [0, 2𝜋] , 𝑛 ≥ 1. (55)

Now let 𝑛, 𝑟 ≥ 1. Then, by Remark 10, we have

⟨Φ𝑛, 𝑋𝑟Φ𝑛⟩𝑙2 = (−𝑖)𝑟 ⟨𝑓𝑛, 𝑓(𝑟)𝑛 ⟩𝐿2
= (−𝑖)𝑟2𝜋 ∫

2𝜋

0
⟨𝑓𝑛 (𝑡) , 𝑓(𝑟)𝑛 (𝑡)⟩ 𝑑𝑡, (56)

which together with Proposition 17 gives

⟨Φ𝑛, 𝑋𝑟Φ𝑛⟩𝑙2
= 12𝜋 ∫

2𝜋

0
⟨𝑓𝑛 (𝑡) , [ 𝑛∑

𝑘=0

𝑉𝑘 (0)]
𝑟 𝑓𝑛 (𝑡)⟩𝑑𝑡. (57)

On the other hand, by using the commutativity of the unitary
operator family {𝑉𝑘(𝑡)} as well as (55), we have
⟨𝑓𝑛 (𝑡) , [ 𝑛∑

𝑘=0

𝑉𝑘 (0)]
𝑟 𝑓𝑛 (𝑡)⟩

= ⟨[𝑛−1∏
𝑘=0

𝑉𝑘 (𝑡)] 𝜑, [ 𝑛∑
𝑘=0

𝑉𝑘 (0)]
𝑟 [𝑛−1∏
𝑘=0

𝑉𝑘 (𝑡)] 𝜑⟩
= ⟨[𝑛−1∏

𝑘=0

𝑉𝑘 (𝑡)] 𝜑, [𝑛−1∏
𝑘=0

𝑉𝑘 (𝑡)] [ 𝑛∑
𝑘=0

𝑉𝑘 (0)]
𝑟 𝜑⟩

= ⟨𝜑, [ 𝑛∑
𝑘=0

𝑉𝑘 (0)]
𝑟 𝜑⟩ ,

(58)
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where 𝑡 ∈ [0, 2𝜋]. Thus

⟨Φ𝑛, 𝑋𝑟Φ𝑛⟩𝑙2 = 12𝜋 ∫
2𝜋

0
⟨𝜑,[ 𝑛∑

𝑘=0

𝑉𝑘 (0)]
𝑟 𝜑⟩𝑑𝑡

= ⟨𝜑, [𝑛−1∑
𝑘=0

𝑉𝑘 (0)]
𝑟 𝜑⟩ ,

(59)

which, together with the fact that𝑉𝑘(0) = 𝜕∗𝑘 +𝜕𝑘, 𝑘 ≥ 0, yields
the desired formula.

5. Quantum Central Limit Theorem

Quantum central limit theorems are quantum analogs of the
classical central limit theorem, which deal with observables
from a quantum probability point of view. In the present
section, we use the results obtained in the previous section
to prove a quantum central limit theorem for quantum
Bernoulli noise itself.

In what follows, we denote byB(R) the Borel 𝜎-filed over
the real lineR. For a Borel set 𝐴 ∈B(R), we sue 1𝐴 to mean
its indicator as usual.

Recall that H denotes the space of square integrable
Bernoulli functionals, which serves as the coin space of the
QBN-based walk. Now consider the following observables:

Ξ𝑘 = 𝜕∗𝑘 + 𝜕𝑘, 𝑘 ≥ 0, (60)

where 𝜕𝑘 and 𝜕∗𝑘 are the annihilation and creation operators
on H, which are members of quantum Bernoulli noise. Let𝜑 ∈ H be a unit vector. Then, by the well-known von
Neumann’s spectral theorem [27], there exists a sequence

(𝜇(𝜑)𝑛 )𝑛≥1 of Borel probability measures on the real lineR such
that

∫
R

𝑡𝑟𝑑𝜇(𝜑)𝑛 (𝑡) = ⟨𝜑, [ 1√𝑛
𝑛−1∑
𝑘=0

Ξ𝑘]
𝑟 𝜑⟩ , 𝑟 ≥ 1, (61)

where ⟨⋅, ⋅⟩ denotes the inner product of the spaceH.

