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A flat Friedmann-Robertson-Walker (FRW)multiscalar field cosmology is studied with a particular potential of the form V(𝜙, 𝜎) =
V0e
−𝜆1𝜙−𝜆2𝜎, which emerges as a relation between the time derivatives of the scalars field momenta. Classically, by employing the

Hamiltonian formalism of two scalar fields (𝜙, 𝜎) with standard kinetic energy, exact solutions are found for the Einstein-Klein-
Gordon (EKG) system for different scenarios specified by the parameter 𝜆2 = 𝜆21 + 𝜆22, as well as the e-folding function Ne which is
also computed. For the quantum scheme of this model, the correspondingWheeler-DeWitt (WDW) equation is solved by applying
an appropriate change of variables.

1. Introduction

The inflation paradigm is considered the most accepted
mechanism to explain many of the fundamental problems of
the early stages in the evolution of our universe [1–4], such
as the flatness, homogeneity, and isotropy observed in the
present universe. Another important aspect of inflation is its
ability to correlate cosmological scales that would otherwise
be disconnected. Fluctuations generated during this early
phase of inflation yield a primordial spectrum of density
perturbation [5–8], which is nearly scale invariant, adiabatic,
and Gaussian, which is in agreement with cosmological
observations [9].

The single-field scalar models have been broadly used to
describe the primordial expansion, the most phenomenolog-
ical successful are those with a quintessence scalar field and
slow-roll inflation [10–19]. However, if another component is
included, i.e., a multiscalar field theory, it is also possible to
produce an inflationary scenario [20, 21], even if the fields are
noninteracting [16]. Even more the dynamical possibilities
in multifield inflationary scenarios are considerably richer
than in single-fieldmodels, such as in the primordial inflation

perturbations analysis [22, 23] or the assisted inflation as
discussed in [24], furthermore, the general assisted inflation
as in [21]. In this sense the multiscalar fields’ cosmology is an
attractive candidate to explain such phenomenon.

Recent works have shown that multiscalar field models
are very fruitful when studying the early stages of the
universe, such as the case in [25], where the authors perform
a semianalytic study of preheating in inflationary models
comprised of multiple scalar fields coupled nonminimally
to gravity. In [26] the authors show the sensitivity of the
cosmological observables to the reheating phase following
inflationdriven bymany scalar fields, where they find that, for
certain decay rate, reheating followingmultifield inflation can
have a significant impact on the prediction of cosmological
observables.

Indeed the multiscalar field models for inflation are of
interest even on most recent studies, such as the above-
mentioned cases; however, one of the most important fea-
tures in such models is the potential associated with the
scalar fields, and in many cases, the employed potentials are
simple polynomial powers of the scalar fields or in other
cases the employed potential is a series of lineally summed
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exponentials; however, it has been shown that a potential
of the form V(𝜙, 𝜎) = V0e

−𝜆1𝜙−𝜆2𝜎 is a good candidate to
model the inflation phenomenon for multiscalar field theory,
as discussed in previouswork [27], andmight provide a richer
postinflation scenario.

Generally, in the studies of inflationary cosmology one
employs the usual slow-roll approximation with the objective
to extract simple expression for basics observable, such as the
scalar and tensor spectral indices, the running of the scalar
spectral index, and the tensor-to-scalar ratio. Moreover, in
the slow-roll regime the set of EKG equations reduces in
such a way that one can quickly obtain the solution of the
scale factor. Nevertheless, there is an alternative approach
which allows for an easy derivation of many inflation results.
It is called Hamilton’s formulation, widely used in analytical
mechanics. Using this method we obtain the exact solutions
of the complete set of EKG equations without using the
aforementioned approximation.