Theorem 20. Let (𝜇(𝜑)𝑛 )𝑛≥1 be the probability measure
sequence described in (61). Suppose the unit vector 𝜑 ∈ H
takes the form 𝜑 = 𝛼𝑍0 + 𝛽𝑍0, where 𝛼, 𝛽 ∈ C with|𝛼|2 + |𝛽|2 = 1. Then, for each 𝑛 ≥ 1, the probability measure𝜇(𝜑)𝑛 has the following representation:

𝜇(𝜑)𝑛 (𝐴) = 12𝑛
𝑛∑
𝑗=0

1𝐴 (2𝑗 − 𝑛√𝑛 )

⋅ [(𝑛 − 1𝑗 ) 󵄨󵄨󵄨󵄨𝛼 − 𝛽󵄨󵄨󵄨󵄨2 + (
𝑛 − 1
𝑗 − 1) 󵄨󵄨󵄨󵄨𝛼 + 𝛽󵄨󵄨󵄨󵄨2] ,

𝐴 ∈B (R) ,
(62)

where ( 𝑛−1−1 ) = ( 𝑛−1𝑛 ) = 0 and ( 00 ) = 1.
Proof. Consider the QBN-based walk with the initial stateΦ0
given by

Φ0 (𝑥) = {{{
𝜑, 𝑥 = 0;
0, 𝑥 ̸= 0, 𝑥 ∈ Z. (63)

Let Φ𝑛 be the state of the walk at time 𝑛 and 𝑌𝑛 a random
variable with the following probability distribution:

𝑃 {𝑌𝑛 = 𝑥} = 󵄩󵄩󵄩󵄩Φ𝑛 (𝑥)󵄩󵄩󵄩󵄩2 , 𝑥 ∈ Z. (64)

Then it follows from the proof of Theorem 4.5 of [13] that

𝑃 {𝑌𝑛 = 𝑥} =
{{{{{{{{{

12𝑛 [[(
𝑛 − 1
𝑗 ) 󵄨󵄨󵄨󵄨𝛼 − 𝛽󵄨󵄨󵄨󵄨2 + (

𝑛 − 1
𝑗 − 1) 󵄨󵄨󵄨󵄨𝛼 + 𝛽󵄨󵄨󵄨󵄨2]] , 𝑥 = 2𝑗 − 𝑛, 0 ≤ 𝑗 ≤ 𝑛;0, otherwise.

(65)

On the other hand, by using (61) as well as Theorems 19 and
14, we can get

∫
R

𝑡𝑟𝑑𝜇(𝜑)𝑛 (𝑡) = ⟨Φ𝑛, ( 𝑋√𝑛)
𝑟Φ𝑛⟩

𝑙2

= ∞∑
𝑥=−∞

( 𝑥√𝑛)
𝑟 󵄩󵄩󵄩󵄩Φ𝑛 (𝑥)󵄩󵄩󵄩󵄩2 , 𝑟 ≥ 1,

(66)

which, together with the fact that both 𝜇(𝜑)𝑛 and the distribu-
tion of 𝑌𝑛/√𝑛 have compact supports, yields

∫
R

𝑒𝑖𝜃𝑡𝑑𝜇(𝜑)𝑛 (𝑡) = ∞∑
𝑟=0

(𝑖𝜃)𝑟𝑟! ∫R 𝑡𝑟𝑑𝜇(𝜑)𝑛 (𝑡)

= ∞∑
𝑟=0

(𝑖𝜃)𝑟𝑟!
∞∑
𝑥=−∞

( 𝑥√𝑛)
𝑟 󵄩󵄩󵄩󵄩Φ𝑛 (𝑥)󵄩󵄩󵄩󵄩2

= ∞∑
𝑥=−∞

𝑒𝑖𝜃(𝑥/√𝑛) 󵄩󵄩󵄩󵄩Φ𝑛 (𝑥)󵄩󵄩󵄩󵄩2
= 𝐸𝑒𝑖𝜃(𝑌𝑛/√𝑛), 𝜃 ∈ R,

(67)

which implies that 𝜇(𝜑)𝑛 is exactly the same as the distribution
of 𝑌𝑛/√𝑛. Thus, by (65), we get (62).
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Theorem21. Let (𝜇(𝜑)𝑛 )𝑛≥1 be the probabilitymeasure sequence
described in (61). Suppose the unit vector 𝜑 ∈H takes the form𝜑 = 𝛼𝑍0 + 𝛽𝑍0, where 𝛼, 𝛽 ∈ C with |𝛼|2 + |𝛽|2 = 1. Then

𝜇(𝜑)𝑛 󳨐⇒ 𝑁(0, 1) as 𝑛 󳨀→ ∞; (68)

namely, the probability measure sequence (𝜇(𝜑)𝑛 )𝑛≥1 converges
weakly to the standard Gaussian distribution 𝑁(0, 1) on the
real line R.