On the other hand, we implement a basic formulation
in quantum cosmology by means of the Wheeler-DeWitt
(WDW) equation. The WDW equation has been analyzed
with different approaches in order to solve it, and there are
several papers on the subject, such is the case in [28], where
they debate what a typical wave function for the universe is.
Reference [29] has a review on quantum cosmology where
the problem of how the universe emerged from big bang
singularity can no longer be neglected in the GUT epoch.
Moreover, the best candidates for quantum solutions are
those that have a damping behavior with respect to the
scale factor, since only such wave functions allow for good
classical solutions when using a Wentzel-Kramers-Brillouin
(WKB) approximation for any scenario in the evolution of
our universe [30, 31]. Furthermore, in the context of a single
scalar field a family of scalar potentials is obtained in the
Bohmian formalism [27, 32], where among others a general
potential of the form V(𝜙) = V0e

−𝜆𝜙 is examined. Given this
insight, for a two scalar field scenario we consider a potential
of the formV(𝜙, 𝜎) = V0e

−𝜆1𝜙−𝜆2𝜎 in order to solve theWDW
equation.

This work is arranged as follows. In Section 2 we present
the model with the action and the corresponding EKG
equations for our cosmological model and the associated
Hamiltonian density. In Section 3 general equations for the
classical solutions of scale factor, scalar fields, and their asso-
ciated momenta are derived in terms of the free parameters
of the model. In Sections 3.1, 3.2, 3.3, and 3.4 the particular
solutions and their number of e-folds are computed for
different cases of the 𝜆 parameter. in Section 4 we use the
Hamiltonian density to compute the corresponding WDW
equation, which is solved by using a change of variables;
an ansatz for the wave function is employed in terms of a
generic function and parameters which are to be determined.
In Sections 4.1 and 4.2 the corresponding wave function and
their constants relations are presented for different cases of
the 𝛿 parameter, which in turn is related to the 𝜆 parameter
of the classical solutions. Finally, in Section 5 we present our
conclusions for this work.

2. The Model

We begin with the construction of two scalar fields cosmo-
logical paradigm, which requires canonical scalar fields 𝜙, 𝜎.
The action of a universe with the constitution of such fields is

L

= √−g (R + 12g𝜇]∇𝜇𝜙∇]𝜙 + 12g𝜇]∇𝜇𝜎∇]𝜎 − V (𝜙, 𝜎)) , (1)

where R is the Ricci scalar, V(𝜙, 𝜎) is the corresponding scalar
field potential, and the reduced Planck mass𝑀2𝑃 = 1/8𝜋𝐺 =1. The corresponding variations of (1), with respect to the
metric and the scalar fields give the Einstein-Klein-Gordon
field equations

G𝛼𝛽 = 12 (∇𝛼𝜙∇𝛽𝜙 − 12g𝛼𝛽g𝜇]∇𝜇𝜙∇]𝜙)
+ 12 (∇𝛼𝜎∇𝛽𝜎 − 12𝑔𝛼𝛽𝑔𝜇]∇𝜇𝜎∇]𝜎)
− 12𝑔𝛼𝛽𝑉 (𝜙, 𝜎) ,

(2)

◻𝜙 − 𝜕V𝜕𝜙 = g𝜇]𝜙,𝜇] − 𝑔𝛼𝛽Γ]𝛼𝛽∇]𝜙 − (𝜕𝑉𝜕𝜙 )𝜎 = 0, (3)

◻𝜎 − 𝜕V𝜕𝜎 = g𝜇]𝜎,𝜇] − 𝑔𝛼𝛽Γ]𝛼𝛽∇]𝜎 − (𝜕𝑉𝜕𝜎 )𝜙 = 0. (4)

The line element to be considered in this work is the flat FRW

ds2 = −N (t)2 dt2 + e2Ω(t) [dr2 + r2 (d𝜃2 + sin2𝜃d𝜙2)] , (5)

where N is the lapse function, which in a special gauge one
can directly recover the cosmic time tphys (Ndt = dtphys), the
scale factor A(t) = eΩ(t) is in the Misner’s parametrization,
and the scalar function has an interval, Ω ∈ (−∞,∞).
Consequently the field equations are