Proof. Again consider the QBN-based walk with the initial
state Φ0 given by

Φ0 (𝑥) = {{{
𝜑, 𝑥 = 0;
0, 𝑥 ̸= 0, 𝑥 ∈ Z. (69)

For each 𝑛 ≥ 1, letΦ𝑛 be the state of the walk at time 𝑛 and𝑌𝑛
a randomvariable with the following probability distribution:

𝑃 {𝑌𝑛 = 𝑥} = 󵄩󵄩󵄩󵄩Φ𝑛 (𝑥)󵄩󵄩󵄩󵄩2 , 𝑥 ∈ Z. (70)

Then, by Theorem 4.5 of [13], 𝑌𝑛/√𝑛 ⇒ 𝑁(0, 1), which,
together with (67) in the proof of Theorem 20, yields

lim
𝑛→∞
∫
R

𝑒𝑖𝜃𝑡𝑑𝜇(𝜑)𝑛 (𝑡) = lim
𝑛→∞
𝐸𝑒𝑖𝜃(𝑌𝑛/√𝑛) = 𝑒−𝜃2/2,

𝜃 ∈ R, (71)

which then implies that 𝜇(𝜑)𝑛 ⇒ 𝑁(0, 1) as 𝑛 → ∞.

Remark 22. As can be seen, observables Ξ𝑘 = 𝜕∗𝑘 + 𝜕𝑘, 𝑘 ≥ 0,
actually play the role of quantum bias in the construction of
the QBN-based walk.Theorem 21 then establishes a quantum
central limit theorem for these observables.

6. Conclusion Remarks

In the final section, we would like to make some further
remarks about the QBN-based walk.

As is known, theQBN-basedwalk belongs to the category
of discrete-time unitary quantumwalks on the line. However,
it is still different from a usual discrete-time unitary quantum
walk on the line. In fact, the QBN-based walk is of the
following form:

Φ̂𝑛+1 (𝑡) = �̂�𝑛Φ̂𝑛 (𝑡) , (72)

where ⟨𝑥 | Φ𝑛⟩ belongs to a Hilbert coin space, Φ̂𝑛(𝑡) is its
Fourier transform, and

�̂�𝑛 = 12 [𝑒𝑖𝑡 (𝐵𝑛 + 𝐼) + 𝑒−𝑖𝑡 (𝐵𝑛 − 𝐼)] , (73)

where 𝐵𝑛 is a self-adjoint unitary operator acting on the coin
space. However, a usual discrete-time unitary quantum walk
on the line (take the one with a 2-dimensional coin space as
example) reads

Φ̂𝑛+1 (𝑡) = 𝑆𝐶𝑛Φ̂𝑛 (𝑡) , (74)

where 𝐶𝑛, called the coin operator, acts the coin space, and

𝑆 = (𝑒𝑖𝑡 00 𝑒−𝑖𝑡) (75)

is known as the spin-dependent shift operator.
As shown inTheorem21, the limit probability distribution

of the QBN-based walk for a localized initial state can
lead to a quantum central limit theorem for observables𝜕∗𝑘 + 𝜕𝑘, 𝑘 ≥ 0. However, only for some special localized
initial states, have we obtained the walk’s limit probability
distributions. It is still unclear whether or not the walk has
a limit probability distribution for a general localized initial
state. On the other hand, as its name suggests, the QBN-
based walk might be viewed as such a quantum walk in an
open environment that its evolution will be affected by the
effects of environment described by quantumBernoulli noise.
In other words, decoherence might happen in the evolution
of the walk. Thus we conjecture that, for a general localized
initial state, the QBN-based walk might still have the same
limit probability distribution as the classical random walk.

The Bernoulli-type random variables (𝑍𝑛)𝑛∈N described
in Section 2 play an important role in understanding the
structure of the coin space H of the QBN-based walk.
However, those parameters 𝑝𝑛, 𝑞𝑛 in their distributions
actually have nothing to do with the properties of the walk
although an explicit 𝑛-dependence is indicated by 𝑝𝑛 and𝑞𝑛. More precisely, the properties of the QBN-based walk
are independent of the choice of those parameters 𝑝𝑛, 𝑞𝑛 in
the distributions of random variables (𝑍𝑛)𝑛∈N, and indicating
explicitly the 𝑛-dependence of 𝑝𝑛 and 𝑞𝑛 is only for the
sake of generality. In fact, one can weaken the conditions on(𝑍𝑛)𝑛∈N without invalidating the main theorems presented
in this paper. For instance, one can take (𝑍𝑛)𝑛∈N such that
it is a “discrete-time (correlated) noise” with the chaotic
representation property (see [25, 28]).
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