3Ω̇2
N2

− ̇𝜙24N2 − 𝜎̇24N2 − 12V (𝜙, 𝜎) = 0, (6)

2Ω̈
N2

+ 3Ω̇2
N2

− 2Ω̇Ṅ
N3

+ ̇𝜙24N2 + 𝜎̇24N2 − 12V (𝜙, 𝜎) = 0, (7)

̈𝜙 ̇𝜙
N2

+ 3Ω̇ ̇𝜙2
N2

− Ṅ ̇𝜙2
N3

+ (V̇)𝜎 = 0, (8)

𝜎̈𝜎̇
N2

+ 3Ω̇𝜎̇2
N2

− Ṅ𝜎̇2
N3

+ (V̇)𝜙 = 0. (9)

By building the corresponding Lagrangian and Hamilto-
nian densities for this cosmological model, classical solutions
to Einstein-Klein-Gordon equations ((2)-(4)) can be found
using the Hamilton’s approach, and the quantum formalism
canbe determined and solved. In that sense, we use themetric
equation (5) into (1) having

L = e3Ω (6Ω̇2
N

− ̇𝜙22N2 − 𝜎̇22N2 +NV (𝜙, 𝜎)) , (10)
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where upper “∙” represents the first time derivative and the
corresponding momenta are defined in the usual way Πq =𝜕L/𝜕q̇. We obtain

ΠΩ = 12𝑒3Ω𝑁 Ω̇,
Ω̇ = 𝑁𝑒−3Ω12 ΠΩ,
Π𝜙 = −𝑒3Ω𝑁 ̇𝜙,
̇𝜙 = −𝑁𝑒−3ΩΠ𝜙,

Π𝜎 = −𝑒3Ω𝑁 𝜎̇,
𝜎̇ = −𝑁𝑒−3ΩΠ𝜎.

(11)

By performing the variation of the canonical Lagrangian with
respect to N, i.e., 𝛿Lcanonical/𝛿N = 0, where Lcanonical =Πqq̇ − NH, it implies the constraint H = 0. Hence the
Hamiltonian density is

H = e−3Ω24 [Π2Ω − 12Π2𝜙 − 12Π2𝜎 − 24V (𝜙, 𝜎) e6Ω] . (12)

In the gauge N = 24e3Ω and using the Hamilton equations
q̇ = 𝜕H/𝜕Πq and Π̇q = −𝜕H/𝜕q, we have the following set
of equations:

Ω̇ = 2ΠΩ,
̇𝜙 = −24Π𝜙,
𝜎̇ = −24Π𝜎,

Π̇Ω = 6𝑈,
Π̇𝜙 = 𝜕𝑈𝜕𝜙 ,
Π̇𝜎 = 𝜕𝑈𝜕𝜎 ,

(13)

where U = 24V(𝜙, 𝜎)e6Ω. Given a particular form of the
potential V(𝜙, 𝜎) one can derive a relation between the time
derivative of the momenta such as Π̇𝜙 ∝ Π̇𝜎, provided that𝜕𝑉/𝜕𝜙 = 𝛼𝜕𝑉/𝜕𝜎, where 𝛼 is a constant. Such connection
can be obtained considering two different configurations of
the potential: V(𝜙, 𝜎) = f[±(𝛼1𝜙 + 𝛼2𝜎)] or V(𝜙, 𝜎) =
V1f[±(𝛼1𝜙)] + V2f[±(𝛼1𝜎)], where V1 and 𝑉2 are constants,
and f(𝜙, 𝜎) is an arbitrary function. We select the simplest
form of the potential V(𝜙, 𝜎) = A(𝜙)B(𝜎):

V = V0e
−𝜆1𝜙−𝜆2𝜎, (14)

where V0 is a constants and 𝜆1 and 𝜆2 are distinguishing
parameters.This class of potential has been obtained by other
methods; see, for instance, [27, 32–35]. Therefore the time

derivative of the momenta is simply Π̇𝜙 = −𝜆1U and Π̇𝜎 =−𝜆2U, of which solutions are

Π𝜙 = −𝜆16 ΠΩ + 𝑝𝜙,
Π𝜎 = −𝜆26 ΠΩ + 𝑝𝜎,

(15)

where p𝜙 and p𝜎 are integration constants. Henceforth we
will employ this scheme in order to find analytic classic and
quantum solutions.

3. Classical Solutions

We start from the Hamilton equations (13) in order to find
relations between the scale factor and the scalar fields, such
as

̇𝜙 = −24Π𝜙 = 4𝜆1ΠΩ − 24𝑝𝜙 = 2𝜆1Ω̇ − 24𝑝𝜙, (16)

𝜎̇ = −24Π𝜎 = 4𝜆2ΠΩ − 24𝑝𝜎 = 2𝜆2Ω̇ − 24𝑝𝜎, (17)

of which solutions are

𝜙 = 𝜙1 + 2𝜆1Ω − 24𝑝𝜙𝑡, (18)

𝜎 = 𝜎1 + 2𝜆2Ω − 24𝑝𝜎𝑡, (19)

where 𝜙1 and 𝜎1 are integration constants, and they can
be determined by suitable conditions. These expressions are
indeed general relations, since they satisfy the Einstein-Klein-
Gordon equations ((6)-(9)). Then by taking into account the
constraint H = 0, we obtain the temporal dependence forΠΩ(t) which allows us to construct a master equation:

dΠΩ
m1Π2Ω +m2ΠΩ −m3

= dt, (20)

where the parameters mi, i = 1, 2, 3, are
m1 = 2 (3 − 𝜆21 − 𝜆22) = 2 (3 − 𝜆2) ,
m2 = 24 [𝜆1p𝜙 + 𝜆2p𝜎] ,
m3 = 72 [p2𝜙 + p2𝜎] .

(21)

Subsequently by analyzing the parameter 𝜆2 = 𝜆21+𝜆22 wewill
obtain three different solutions.

3.1. Solution for 𝜆2 = 3. Having 𝜆2 = 3 implies that m1 = 0,
so the integral to solve becomes

∫ dΠΩ
m2ΠΩ −m3

= ∫ dt, (22)

then we parameterize 𝜆𝑖 such as 𝜆1 = √3(1 − 𝜖), 𝜆2 =√3𝜖, 𝜆2 = 3, where 𝜖 ∈ (0, 1) measures the corresponding
weight for each scalar field during inflation; so the constants
(21) become

m2 = 24√3 (1 − 𝜖) [p𝜙 + √ 𝜖(1 − 𝜖)p𝜎] ,
m3 = 72 [p2𝜙 + p2𝜎] .

(23)
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Thus ΠΩ(t) becomes

ΠΩ (t) = m3
m2

+ c1e
bt, (24)

where c1 is an integration constant. Using the relations from
(13) and after some algebra, the solutions of the set of variables(Ω, 𝜙, 𝜎) and (Π𝜙, Π𝜎) are

Ω = Ω0 + 2m3m2
t + 2c1

m2
em2 t, (25)

𝜙 = 𝜙0 + 4√3 (1 − 𝜖)m3m2 t − 24p𝜙t
+ 4c1√3 (1 − 𝜖)

m2
em2 t,

(26)

𝜎 = 𝜎0 + 4√3𝜖m3m2 t − 24p𝜎t +
4c1√3𝜖
m2

em2 t, (27)

Π𝜙 = −√3 (1 − 𝜖)6 (m3
m2

+ c1e
m2t) + p𝜙, (28)

Π𝜎 = −√3𝜖6 (m3
m2

+ c1e
m2t) + p𝜎, (29)

where (Ω0, 𝜙0, 𝜎0) are all integration constants. In order to
make the above results fulfill the EKG equations ((6)-(9)),
all constants must satisfy that 144V0 = m2c1e

−6Ω0+𝜆1𝜙0+𝜆2𝜎0 .
Finally the scale factor A(t) for this case is

A = A0e
(2m3/m2)t exp [2c1

m2
em2 t] , (30)

where A0 = eΩ0 . Given that the scale factor is an exponential
of an exponential function, it might exhibit a highly substan-
tial growth.

3.2. Solution for 𝜆2 > 3. For this case m1 = 2(3 − 𝜆2) < 0, so
the integral to solve becomes

dΠΩ−m1Π2Ω +m2ΠΩ −m3
= dt, (31)

where we include the minus sign in this equation, such the
constant m1 = 2(𝜆2 − 3) = 2𝛽 > 0. Then we define 𝜔2 =
m22 − 8𝛽m3, so we change variable as z = 4𝛽ΠΩ −m2 in order
to integrate (31). Thus the solution to the momenta ΠΩ(t)
becomes

ΠΩ = m24𝛽 + 𝜔4𝛽 tanh (𝜔2 t) . (32)

Using the relations from (13) and after some algebra, the
solutions of the set of variables (Ω, 𝜙, 𝜎) and (Π𝜙, Π𝜎)
are

Ω = Ω0 + m22𝛽 t + 1𝛽 ln [cosh (𝜔2 t)] , (33)

𝜙 = 𝜙0 + (𝜆1m2𝛽 − 24p𝜙) t
− 2𝜆1𝛽 ln [cosh (𝜔2 t)] ,

(34)

𝜎 = 𝜎0 + (𝜆2m2𝛽 − 24p𝜎) t − 2𝜆2𝛽 ln [cosh (𝜔2 t)] , (35)

Π𝜙 = −𝜆16 (m24𝛽 + 𝜔4𝛽 tanh (𝜔2 t)) + p𝜙, (36)

Π𝜎 = −𝜆26 (m24𝛽 + 𝜔4𝛽 tanh (𝜔2 t)) + p𝜎, (37)

where (Ω0, 𝜙0, 𝜎0) are all integration constants. In order to
make the above results fulfill the EKG equations ((6)-(9)),
all constants must satisfy that 1152𝛽V0 = 𝜔2e𝜆1𝜙0+𝜆2𝜎0+2𝛽Ω0 .
Finally the scale factor becomes

A = A0e
(m2/2𝛽)t [cosh (𝜔2 t)]

1/𝛽 , (38)

where A0 = 𝑒Ω0 . For this case, given that 𝛽 > 0, one would
expect that the scale factor grows slower than the previous
case 𝜆2 = 3.
3.3. Solution When 𝜆2 < 3. For this case we modify the
relation between themomenta equation (15), by changing the
sign in the constants, (p𝜙, p𝜎,m2) 󳨀→ (−p𝜙, −p𝜎, −m2), and
m1 = 2(3 − 𝜆2) = 2𝜂 > 0; therefore the integral to solve
becomes

dΠΩ2𝜂Π2Ω −m2ΠΩ −m3
= dt. (39)

Thus ΠΩ(t) is

ΠΩ = 14𝜂 [m2 − 𝛼 coth (𝛼2 t)] , (40)

where𝛼2 = m22+8𝜂m3. Using the relations from (13) and after
some algebra, the solutions of the set of variables (Ω, 𝜙, 𝜎) and(Π𝜙, Π𝜎) are
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Ω = Ω0 + m22𝜂 t + ln [csch(𝛼2 t)]
1/𝜂 , (41)

𝜙 = 𝜙0 + (𝜆1m2𝜂 + 24p𝜙) t − ln [sinh (𝛼2 t)]
2𝜆1/𝜂 , (42)

𝜎 = 𝜎0 + (𝜆2m2𝜂 + 24p𝜎) t − ln [sinh (𝛼2 t)]
2𝜆2/𝜂 , (43)

Π𝜙 = − 124 [𝜆1m2𝜂 + 24p𝜙] + 𝜆1𝛼24𝜂 coth (𝛼2 t) , (44)

Π𝜎 = − 124 [𝜆2m2𝜂 + 24p𝜙] + 𝜆2𝛼24𝜂 coth (𝛼2 t) , (45)

where (Ω0, 𝜙0, 𝜎0) are integration constants. In order to fulfill
the EKG equations ((6)-(9)), all constants must satisfy that1152𝜂V0 = 𝛼2e𝜆1𝜙0+𝜆2𝜎0−2𝜂Ω0 . Finally the scale factor A = eΩ
becomes

A = A0e
(m2/2𝜂)tcsch1/𝜂 (𝛼2 t) , (46)

where A0 = eΩ0 . For this case, given that 𝜂 > 0, one would
expect the scale factor to grow in a similar way as the previous
case 𝜆2 > 3.
3.4. Number of e-Folds. Inflation is characterised by the num-
ber of e-folds it expands during such period that corresponds
to A󸀠󸀠phys > 0, where the primes represent the derivatives with
respect to the cosmic time tphys. The e-folding function Ne =∫ dtphysH(tphys) is described by tphys: computing the integral
from tphys∗ to tphys end, where tphys∗ represents the time when
the relevant cosmic microwave background (CMB) modes
become superhorizon at 50-60 e-folds before inflation ends
at tphys end; and H(tphys) = Hphys = A󸀠phys/Aphys is the
Hubble parameter. Although, in our prescription we use a
proper time t, we can evaluate the Hubble function in the
corresponding gauge as Hphys = Ω̇/N.

At the end of inflation the expansion rate of the scale
factor must be null which translates to −H󸀠phys = H2phys
or Ω̈ = 2Ω̇2. From here we can compute the time when
inflation ends (tend) given each particular case. Table 1 shows
the computation of the e-folding functionNe and tend for each
case given by the 𝜆 parameter.

4. Quantum Solutions

The Wheeler-DeWitt equation for this model is acquired by
replacing Πq𝜇 = −iℏ𝜕q𝜇 in (12). The factor e−3Ω may be factor
ordered with Π̂Ω in several forms. Hartle and Hawking [30]
have suggested what might be called a semigeneral factor
ordering, which in this case would order e−3ΩΠ̂2Ω as

−e−(3−p)Ω𝜕Ωe−pΩ𝜕Ω = −e−3Ω𝜕2Ω + pe−3Ω𝜕Ω, (47)

where p is any real constant that measures the ambiguity
in the factor ordering for the variable Ω; in the following

we will assume such factor ordering for the Wheeler-DeWitt
equation, which becomes

ℏ2◻Ψ + ℏ2p𝜕Ψ𝜕Ω −U (Ω, 𝜙, 𝜎)Ψ = 0, (48)

where ◻ = −𝜕2/𝜕Ω2 + (1/12)(𝜕2/𝜕𝜙2) + (1/12)(𝜕2/𝜕𝜎2) is
the d’Alambertian in the coordinates 𝑞𝜇 = (Ω, 𝜙, 𝜎) and the
potential is U = +24V0e6Ω−𝜆1𝜙−𝜆2𝜎. Then we transform the
coordinates to obtain a potential that only depends on a single
variable, employing the following transformation:

𝜁 = 6Ω − 𝜆1𝜙 − 𝜆2𝜎,
𝜅 = 𝜙 + 𝜎,
𝜂 = 𝜙 − 𝜎.

(49)

Now we find the partial derivatives of 𝜓 with respect to the
old coordinates (a, 𝜙, 𝜎) but in terms of the new variables (𝜁,𝜅, 𝜂),

𝜕Ψ𝜕Ω = 𝜕Ψ𝜕𝜁 𝜕𝜁𝜕Ω + 𝜕Ψ𝜕𝜅 𝜕𝜅𝜕Ω + 𝜕Ψ𝜕𝜂 𝜕𝜂𝜕Ω = 6𝜕Ψ𝜕𝜁 ,
𝜕Ψ𝜕𝜙 = 𝜕Ψ𝜕𝜁 𝜕𝜁𝜕𝜙 + 𝜕Ψ𝜕𝜅 𝜕𝜅𝜕𝜙 + 𝜕Ψ𝜕𝜂 𝜕𝜂𝜕𝜙

= −𝜆1 𝜕Ψ𝜕𝜁 + 𝜕Ψ𝜕𝜅 + 𝜕Ψ𝜕𝜂 ,
𝜕Ψ𝜕𝜎 = 𝜕Ψ𝜕𝜁 𝜕𝜁𝜕𝜎 + 𝜕Ψ𝜕𝜅 𝜕𝜅𝜕𝜎 + 𝜕Ψ𝜕𝜂 𝜕𝜂𝜕𝜎

= −𝜆2 𝜕Ψ𝜕𝜁 + 𝜕Ψ𝜕𝜅 − 𝜕Ψ𝜕𝜂 ;

(50)

from here we use these new relations in the quantum
Hamiltonian density, obtaining

12ℏ2 (𝜆21 + 𝜆22 − 3) 𝜕2Ψ𝜕𝜁2 + 24ℏ2 (−𝜆1 + 𝜆2) 𝜕
2Ψ𝜕𝜂𝜕𝜁

+ 24ℏ2 𝜕2Ψ𝜕𝜂2 − 24ℏ2 (𝜆1 + 𝜆2) 𝜕
2Ψ𝜕𝜅𝜕𝜁 + 24ℏ2 𝜕

2Ψ𝜕𝜅2
− 6ℏ2p𝜕Ψ𝜕𝜁 − 24V0e𝜁Ψ = 0,

(51)

At this point, we propose the following ansatz, Ψ =
e(1/ℏ)(c2𝜅+c3𝜂)G(𝜁), where the parameters ci are constants and
G(𝜁) is a function to be determined. By introducing the
aforementioned into (51) we obtain the following differential
equation of the function G:

𝛿0 d2Gd𝜁2 + 𝛼0 dGd𝜁 + (𝛽0e𝜁 + 𝜌0)G = 0, (52)
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where the constants are

𝛿0 = 12ℏ2 (𝜆21 + 𝜆22 − 3) ,
𝛼0 = −6ℏ [4𝜆1 (c2 + c3) + 4𝜆2 (c2 − c3) + ℏp] ,
𝛽0 = −24𝑉0,
𝜌0 = 24 (c22 + c23) .

(53)

The solution of (52) is dependant on the value of constant𝛿0, which turns in three different cases, (I) 𝛿 = 0 implying
that 𝜆21 + 𝜆22 = 3, (II) 𝛿 < 0 implying that 𝜆21 + 𝜆22 < 3, and
(III) 𝛿 > 0 implying that 𝜆21 + 𝜆22 > 3, which can be analyzed
in two different cases.

4.1. Case 𝛿 = 0. For this case, (52) becomes

𝛼0 dGd𝜁 + (𝛽0e𝜁 + 𝜌0)G = 0, (54)

of which solution is

G (𝜁) = ec1𝜁

⋅ exp [− 4V0ℏ [4𝜆1 (c2 + c3) + 4𝜆2 (c2 − c3) + ℏp]e
𝜁] ,

c1 = 4 (c22 + c23)ℏ [4𝜆1 (c2 + c3) + 4𝜆2 (c2 − c3) + ℏp] ,
(55)

and therefore, the corresponding wave function for this case
becomes

Ψ = 𝜓0e(1/ℏ)(c1𝜁+c2𝜅+c3𝜂) exp [−c4e𝜁] ,
c4 = 4V0ℏ [4𝜆1 (c2 + c3) + 4𝜆2 (c2 − c3) + ℏp] .

(56)

Note that wave function has a damping behavior with respect
to the scale factor, which is a required feature.

4.2. Case 𝛿 ̸= 0. For this case, (52) becomes, which is similar
to that in [36],

y󸀠󸀠 + ay󸀠 + (be𝜅x + c) y = 0,
y = e−ax/2Z] (2√b𝜅 e𝜅x/2) , (57)

where Z] is the Bessel function and ] = √𝑎2 − 4𝑐/𝜅 is the
corresponding order, and its relations are

a = 𝛼0𝛿0 = −
4𝜆1 (c2 + c3) + 4𝜆2 (c2 − c3) + ℏpℏ (𝜆21 + 𝜆22 − 3) ,

b = 𝛽0𝛼0

=
{{{{{{{{{{{

− 2V0
ℏ2 (𝜆21 + 𝜆22 − 3)

, when 𝜆21 + 𝜆22 > 3
2V0ℏ2 (𝜆21 + 𝜆22 − 3) , when 𝜆21 + 𝜆22 < 3

c = 𝜌0𝛼0 =
2 (c22 + c23)ℏ2 (𝜆21 + 𝜆22 − 3) ,

𝜅 = 1,

(58)

of which, according to the constant b, the solution to the
function G becomes

G (𝜁) = e((4𝜆1(c2+c3)+4𝜆2(c2−c3)+ℏp)/2ℏ(𝜆
2
1+𝜆
2
2−3))𝜁K](2ℏ

⋅ √ 2V0𝜆21 + 𝜆22 − 3e
𝜁/2) , 𝜆21 + 𝜆22 > 3

(59)

G (𝜁) = e−((4𝜆1(c2+c3)+4𝜆2(c2−c3)+ℏp)/2ℏ(3−𝜆
2
1+𝜆
2
2))𝜁J] (2ℏ

⋅ √ 2V03 − 𝜆21 + 𝜆22 e
𝜁/2) , 𝜆21 + 𝜆22 < 3.

(60)

and the resulting wave functions are

Ψ = ec5𝜁+c2𝜅+c3𝜂K] (2ℏ√ 2V0𝜆21 + 𝜆22 − 3e
𝜁/2) ,

𝜆21 + 𝜆22 > 3
(61)

Ψ = e−c6𝜁+c2𝜅+c3𝜂J] (2ℏ√ 2V03 − 𝜆21 + 𝜆22 e
𝜁/2) ,
𝜆21 + 𝜆22 < 3.

(62)

where the constants are

c5 = 4𝜆1 (c2 + c3) + 4𝜆2 (c2 − c3) + ℏp2ℏ (𝜆21 + 𝜆22 − 3) ,
c6 = 4𝜆1 (c2 + c3) + 4𝜆2 (c2 − c3) + ℏp2ℏ (3 − 𝜆21 + 𝜆22) .

(63)

Whilst c5 < 0 and c6 > 0, the wave functions ((61),
(62)) will remain suppressed by the growth of the scale factor,
yielding an expected damped wave function.
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5. Conclusions

We studied a flat Friedmann-Robertson-Walker (FRW) mul-
tiscalar field cosmological model. We introduce the corre-
sponding Einstein-Klein-Gordon (EKG) system of equations
and the associated Hamiltonian density. Exact solutions
to the EKG system are derived by means of Hamilton’s
approach where a particular scalar potential of the form
V = V0e

−𝜆1𝜙−𝜆2𝜎 was utilized, which gave rise to different
cases dependant of the free parameter 𝜆, for which the scalar
fields, the scale factor, and the e-folding function were found.
The Hamiltonian density was employed in order to compute
the Wheeler-DeWitt (WDW) equation, which was solved
by means of a change of variables. An ansatz for the wave
function was proposed which in turn allowed us to find the
exact form of the generic function and its constants which
was composed by the aforementioned in terms of the free
parameter 𝜆. We found the model to be rather simple and
its solutions to be quite interesting for a model building
inflation.
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vista desde la mecánica cuántica supersimétrica,” Notabilis
Scientia, 2013.

[36] V. F. Zaitsev and A. D. Polyanin, Handbook of Exact Solutions
for Ordinary Differential Equations, Taylor & Francis Editorial,
2002.

https://arxiv.org/abs/1702.00478


Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

